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COINCIDENCE DEGREE METHODS

IN ALMOST PERIODIC DIFFERENTIAL EQUATIONS

Liangping Qi — Rong Yuan

Abstract. We consider the existence of almost periodic solutions to dif-

ferential equations by using coincidence degree theory. A new equivalent
spectral condition for the compactness of integral operators on almost pe-

riodic function spaces is established. It is shown that semigroup conditions

are crucial in applications.

1. Introduction

The theory of almost periodic functions was mainly created by the Danish

mathematician H. Bohr in 1920s. Almost periodic functions are intended to

be a generalization of periodic functions in some sense. It is well known that

almost periodic theory is interesting and at the same time difficult. In celestial

mechanics, almost periodic solutions and stable solutions are intimately related.

In the same way, stable electronic circuits exhibit almost periodic behavior. The

methods to study the existence of almost periodic solutions can be found, e.g.

in [13], [16], [27], [35]–[37].

The coincidence degree theory was established by Mawhin [25]. This theory,

based on the Leray–Schauder degree theory, has a successful application in the

study of the existence of periodic solutions and some boundary value problems
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of differential equations x′ = ψ(x, t), which is written in an abstract operator

form as

Lx = Nx,

where L is a Fredholm linear operator of index zero. In the Continuation The-

orem (Theorem 2.13), there is a condition: N is L-compact, which is closely

related to the compactness of the integral operator in the applications to differ-

ential equations. The L-compactness is usually shown by using the Arzela–Ascoli

theorem. The underlying reason is the compactness of the space on which the

functions are defined.

A natural generalization of the study of periodic solutions could be applica-

tion of the degree theory in almost periodic world. Once this is achieved, a new

method will be available for almost periodic differential equations. However, this

problem is very difficult. The underlying reason for this is the non-compactness

of the space on which the functions are defined. There are no general theorems

of analysis which yield uniform convergence on R.

As it is commented in [5], the compactness is very difficult to exhibit, because

the analog of the Arzela–Ascoli theorem for almost periodic functions, the so-

called Lusternik theorem (Theorem 2.3), contains a condition of equi-almost

periodicity that is practically unverifiable. In [28] the author provides several

good examples to which the degree theory is not applicable. There exist both

first and second order differential equations for which the associated operators

on almost periodic function spaces have no fixed points but they map the closed

unit ball into its interior ([28, Theorems 2.1 and 3.2]). It is also mentioned in [29]

that it seems that the standard techniques (variational methods, continuation

and degree theory, upper and lower solutions) are not applicable and that new

phenomena appear. So, it is of significant interest to work out this problem and

show these new phenomena. Indeed, we find that coincidence degree theory is

applicable to complex almost periodic differential equations.

To our knowledge, there are a few papers that investigate the existence of

almost periodic solutions by using the coincidence degree methods, see e.g. [2],

[19]–[24], [32]–[34]. However, there exists a gap in these papers. The authors in

these papers assume that the Arzela–Ascoli theorem and the module containment

could imply L-compactness, which means that the uniform convergence on any

compact subsets of R could imply uniform convergence on R, but this is not the

case as pointed out by Zhou and Shao [38].

In the present paper, we continue to investigate such problems. We find that

the mentioned above gap appears because the compactness of integral operators

is not discussed in these papers. So, it is of great interest to study the com-

pactness of integral operators and find almost periodic solutions to differential

equations by involving coincidence degree theory.
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We solve the problem of applying coincidence degree theory to almost peri-

odic differential equations by answering four basic questions, that is, given an

almost periodic function space, when an integral operator maps the space to

itself, when an integral operator is compact on the space, when a nonlinear op-

erator maps the space to itself, and what class of differential equations admits

a priori estimate structure.

Our main theorems are formulated as follows. Notations and terminologies

will be explained later.

Theorem 1.1. Let H = {λk}∞k=1 ⊂ R be a set of different numbers such

that 0 /∈ H, the closure of H, and APH(R,C) be the space of almost periodic

functions f with Λf ⊂ H. Then the integral operator

(1.1)

I : APH(R,C)→ APH(R,C),

f(t) 7→
∫ t

0

f(s) ds−M

{∫ t

0

f(s) ds

}
is compact if and only if H has no limit point.

Theorem 1.2. Consider complex differential equations of the form

(1.2) z′ = αz + ψ(z, t) + ϕ(t).

Let the following conditions hold:

(A1) α ∈ C, α 6= 0.

(A2) ψ(z, t) : C×R→ C is almost periodic in t uniformly for compact subsets

of C. Λψ ⊂ [0,∞) has no limit point.

(A3) ϕ ∈ AP (R,C) and Λϕ ⊂ [0,∞) has no limit point.

Let H = {λk}∞k=1 ⊂ (0,∞) be the semigroup generated by (Λψ ∪ Λϕ) \ {0}, and

δ > 0 be a number such that λk ≥ δ for each k ∈ Z+. Assume further that there

exists R > 0 with ψ(z, t) being analytic in z for |z| ≤ R and

sup
|z|≤R, t∈R

|ψ(z, t)|+ ‖ϕ‖ <
1− β

δ
|α|

1

|α|
+
β

δ

·R,

where β > 0 is an absolute constant given by Theorem 2.7. Then equation (1.2)

has at least one solution in AP 1
H0

(R,C), where H0 = H ∪ {0}.

Theorem 1.1 remains true for integral operators on both the space AP1(R,C)

of almost periodic functions with absolutely convergent Fourier series and the

space B2(R,C) of almost periodic functions in the sense of Besicovitch, but

with different proofs (Theorems 3.7 and 3.9). The semigroup condition for H

in Theorem 1.2 is crucial for both the compactness of an integral operator and

the definition of a nonlinear operator. Compared with fixed point methods for
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almost periodic differential equations of [6], [8], [12], [14], the applicability of

coincidence degree theory depends much upon the obtention of a priori bound

for the solutions to the equations. If Reα = 0, equation (1.2) does not possess

an exponential dichotomy and the non-resonance condition in [6], [8], [12], [14]

may fail, so those fixed point methods will not work. Moreover, in view of

Lemma 2.9 ([28, Proposition 3.4]) the constant α in equation (1.2) may not be

easily replaced by the almost periodic function α(t). This reveals somewhat the

difficulties that one may find when working on the existence theorems for almost

periodic solutions.

We organize this paper as follows. Section 2 introduces some basic notations,

terminologies and known results. In Section 3 we prove Theorem 1.1. In Section 4

we study semigroups and the composition of almost periodic functions to define

nonlinear operators. In Section 5 we construct suitable real function spaces for

applying coincidence degree theory to complex equations. In Section 6 we prove

Theorem 1.2.

2. Preliminaries

In this section, we recall some basic knowledge that will be used in this paper.

For more details, see e.g. [3], [9], [13], [15], [18].

Definition 2.1 ([18, p. 1]). A continuous function f : R→ C is called almost

periodic (in the sense of Bohr) if for each ε > 0, the ε-translation set (or ε-almost

periodic set) of f ,

T (f, ε) := {τ ∈ R : |f(t+ τ)− f(t)| < ε for all t ∈ R}

is relatively dense, that is, there is a number l = l(ε) > 0 such that [a, a + l] ∩
T (f, ε) 6= ∅ for every a ∈ R. In this case, l is called the inclusion length for

T (f, ε). Members of T (f, ε) are called ε-translation numbers (ε-almost periods)

of f .

Denote by AP (R,C) the Banach space [13, p. 5] of complex almost peri-

odic functions with uniform convergence norm ‖f‖ = sup
t∈R
|f(t)|. For every

f ∈ AP (R,C), the mean value

M{f} := lim
T→∞

1

2T

∫ T

−T
f(t) dt = lim

T→∞

1

2T

∫ T+s

−T+s

f(t) dt

exists uniformly with respect to s ∈ R. Denote by Λf = {λk} the set of all real

numbers such that

a(f, λ) := lim
T→∞

1

2T

∫ T

−T
f(t)e−iλt dt 6= 0.
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Then Λf is countable, which is called the spectrum of f . If ak = a(f, λk), we

associate the Fourier series

(2.1) f(t) ∼
∑
k

ake
iλkt.

The elements ak ∈ C are called the Fourier coefficients and the numbers λk the

Fourier exponents of f .

Theorem 2.2 (Approximation theorem [18, p. 17]). For every f ∈AP (R,C)

and every ε > 0 there is a trigonometric polynomial

Pε(t) =

Nε∑
k=1

bk,εe
iλk,εt, bk,ε ∈ C, λk,ε ∈ Λf ,

such that ‖Pε − f‖ < ε.

The module of f , denoted by mod(f), is defined to be the additive group

mod(f) :=

{ n∑
k=1

mkλk : λk ∈ Λf , mk ∈ Z, n ∈ Z+

}
.

An additive semigroup [17, p. 24] G ⊂ R is a set of real numbers such that

a+ b ∈ G for all a, b ∈ G. The semi-module of f , denoted by smod(f), is defined

to be the additive semigroup

smod(f) :=

{ n∑
k=1

mkλk : λk ∈ Λf , mk ∈ N,
n∑
k=1

mk 6= 0, n ∈ Z+

}
,

such that its members do not necessarily have an inverse.

The next property gives a condition for the compactness of a set in AP (R,C).

Theorem 2.3 (Lusternik [13, p. 21], [18, p. 7]). A set E ⊂ AP (R,C) is

compact if and only if the following conditions are satisfied:

(a) For every fixed t0 ∈ R the set E(t0) = {f(t0) ∈ C : f ∈ E} is compact.

(b) The set E is equicontinuous, that is, for every ε > 0 there is δ = δ(ε)>0

such that |f(t′)− f(t′′)| < ε whenever |t′ − t′′| < δ for all f ∈ E.

(c) The set E is equi-almost periodic, that is, for every ε > 0 the set

T (E, ε) =
⋂
f∈E

T (f, ε)

is relatively dense.

Remark 2.4. A family F of almost periodic functions is a uniformly almost

periodic family (u.a.p. family [13, p. 17]) if it is uniformly bounded, and if given

ε > 0, then T (F, ε) =
⋂
f∈F

T (f, ε) is relatively dense and includes an interval

about 0. It is easy to check that the family F is equicontinuous if and only if

T (F, ε) includes an interval about 0 for each ε > 0. Consequently, F is a u.a.p.
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family if and only if F ⊂ AP (R,C) is relatively compact. This remark will also

be referenced when considering issues related to relative compactness.

The following property of u.a.p. families is useful for determining the com-

pactness of integral operators.

Theorem 2.5 ([12], [13, p. 70]). Let F be a family of almost periodic func-

tions, whose exponents all lie in a given countable set H with no limit point. If

there is K so that |f(t) − f(s)| ≤ K|t − s| for all t, s ∈ R and f ∈ F, and if

there is M such that ‖f‖ ≤ M for all f ∈ F, then F is a u.a.p. family. Con-

versely, if F is the family of all almost periodic functions such that ‖f‖ ≤ M

and |f(t)−f(s)| ≤ K|t− s| with Λf ⊂ H, then F is u.a.p. only if H has no limit

point.

We are interested in the case when the primitive
∫ t

0
f(s) ds of an almost

periodic f is also almost periodic. There indeed exist almost periodic functions

whose primitives are unbounded on R.

Lemma 2.6 ([28]). Assume that G ⊂ R is a group which is not cyclic, then

there exists f ∈ AP (R,C) with mod(f) ⊂ G such that its primitives F satisfy

F (t)→∞ as |t| → ∞.

The following theorem gives a simple condition under which the integral

operator I defined by (1.1) is linear and bounded on an almost periodic function

space.

Theorem 2.7 ([13, p. 74]). Suppose that f ∈ AP (R,C), f(t) ∼
∑
k

ake
iλkt,

where |λk| ≥ δ > 0. Then
∫ t

0
f(s) ds is in AP (R,C) and if g is the integral of f

with a(g, 0) = 0, then ‖g‖ ≤ β‖f‖/δ, where β > 0 is an absolute constant which

depends only on δ.

To define a nonlinear operator on an almost periodic function space, we need

the following semi-module containment theorem.

Theorem 2.8 ([8]). Suppose that f(z, t) is almost periodic in t uniformly for

z ∈ C, |z| ≤ r, and analytic in z for |z| ≤ r. Then, for every ϕ ∈ AP (R,C) with

Λϕ ⊂ smod(f) and ‖ϕ‖ ≤ r, one has f(ϕ( · ), · ) ∈ AP (R,C) and Λf(ϕ( · ), · ) ⊂
smod(f).

The difficulties in establishing the existence theorems for almost periodic

solutions can be seen from the following result, which shows the problem in

a wider perspective.
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Lemma 2.9 ([28]). Assume that G ⊂ R is a group which is not cyclic, then

there exist a, b ∈ AP (R,C) with [mod(a) ∪mod(b)] ⊂ G such that for the linear

equation

x′ = a(t)x+ b(t)

all the solutions are bounded but none of them is almost periodic.

Real almost periodic functions can be defined in the same way and have the

same properties as the complex ones. We introduce another two types of almost

periodic functions. They have the same Fourier series theory as Bohr almost

periodic functions.

Let AP1(R,C) ⊂ AP (R,C) be the Banach space [9, p. 31] of Bohr almost

periodic functions with absolutely convergent Fourier series

AP1(R,C) :=

{
f(t) =

∑
k

ake
iλkt : R→ C : ak ∈ C, λk ∈ R and

∑
k

|ak| <∞
}

equipped with the norm

‖f‖1 :=
∑
k

|ak|.

The space AP1(R,C) is a Banach algebra with the operation of multiplication

being the usual point-wise multiplication.

Denote by TP (R,C) the set of all trigonometric polynomials,

(2.2) TP (R,C) =

{
P (t) =

n∑
k=1

ake
iλkt : R→ C : ak ∈ C, λk ∈ R

for k = 1, . . . , n and n ∈ Z+

}
.

A metric on TP (R,C) is given by

d1(P,Q) =
∑

λ∈ΛP∪ΛQ

|a(P, λ)− a(Q,λ)|,

where P,Q ∈ TP (R,C). The completion of the space (TP (R,C), d1) is exactly

the space AP1(R,C) with the metric induced by ‖ · ‖1 [9, p. 18]. Let

M =

{
f ∈ L2

loc(R,C) : lim sup
T→∞

1

2T

∫ T

−T
|f(t)|2dt <∞

}
be a linear space with the semi-norm

(2.3) ‖f‖M =

[
lim sup
T→∞

1

2T

∫ T

−T
|f(t)|2dt

]1/2

.

If K = {f ∈ M : ‖f‖M = 0}, then the quotient space M/K =: M2(R,C),

called a Marcinkiewicz function space, is complete with respect to norm (2.3)

(see [9, p. 45]).
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Definition 2.10 ([9, p. 46]). The space B2(R,C) of almost periodic func-

tions in the sense of Besicovitch is the closure of the linear manifold TP (R,C)+K

in the space (M2(R,C), ‖ · ‖M), where TP (R,C) stands for the set of trigono-

metric polynomials given by (2.2).

Two functions from the same equivalence class of B2(R,C) may differ at

a set of points even of infinite measure [3, p. 74]. Among various almost periodic

function spaces, e.g. AP1(R,C), AP (R,C), B2(R,C), etc., B2(R,C) is the largest

for which the Parseval equality holds [10], i.e.

(2.4) M{|f |2} =
∑
k

|ak|2,

where f takes the form of (2.1). Moreover, there holds the following important

result.

Theorem 2.11 (Riesz–Fisher–Besicovitch [3, p. 110]).To any series
∑
k

ake
iλkt

for which
∑
k

|ak|2 converges, there corresponds a function from B2(R,C) having

this series as its Fourier series.

Following Vo–Khac (see [4]), given f ∈ B2(R,C), denote by ∇f the limit (if

it exists) in B2(R,C) of the quotients (f( · + r)− f( · ))/r when r → 0, r 6= 0.

In this case, the simple relation a(∇f, λ) = iλa(f, λ) holds for all λ ∈ R.

The following result which is closely related to the compactness of integral

operators on AP1(R,C) and B2(R,C) is a special case of [11, Proposition 7.4].

Lemma 2.12. A set E ⊂ lp(C), p ∈ [1,∞), is relatively compact if and only

if E is bounded and equi-convergent, i.e. for each ε > 0 there is an N(ε) ∈ Z+

such that
∞∑

k=N(ε)+1

|xk|p < ε for all x = (x1, x2, . . .) ∈ E.

At last, we would like to recall the basics of coincidence degree theory. Let Y

and Z be real Banach spaces, L : domL⊂Y →Z be a linear operator andN : Y →
Z be a continuous operator. L is called a Fredholm operator of index zero if

dim kerL = codim ranL < ∞ and ranL is closed in Z. In this case, there exist

continuous projectors P : Y → Y and Q : Z → Z such that ranP = kerL and

ranL = kerQ = ran (idZ −Q). The operator L|domL∩kerP : (idY − P) domL →
ranL is invertible. Denote by KP the inverse of L|domL∩kerP . If Ω is an open

bounded subset of Y , then N is called L-compact on Ω if QN (Ω) is bounded

and KP(idZ − Q)N : Ω → Y is compact. Denote by J an isomorphism from

ranQ to kerL.

Theorem 2.13 (Continuation Theorem [15, p. 40]). Suppose that Ω ⊂ Y is

an open bounded set, L is a Fredholm operator of index zero and N is L-compact

on Ω. Let the following conditions hold:
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(C1) Ly 6= µN y for each y ∈ ∂Ω ∩ domL and µ ∈ (0, 1).

(C2) QN y 6= 0 for each y ∈ ∂Ω ∩ kerL.

(C3) The Brouwer degree deg(JQN ,Ω ∩ kerL, 0) 6= 0.

Then the equation Ly = N y has at least one solution in Ω ∩ domL.

3. Compactness of integral operators

3.1. Integral operators on Bohr almost periodic function spaces.

Coincidence degree theory obtains its success in studying alternative problems,

which can be written as operator equations

Lx = Nx

with an appropriate priori estimate structure (see [15] for details). For first-order

ordinary differential equations of the form

x′ = ψ(x, t),

with ψ being a continuous function, L is the usual differential operator x 7→ x′,

and KP is nothing but an integral operator. In many cases, the nonlinear op-

erator N : x( · ) 7→ ψ(x( · ), · ) is not compact (Example 4.8) and Q is finite-

dimensional. So, it is natural to study KP to obtain the L-compactness of N .

Generally speaking, an integral operator is not compact on AP (R,C). How-

ever, this may happen on a subspace of AP (R,C). We first study conditions for

an integral operator to be well defined on a subspace of AP (R,C).

Fix an infinitely countable set of different numbers H = {λk}∞k=1 ⊂ R. A fre-

quently used complete subspace of AP (R,C) is the following:

(3.1) APH(R,C) := {f ∈ AP (R,C) : Λf ⊂ H}.

The example in the proof of Lemma 2.6 requires the denseness of the group

G in R. We provide here a different one with less restrictions.

Lemma 3.1. If 0 ∈ H, the closure of H, then there exists f ∈ APH(R,C)

such that its primitive ∫ t

0

f(s) ds /∈ AP (R,C).

Proof. If 0 is an isolated point ofH, it is obvious that f(t) ≡ 1 ∈ APH(R,C)

but
∫ t

0
f(s) ds = t /∈ AP (R,C).

If 0 is a limit point of H, there is a sequence of different numbers {µj}∞j=1 in

H \{0} which converges to 0. Let {ak}∞k=1 be an absolutely convergent sequence

in C\{0}, i.e.
∞∑
k=1

|ak| <∞. For a1 there is µj1 in {µj}∞j=1 such that |a1/µj1 | > 1,

for a2 there is µj2 6= µj1 in {µj}∞j=1 such that |a2/µj2 | > 1, . . . In this way, we
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obtain a subsequence {µjk}∞k=1 of {µj}∞j=1 such that |ak/µjk | > 1 for all k ∈ Z+.

It is obvious that the function

f(t) =

∞∑
k=1

ake
iµjk

t, t ∈ R,

is in APH(R,C).

Denote by F (t) =
∫ t

0
f(s) ds a primitive of f and suppose that F ∈ AP (R,C).

Since a(f, λ) = iλa(F, λ) for all λ ∈ R, it follows that

F (t) ∼ a(F, 0) +

∞∑
k=1

ak
iµjk

eiµjk
t.

Therefore, the Fourier coefficients of F are not square summable since |ak/µjk |>1

for all k ∈ Z+, which contradicts the Parseval equality (2.4). �

From Theorem 2.7 and Lemma 3.1 it follows that the integral operator I
defined by (1.1) maps the space APH(R,C) to APH(R,C) if and only if 0 /∈ H.

In that case, I is linear and bounded.

Lemma 3.2. Suppose that {µk}∞k=1 ⊂ R is a set of different numbers, then

the following statements hold for the set of infinitely many pure oscillations E =

{eiµkt}∞k=1 ⊂ AP (R,C):

(a) There exists no Cauchy sequence in the set E.

(b) The set E is equicontinuous if and only if the sequence {µk}∞k=1 is

bounded.

(c) The set E is equi-almost periodic only if the sequence {µk}∞k=1 has no

limit point.

Proof. (a) A direct calculation shows that

sup
t∈R
|eiµjt − eiµkt| = sup

t∈R

∣∣[ei(µj−µk)t − 1] · eiµkt
∣∣ = 2

for j 6= k. Consequently, the set E contains no Cauchy sequence.

(b) Sufficiency. Let the sequence {µk}∞k=1 be bounded by a constant M > 0.

Choose ε > 0 so small that there is a unique θ ∈ (0, π) satisfying |eiθ − 1| = ε,

and δ > 0 so small that Mδ < θ. It follows that

|eiµks − eiµkt| =
∣∣[eiµk(s−t) − 1] · eiµkt

∣∣ < |eiMδ − 1| < ε

for all s, t ∈ R, |s− t| < δ, and k ∈ Z+. Hence the set E is equicontinuous.

Necessity. Let the set E be equicontinuous. Without loss of generality we

may assume the contrary that limk→∞ µk = ∞. Given a sufficiently small con-

stant ε0 > 0, there is δ0, 0 < δ0 < π, such that

(3.2) |eit − 1| > 2− ε0
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whenever |t−π| < δ0. It is obvious that the continuous function g(t) = π/t maps

(0, δ) onto (π/δ,∞), where 0 < δ < δ0. So, for each m ∈ Z, m > π/δ + 1, there

exists t ∈ (0, δ) such that m ≤ π/t < m + 1. Furthermore, for each sufficiently

large k ∈ Z+ there exists a unique mk ∈ Z+ such that

π

δ
+ 1 < mk ≤ µk < mk + 1.

Let tk ∈ (0, δ) be such that

mk ≤
π

tk
< mk + 1.

Then |µktk − π| < tk < δ and |eiµktk − 1| > 2 − ε0 by (3.2). Consequently, for

each δ > 0 and sufficiently large k ∈ Z+ there exists tk ∈ (0, δ) such that

|eiµk(t+tk) − eiµkt| > 2− ε0

for all t ∈ R. This contradicts the equicontinuity of the set E.

(c) Let the set E be equi-almost periodic. Without loss of generality we

may assume the contrary that the sequence {µk}∞k=1 is bounded. By (b) the set

E is equicontinuous. Hence for every ε > 0 the set T (E, ε) is relatively dense

and includes an interval about 0. Therefore, the set E is relatively compact by

Remark 2.4. This contradicts (a). �

Now we are in the position to prove Theorem 1.1.

Proof of Theorem 1.1. Sufficiency. Let δ > 0 be a number such that

|λk| ≥ δ for all k ∈ Z+, E ⊂ APH(R,C) be a set bounded by a constant M > 0.

From Theorem 2.7 it follows that the set I(E) is bounded by βM/δ. By the

property of integrals one gets

|I(f)(t)− I(f)(s)| =
∣∣∣∣ ∫ t

0

f(τ) dτ −
∫ s

0

f(τ) dτ

∣∣∣∣ ≤M |t− s|
for all t, s ∈ R and f ∈ E. Since a(f, λ) = iλa(F, λ) for all λ ∈ R, it follows

that ΛI(f) = Λf ⊂ H for all f ∈ E. Thus I(E) is u.a.p. by Theorem 2.5 and

relatively compact by Remark 2.4.

Necessity. Let the set H have a limit point µ and {µk}∞k=1 be a sequence of

different numbers in H which converges to µ. Then the set {iµk · eiµkt}∞k=1 is

bounded and its image I({iµk ·eiµkt}∞k=1) = {eiµkt}∞k=1 is not relatively compact

by Lemma 3.2 (a). Hence I is not compact on APH(R,C). �

Remark 3.3. The following are another three different proofs for the neces-

sity of Theorem 1.1. Let µ be a limit point of H and {µk}∞k=1 be a sequence of

different numbers in Hε := (µ− ε, µ+ ε)∩H converging to µ, where 0 < ε < |µ|.
(a) Since I(eiλt) = eiλt/iλ, 1/iλ is an eigenvalue of I for each λ ∈ Hε. Thus

the spectrum σ(I) of I contains {1/iµk}∞k=1 and has 1/iµ as a limit point. Since
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the spectrum of a compact operator can have at most 0 as its limit point [30,

p. 108], I is not compact on APH(R,C).

(b) If AP 1
Hε

(R,C) = {f ∈ AP (R,C) : f ′ exists and is almost periodic and

Λf ⊂ Hε}, then f = I(f ′) for all f ∈ AP 1
Hε

(R,C). Furthermore, a theo-

rem of Bochner asserts that APHε
(R,C) = AP 1

Hε
(R,C) and there is a constant

C(ε) > 0 such that ‖f ′‖ ≤ C(ε)‖f‖ for all f ∈ APHε
(R,C) [13, p. 67]. Therefore,

the inverse image I−1(B1) of the unit ball B1 in the infinite dimensional space

APHε
(R,C) is a set bounded by C(ε). The non-compactness of B1 (by Riesz’s

theorem) shows that I is not compact on APH(R,C).

(c) Notice that the set {iµk · eiµkt}∞k=1 is bounded and its image I({iµk ·
eiµkt}∞k=1) = {eiµkt}∞k=1 is not equi-almost periodic by Lemma 3.2 (c). So I is

not compact on APH(R,C).

Corollary 3.4. Let N : APH(R,C) → APH(R,C) be a nonlinear, contin-

uous and bounded operator with H having no limit point. Then the integral

operator IN defined by

(3.3)

IN : APH(R,C)→ APH(R,C),

f(t) 7→
∫ t

0

N (f)(s) ds−M

{∫ t

0

N (f)(s) ds

}
,

is compact on APH(R,C).

One may ask whether Corollary 3.4 is true for those nonlinear operators N
defined by basic elementary functions, such as f(t) 7→ a(t)[f(t)]2 +b(t)f(t)+c(t)

and f(t) 7→ ef(t) et al. Thus we need to consider the definition of a nonlinear

operator on APH(R,C). We are especially interested in the case when APH(R,C)

is a Banach algebra. The closedness of the space APH(R,C) with respect to the

operation of (pointwise) multiplication will be discussed in Section 4.

3.2. Integral operators on the spaces of almost periodic functions

with absolutely convergent Fourier series. Theorem 1.1 remains true for

integral operators on both the space AP1(R,C) and the space B2(R,C). The

proofs are based on the natural isometric isomorphisms from the almost periodic

function spaces to the Banach spaces lp(C) of complex sequences. So, it is of

interest to provide detailed proofs.

Let H = {λk}∞k=1 ⊂ R be a set of different numbers and

AP1,H(R,C) = {f ∈ AP1(R,C) : Λf ⊂ H}.

Each f ∈ AP1,H(R,C) can be written as

(3.4) f(t) =

∞∑
k=1

ake
iλkt,
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where all terms with exponents λk ∈ H are written out for convenience such

that ak may vanish for some k ∈ Z+. Define an operator

S1 : AP1,H(R,C)→ l1(C), f 7→ (a1, a2, . . .),

where l1(C) is the Banach space of complex sequences equipped with the norm

‖(a1, a2, . . .)‖l1 =

∞∑
k=1

|ak| <∞.

The following result is obvious by definition.

Lemma 3.5. The operator S1 : AP1,H(R,C)→ l1(C) is an isometric isomor-

phism.

The following result is obvious by the completeness of (l1(C), ‖ · ‖l1) and

Lemma 3.5.

Lemma 3.6. (AP1,H(R,C), ‖ · ‖1) is a Banach space.

One can also obtain the completeness of (AP1,H(R,C), ‖ · ‖1) by showing

that it is a closed subspace of (AP1(R,C), ‖ · ‖1). By Lemma 3.5, a set E ⊂
AP1,H(R,C) is relatively compact if and only if its image S1(E) ⊂ l1(C) is

relatively compact. It follows from Lemma 2.12 that E is relatively compact if

and only if E is bounded and the set of Fourier series of functions from E is

equi-convergent.

As shown in Lemma 3.1, it is necessary to have 0 /∈ H, the closure of H,

for an integral operator mapping AP1,H(R,C) to AP1,H(R,C). In this case, let

δ > 0 be the number satisfying |λk| ≥ δ for all k ∈ Z+. Given f ∈ AP1,H(R,C)

by (3.4), a primitive of f is given by

(3.5) F (t) :=

∫ t

0

f(s) ds−M

{∫ t

0

f(s) ds

}
=

∞∑
k=1

ak
iλk

eiλkt

with norm

(3.6) ‖F‖1 =

∞∑
k=1

∣∣∣∣akλk
∣∣∣∣ ≤ ‖f‖1δ .

It is obvious that F ∈ AP1,H(R,C) and the following integral operator:

(3.7)

I1 : AP1,H(R,C)→ AP1,H(R,C),

∞∑
k=1

ake
iλkt 7→

∞∑
k=1

ak
iλk

eiλkt,

is well defined, linear and bounded by (3.6).

Theorem 3.7. Suppose that 0 /∈ H, then the integral operator I1 defined by

(3.7) is compact on AP1,H(R,C) if and only if H has no limit point.
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Proof. Sufficiency. Let H have no limit point, δ > 0 be a number satisfying

|λk| ≥ δ for all k ∈ Z+, and E ⊂ AP1,H(R,C) be an arbitrary set bounded by

a constant M > 0. Given f ∈ E, by (3.4), I1(f) takes the form of (3.5) and

‖I1(f)‖1 ≤ M/δ by (3.6). Hence both I1(E) and S1(I1(E)) are bounded by

Lemma 3.5.

Since H has no (finite) limit point if and only if lim
k→∞

|λk| = ∞, for each

ε > 0 there exists N > 0 such that |λk| > M/ε for every k > N . Therefore,

∞∑
k=N+1

∣∣∣ ak
iλk

∣∣∣ < ε

M

∞∑
k=N+1

|ak| ≤ ε,

which implies that the set S1(I1(E)) is equi-convergent. So S1(I1(E)) is rela-

tively compact by Lemma 2.12 and I1(E) is relatively compact by Lemma 3.5.

Necessity. Assume the contrary that H has a limit point µ. Given ε′ > 0,

ε′ < 1/|µ|, there is a strictly increasing sequence {km}∞m=1 ⊂ Z+ such that

|1/λkm − 1/µ| < ε′ for every m ∈ Z+. Let fm(t) = eiλkm t, it follows that

‖fm‖1 = 1 and I1(fm)(t) = eiλkm t/iλkm . The j-th component of S1(I1(fm)) is

[S1(I1(fm))]j =


0 if j 6= km,

1

iλk(m)
if j = km.

Since km > N whenever m is sufficiently large, it follows that

∞∑
j=N+1

∣∣[S1(I1(fm))]j
∣∣ =

1

|λkm |
>

1

|µ|
− ε′ > 0,

which implies that the sequence {S1(I1(fm))}∞m=1 is not equi-convergent. There-

fore, {S1(I1(fm))}∞m=1 is not relatively compact by Lemma 2.12. Hence the set

{I1(fm)}∞m=1 is not relatively compact by Lemma 3.5. �

Remark 3.8. One can also prove the necessity of Theorem 3.7 by an eigen-

value argument as in Remark 3.3 (i). Since ‖f‖ ≤ ‖f‖1 for each f ∈ AP1(R,C) ⊂
AP (R,C), a set which is bounded/compact in (AP1(R,C), ‖ · ‖1) must be boun-

ded/compact in (AP (R,C), ‖ · ‖). However, a set E ⊂ AP1(R,C) which is

bounded in (AP (R,C), ‖·‖) needs not to be bounded in (AP1(R,C), ‖·‖1). So an

operator with domain APH(R,C) which is compact on (AP1,H(R,C), ‖ · ‖1) may

not be compact on (APH(R,C), ‖ · ‖). Theorem 3.7 is not a direct consequence

of Theorem 1.1.

3.3. Integral operators on Besicovitch spaces. There are two different

directions to generalize almost periodic functions. One is further structural gen-

eralizations of pure periodicity, by V.V. Stepanov, N. Wiener, H. Weyl, etc. One

is to consider the class of limit functions of trigonometric polynomials in a more

general sense than uniform convergence by A.S. Besicovitch [3, p. 67].
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The Fourier series of Besicovitch almost periodic functions is just the series∑
k

ake
iλkt for which

∑
k

|ak|2 < ∞ (see [7]). Due to the similarity of the space

B2(R,C) to AP1(R,C), we will state conclusions for B2(R,C) without proof.

Let H = {λk}∞k=1 ⊂ R be a set of different numbers, and define

B2
H(R,C) = {f ∈ B2(R,C) : Λf ⊂ H}.

For each f ∈ B2
H(R,C) given by

f(t) ∼
∞∑
k=1

ake
iλkt,

define an operator

S2 : B2
H(R,C)→ l2(C), f 7→ (a1, a2, . . .),

where l2(C) is the Banach space of complex sequences equipped with the norm

‖(a1, a2, . . .)‖l2 =

√√√√ ∞∑
k=1

|ak|2 <∞.

From the Parseval equality (2.4) and the Riesz–Fisher–Besicovitch Theorem,

Theorem 2.11, it follows that S2 : B2
H(R,C) → l2 is an isometric isomorphism.

Therefore, B2
H(R,C) is a Banach space and Lemma 2.12 can be used to determine

compact sets in B2
H(R,C).

If 0 /∈ H, the closure of H, an inverse operator to

∇ : B2
H(R,C) ∩ dom∇ → B2

H(R,C), f 7→ ∇f

is given by

(3.8)

I2 : B2
H(R,C)→ B2

H(R,C),

∞∑
k=1

ake
iλkt 7→

∞∑
k=1

ak
iλk

eiλkt.

The proof of the following theorem is similar to that of Theorem 3.7.

Theorem 3.9. Suppose that 0 /∈ H, then the operator I2 defined by (3.8) is

compact on B2
H(R,C) if and only if H has no limit point.

Since a primitive of a function fromM may fail to be inM, we present a new

generalization of differential and integral operators to the space B2
H(R,C). It

will be seen that they coincide with ∇ and I2 on B2
H(R,C) (Lemma 3.10).

For the set H let δ > 0 be a number satisfying |λk| ≥ δ for all k ∈ Z+.

Recall that ‖ · ‖M is a norm on AP (R,C) [13, p. 36], it follows that the integral

operator I defined by (1.1) is bounded with respect to the norm ‖ · ‖M, and the
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operator norm of I satisfies ‖I‖ ≤ 1/δ. Since APH(R,C) ∩K = {0}, extend I
to the linear manifold APH(R,C) +K by

IK : APH(R,C) +K → APH(R,C) +K,

f +K 7→ I(f) +K.

It is easy to see that IK is a linear and bounded operator on (APH(R,C) +

K, ‖ · ‖M). By the denseness of APH(R,C) + K in B2
H(R,C), there exists

a unique continuous extension IB : B2
H(R,C) → B2

H(R,C) of IK such that

IB |APH(R,C)+K = IK and ‖IB‖ = ‖IK‖.

Lemma 3.10. There holds IB = I2 on B2
H(R,C), by which the operator

IB : B2
H(R,C)→ ran IB is invertible.

Proof. Since a(f, λ) = iλa(I(f), λ) for all f ∈ APH(R,C) and λ ∈ R, one

has a(f̃ , λ) = iλa(IK(f̃), λ) for all f̃ ∈ APH(R,C) +K and λ ∈ R. It is easy to

check that the functionals {a( · , λ) : B2
H(R,C)→ C}λ∈R are linear and uniformly

bounded by 1. From the denseness of APH(R,C) + K in B2
H(R,C) it follows

that a(f, λ) = iλa(IB(f), λ) for all f ∈ B2
H(R,C) and λ ∈ R. Consequently,

IB = I2 :

∞∑
k=1

ake
iλkt 7→

∞∑
k=1

ak
iλk

eiλkt

on B2
H(R,C). �

Denote by DB : ran IB → B2
H(R,C) the inverse to IB : B2

H(R,C) → ran IB .

Define function spaces

VC = {f : R→ {c} : c ∈ C},

VK = VC +K,

AP 1
H(R,C) = {f ∈ APH(R,C) : there exists f ′ ∈ APH(R,C)}.

It follows that B2
H0

(R,C) = B2
H(R,C) ⊕ VK , where H0 = H ∪ {0}. Define

operators

D0 : AP 1
H(R,C)⊕ VC → APH0

(R,C), f + c 7→ f ′,

D = D0|AP 1
H(R,C) : AP 1

H(R,C) → APH0(R,C), f 7→ f ′,

D0,K : [AP 1
H(R,C) +K]⊕ VK → APH0

(R,C) +K,

f + c+K 7→ f ′ +K,

DK = D0,K |AP 1
H(R,C)+K : AP 1

H(R,C) +K → APH0
(R,C) +K,

f +K 7→ f ′ +K,

D0,B : ran IB ⊕ VK → B2
H0

(R,C), f̃ + c̃ 7→ DB f̃ .

It is easy to prove the following result.
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Lemma 3.11. The following statements are true.

(a) D : AP 1
H(R,C)→ APH(R,C) is the inverse to I : APH(R,C)→ ran I.

(b) DK : AP 1
H(R,C)+K → APH(R,C)+K is the inverse to IK : APH(R,C)

+K → ran IK .

(c) DK = DB |AP 1
H(R,C)+K = DB |ran IK .

(d) kerD0,B = VK , ranD0,B = ranDB = B2
H(R,C).

(e) D0,B : ran IB ⊕ VK → B2
H0

(R,C) is a Fredholm operator of index 0.

4. Semigroups and nonlinear operators

From now on we will only consider Bohr almost periodic function. Additive

semigroups turns out to be the most suitable algebraic object for H when con-

sidering the compactness of integral operators on APH(R,C) and the closedness

of APH(R,C) with respect to the operation of multiplication simultaneously.

Lemma 4.1. The space APH(R,C) is a Banach subalgebra of AP (R,C) if

and only if H is a semigroup.

Proof. Sufficiency. Let H be a semigroup, and f, g ∈ APH(R,C) be such

that

f(t) ∼
∞∑
k=1

ake
iλkt, g(t) ∼

∞∑
k=1

bke
iλkt.

Theorem 2.2 implies that there exist two sequences of trigonometric polynomials

{pn}∞n=1 and {qn}∞n=1 such that

pn(t) =

Nn∑
k=1

an,ke
iλkt, ‖pn − f‖ <

1

n
,

qn(t) =

Nn∑
k=1

bn,ke
iλkt, ‖qn − g‖ <

1

n
.

Consequently, Λpnqn ⊂ H by the definition of a semigroup, and

lim
n→∞

‖pnqn − fg‖ = 0.

Since a(pnqn, λ) = 0 for all λ 6∈ H, it follows that a(fg, λ) = 0 for all λ 6∈ H.

Therefore, Λfg ⊂ H and fg ∈ APH(R,C).

On the other hand, it is easy to check that ‖fg‖ ≤ ‖f‖·‖g‖. The completeness

of APH(R,C) implies that APH(R,C) is a Banach subalgebra of AP (R,C).

Necessity. Let APH(R,C) be a Banach subalgebra of AP (R,C). Since eiλt,

eiµt, ei(λ+µ)t ∈ APH(R,C) for any λ, µ ∈ H, it follows that λ+ µ ∈ H. Thus H

is a semigroup. �

From Lemma 4.1 we can show that there exists a large number of nonlinear,

continuous and bounded operators on APH(R,C) defined by power series.
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Lemma 4.2. Suppose that H is a semigroup and h(z) =
∞∑
n=1

Cnz
n is a com-

plex power series such that
∞∑
n=1
|Cn|rn <∞ for some r > 0. Then

∞∑
n=1

cn(t)[f(t)]n

in APH(R,C) for every f and every sequence {cn(t)}∞n=1 in APH(R,C) satisfying

‖f‖ ≤ r and ‖cn‖ ≤ |Cn|, where n ∈ Z+.

Proof. Since∣∣∣∣ ∞∑
n=1

cn(t)[f(t)]n
∣∣∣∣ ≤ ∞∑

n=1

|cn(t)| · |f(t)|n ≤
∞∑
n=1

|Cn|rn <∞,

the function
∞∑
n=1

cn(t)[f(t)]n is well defined and uniformly convergent on R. By

Lemma 4.1 one has
m∑
n=1

cn(t)[f(t)]n ∈ APH(R,C) for all m ∈ Z+. It follows that

∞∑
n=1

cn(t)[f(t)]n ∈ APH(R,C). �

Next we use three properties of additive semigroups to illustrate the condi-

tions imposed on the set H for the space APH(R,C).

Lemma 4.3. An additive subgroup (G,+) < (R,+) is isomorphic to (Z,+)

if and only if γ := inf
x∈G/{0}

|x| > 0. In that case, γ is a generator of G.

Proof. Necessity. Let (G,+) be isomorphic to (Z,+). Since Z = 〈1〉, the

cyclic group generated by 1, there is e ∈ G, e 6= 0, such that G = 〈e〉. Thus

γ = inf
x∈G/{0}

|x| = |e| > 0.

Sufficiency. Let γ = inf
x∈G/{0}

|x| > 0. If |x| 6= γ for every x ∈ G, there would

be a strictly decreasing sequence {xn}∞n=1 ⊂ G ∩ (0,∞) which converges to γ.

Hence there exists N > 0 such that 0 < |xm − xn| < γ for all m,n > N . This

contradicts the definition of γ since G is a group. Therefore, γ ∈ G and 〈γ〉 ⊂ G.

If there exists y ∈ G\〈γ〉, there is a unique n ∈ Z such that nγ < y < (n+1)γ.

However, the inequality

0 < min{y − nγ, (n+ 1)γ − y} ≤ γ

2

contradicts the definition of γ. So G = 〈γ〉. �

Example 4.4. Put

APG,δ(R,C) := {f ∈ AP (R,C) : mod(f) ⊂ G, |λ| ≥ δ for all λ ∈ Λf},

where G is an additive subgroup of R, and δ > 0 is a constant. By Theorem 1.1

the integral operator I defined by (1.1) is compact on APG,δ(R,C) if and only

if G has no limit point. This leads G to be the cyclic group 〈γ〉 by Lemma 4.3.

Therefore, I is compact on APG,δ(R,C) if and only if APG,δ(R,C) is a class of

2π/γ-periodic functions. In this case, APG,δ(R,C) can be viewed as a family
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of functions defined on the compact interval [0, 2π/γ] and the classical Arzela–

Ascoli theorem is applicable.

The following lemma shows the existence of a semigroup with no limit point.

Lemma 4.5. Let B ⊂ [0,∞) be a set, then B has no limit point if and only if

the semigroup generated by B, which is denoted by smod(B), has no limit point.

Proof. Let smod(B) have no limit point. It is obvious that B has no limit

point since B ⊂ smod(B).

To prove the necessity, we use a simple fact that a set S ⊂ R has no limit

point if and only if for every L > 0 the interval [−L,L] contains only finitely

many numbers in S. Now suppose that B has no limit point. For every L > 0

the set [−L,L] ∩B = [0, L] ∩B consists of only finitely many numbers, say

[0, L] ∩B = {β1 < . . . < βmL
}.

If β1 > 0, from the definition of a semigroup it follows that

[−L,L] ∩ smod(B) =

{ mL∑
k=1

nkβk : nk ∈ N,
mL∑
k=1

nkβk ≤ L,
mL∑
k=1

nk 6= 0

}
.

Notice that the number of vectors (n1, . . . , nmL
) ∈ NmL satisfying the inequali-

ties

β1 ·
mL∑
k=1

nk ≤
mL∑
k=1

nkβk ≤ L

is finite. Therefore, [−L,L] ∩ smod(B) contains only finitely many numbers. If

β1 = 0, it follows that

[−L,L] ∩ smod(B) =

{ mL∑
k=2

nkβk : nk ∈ N,
mL∑
k=2

nkβk ≤ L, k = 2, . . . ,mL

}
.

So, [−L,L]∩smod(B) contains only finite numbers, which implies that the semi-

group smod(B) has no limit point. �

The following lemma is somewhat an inverse to Lemma 4.5 in the sense that

a semigroup with particular properties must lie entirely on half of the real line.

Lemma 4.6. A nonzero additive semigroup G ⊂ R which has no limit point

is not a cyclic group if and only if λ · µ ≥ 0 for all λ, µ ∈ G.

Proof. The sufficiency is obvious since a nonzero cyclic group contains

numbers of both signs. For the necessity, assume the contrary that there exist

λ, µ ∈ G satisfying λ < 0 < µ. Since G has no limit point and λ < 0 < µ, there

exist two numbers λ+ and λ− such that

λ+ = min{x ∈ G : x > 0} > 0, λ− = max{x ∈ G : x < 0} < 0.
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Then every x ∈ G, x > 0, is an integral multiple of λ−. Otherwise, there exists

x ∈ G, x > 0, and a unique n ∈ N such that

−nλ− < x < −(n+ 1)λ−.

It follows that λ− < x+ (n+ 1)λ− < 0, which contradicts the definition of λ−.

Similarly one can show that every x ∈ G, x < 0, is an integral multiple of λ+.

Consequently, λ+ + λ− = 0 and G is the cyclic group generated by λ+, which is

absurd. �

Remark 4.7. [8] shows that for an additive semigroup G ⊂ R if inf
x∈G
|x| > 0,

then all members of G are of the same sign. [12] proves a similar result to

Lemma 4.6 but does not state it clearly. For the convenience of the readers, we

provide a full statement and detailed proof.

Now it is clear about the conditions on the set H for the space APH(R,C).

Theorem 1.1 shows when the integral operator I is compact on APH(R,C).

Theorem 2.8 and Lemma 4.1 give a condition under which APH(R,C) is closed

with respect to the operations of composition and multiplication. This makes it

possible to define nonlinear and continuous operators on APH(R,C). Lemma 4.3

shows that it is not appropriate to make the set H an additive group with no

limit point. Lemma 4.5 guarantees the existence of a nonzero semigroup with

no limit point. Lemma 4.6 claims that a nonzero additive semigroup with no

limit point must lie entirely on one half of the real line, either [0,∞) or (−∞, 0],

if it is not a cyclic group. Therefore, a suitable set H for the space APH(R,C)

turns out to be a nonzero additive semigroup such that H has no limit point,

and either H ⊂ [0,∞) or H ⊂ (−∞, 0].

It is easy to give an example of noncompact and nonlinear operators on the

space APH(R,C).

Example 4.8. Let H = {λk}∞k=1 ⊂ (0,∞) be an additive semigroup with

no limit point and APH(R,C) be the almost periodic function space defined

by (3.1). The nonlinear operator

N : APH(R,C)→ APH(R,C), f 7→ f2,

is not compact. To prove this, note that the set {eiλkt}∞k=1 is bounded and its im-

age N ({eiλkt}∞k=1) = {e2iλkt}∞k=1 has no Cauchy subsequences by Lemma 3.2 (a).

5. Real function spaces

Coincidence degree theory works on real Banach spaces. However, the spec-

trum of a nonconstant real almost periodic function can never be contained in a

half-line. In general, it is impossible for an integral operator IN defined by (3.3)

to be compact on a real almost periodic function space. Thus in view of the
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spectral conditions, the present coincidence degree theory seems to be only ap-

plicable to complex almost periodic differential equations except for the linear

case. In this section, we develop appropriate settings to make use of coincidence

degree theory on a complex almost periodic function space.

Let H = {λk}∞k=1 ⊂ (0,∞) be an additive semigroup with no limit point

and APH(R,C) be the almost periodic function space defined by (3.1). Put

−H = {−λk}∞k=1 and define the following almost periodic function spaces

APH(R,R) = {f ∈ AP (R,R) : Λf ⊂ H ∪ (−H)},

ZH = {(f, g) ∈ APH(R,R)×APH(R,R) : Λf+ig ⊂ H}.

Define

‖(f, g)‖ZH
= ‖f + ig‖

for every (f, g) ∈ ZH . Then ‖ · ‖ZH
is a norm on ZH .

Lemma 5.1. The space (ZH , ‖ · ‖ZH
) is isometrically isomorphic to

(APH(R,C), ‖ · ‖).

Proof. Define a linear map

(5.1)

T : APH(R,C)→ ZH ,

h 7→ (Reh, Imh) =

(
h+ h

2
,
h− h

2i

)
.

It is obvious that T is injective, we next show that T is surjective. Since the

components of every (f, g) ∈ APH(R,R)×APH(R,R) have Fourier series of the

form 
f(t) ∼ 1

2

∞∑
k=1

(ake
iλkt + ake

−iλkt),

g(t) ∼ 1

2

∞∑
k=1

(bke
iλkt + bke

−iλkt),

it follows that

f(t) + ig(t) ∼ 1

2

∞∑
k=1

[(ak + ibk)eiλkt + (ak + ibk)e−iλkt].

If (f, g) ∈ ZH , Λf+ig ⊂ H implies that ak + ibk = 0 and ak = ibk for all k ∈ Z+.

If h = f + ig, it follows that
f =

h+ h

2
= Reh,

g =
h− h

2i
= Imh.

So T is surjective. At last, one has ‖(f, g)‖ZH
= ‖f + ig‖ = ‖h‖ by definition.

Hence T is an isometry. �
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The following simple equivalence relation is useful and can be proved easily

by Lemma 5.1.

Lemma 5.2. An operator A : ZH → ZH is compact if and only if its conjugate

T −1AT : APH(R,C)→ APH(R,C) is compact.

We also need almost periodic functions with 0 as an exponent. Let H0 =

H ∪ {0} and define the following spaces:

VC = {f : R→ {c} : c ∈ C},

VR = {f : R→ {c} : c ∈ R},

APH0(R,R) = {f ∈ AP (R,R) : Λf ⊂ H0 ∪ (−H)},

ZH0 = {(f, g) ∈ APH0(R,R)×APH0(R,R) : Λf+ig ⊂ H0}.

It is easy to see that

APH0
(R,C) = APH(R,C)⊕ VC,

APH0
(R,R) = APH(R,R)⊕ VR,

ZH0 = ZH ⊕ V 2
R ,

where V 2
R = VR × VR. Define

‖(f, g)‖ZH0
= ‖f + ig‖

for every (f, g) ∈ ZH0 . Then ‖ · ‖ZH0
is a norm on ZH0 .

Lemma 5.3. The space (ZH0
, ‖ · ‖ZH0

) is isometrically isomorphic to

(APH0
(R,C), ‖ · ‖).

In this case, the components of each (f, g) ∈ ZH0
have Fourier series of the

form 
f(t) ∼ a0 +

1

2

∞∑
k=1

(ake
iλkt + ake

−iλkt),

g(t) ∼ b0 +
1

2

∞∑
k=1

(bke
iλkt + bke

−iλkt),

where a0, b0 ∈ R and ak = ibk ∈ C for every k ∈ Z+. An isometric isomorphism

from APH0
(R,C) to ZH0

is given by

(5.2)

T0 : APH0
(R,C)→ ZH0

,

h 7→ (Reh, Imh) =

(
h+ h

2
,
h− h

2i

)
.

Lemma 5.4. An operator A : ZH0 → ZH0 is compact if and only if its conju-

gate T −1
0 AT 0 : APH0(R,C)→ APH0(R,C) is compact.
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Define an integral operator on ZH by

IZ : ZH → ZH ,

(f(t), g(t)) 7→
(∫ t

0

f(s) ds−M

{∫ t

0

f(s) ds

}
,

∫ t

0

g(s) ds−M

{∫ t

0

g(s) ds

})
.

It is easy to check that T −1IZT : APH(R,C)→ APH(R,C) is the integral oper-

ator I defined by (1.1). The following criterion is useful for determining the L-

compactness of an operator N on ZH0 and is a direct consequence of Lemma 5.2

and Theorem 1.1.

Lemma 5.5. Let N : ZH0
→ ZH0

be a continuous and bounded operator, then

the composite operator IZ ◦ (idZH0
−M) ◦ N : ZH0

→ ZH is compact, where

idZH0
and M are the identity operator on ZH0

and the mean value operator,

respectively.

One can check by Theorem 2.8, Lemmas 4.1 and 4.2 to see that Lemma 5.5

holds for those nonlinear operators N defined by basic elementary functions,

such as f(t) 7→ a(t)[f(t)]2 + b(t)f(t) + c(t) and f(t) 7→ ef(t).

6. Applications

In this section, we apply coincidence degree theory to show the existence

of almost periodic solutions to differential equations with an appropriate priori

estimate structure.

6.1. Complex differential equations with analyticity in a bounded

domain. Consider equation (1.2) with assumptions (A1)–(A3). Notice that

(1.2) does not possess an exponential dichotomy if Reα = 0, in which case the

non-resonance condition for those fixed point methods in [6], [8], [12], [14] fails.

Moreover, (1.3) indeed can be satisfied in a number of situations.

Let H = {λk}∞k=1 ⊂ (0,∞) be the semigroup generated by (Λψ ∪ Λϕ) \ {0}.
Then H has no limit point by Lemma 4.5, and H0 = H ∪ {0} is the semigroup

generated by Λψ ∪ Λϕ ∪ {0}. Let δ > 0 be a number such that λk ≥ δ for all

k ∈ Z+. Denote by VC, VR, APH(R,C), APH(R,R), APH0(R,C), APH0(R,R),

ZH and ZH0 the function spaces as in Section 5. Define the space AP 1
H(R,C) as

in Subsection 3.3 and let

AP 1
H0

(R,C) = AP 1
H(R,C)⊕ VC,

Z1
H = {(f, g) ∈ ZH : there exists (f ′, g′) ∈ ZH},

Z1
H0

= Z1
H ⊕ V 2

R .

Let I be the integral operators defined by (1.1). Define the following two oper-

ators

(6.1) L : AP 1
H0

(R,C)→ APH0(R,C), f 7→ f ′,
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(6.2) N : APH0
(R,C)→ APH0

(R,C), z(t) 7→ αz(t) + ψ(z(t), t) + ϕ(t),

and two projectors

P = Q : APH0(R,C)→ APH0(R,C), f 7→M{f}.

Put D = L|AP 1
H(R,C) : AP 1

H(R,C)→ APH0
(R,C). Let T and T0 be the isometric

isomorphisms given by (5.1) and (5.2), respectively.

Lemma 6.1. The following statements are true for the above operators.

(a) I : APH(R,C)→ ran I is the inverse to D : AP 1
H(R,C)→ APH(R,C).

(b) T IT −1 : ZH → ran T IT −1 is the inverse to T DT −1 : Z1
H → ZH .

(c) kerL = VC, ranL = ranD = APH(R,C).

(d) ker T0LT −1
0 = V 2

R , ran T0LT −1
0 = ran T DT −1 = ZH .

(e) T0LT −1
0 : Z1

H ⊕ V 2
R → ZH0

is a Fredholm operator of index 0.

Proof. It is easy to check that D ◦ I = idAPH(R,C) and I ◦ D = idAP 1
H(R,C).

So (a) holds. (b) follows from (a) and Lemma 5.1. (c) is true by the fact that

f ′ = 0 if and only if f is a constant and (a). (d) follows from (c) and Lemma 5.3.

Therefore, (e) holds by (d). �

Let an isomorphism J : ranQ → kerL be given by J = idVC . We are in the

position proving Theorem 1.2.

Proof of Theorem 1.2. Note that the following three equations

z′ = αz + ψ(z, t) + ϕ(t), Lz = N z, T0LT −1
0 (T0z) = T0NT −1

0 (T0z),

are equivalent on Ω ∩AP 1
H0

(R,C), where Ω = {f ∈ APH0
(R,C) : ‖f‖ ≤ R} and

the operators L, N and T0 are defined by (6.1), (6.2) and (5.2), respectively. We

will show that the pair (T0LT −1
0 , T0NT −1

0 ) satisfies all the conditions (C1)–(C3)

of the Continuation Theorem 2.13 on the open bounded set T0(Ω) in ZH0
. For

convenience we denote

K =

1

|α|
+
β

δ

1− β

δ
|α|

.

1. By (1.3), let ε be a number satisfying

0 < ε ≤ R−K
[

sup
|z|≤R, t∈R

|ψ(z, t)|+ ‖ϕ‖
]
,

and define a function on C× R by

ψ̃(z, t) =


ψ(z, t) K[|ψ(z, t)|+ ‖ϕ‖] ≤ R− ε,(
R− ε
K

− ‖ϕ‖
)
· ψ(z, t)

|ψ(z, t)|
K[|ψ(z, t)|+ ‖ϕ‖] > R− ε.
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It is easy to see that ψ̃ : C× R→ C is continuous and

‖ψ̃‖ : = sup
z∈C, t∈R

|ψ̃(z, t)| ≤ R− ε
K

− ‖ϕ‖,

ψ̃(z, t) = ψ(z, t), z ∈ C, |z| ≤ R, t ∈ R.

Consider the auxiliary equation

(6.3) z′ = αz + ψ̃(z, t) + ϕ(t), t ∈ R.

Suppose that

(6.4) z′(t) = µ[αz(t) + ψ̃(z(t), t) + ϕ(t)], t ∈ R,

for some almost periodic z and µ ∈ (0, 1). Therefore,

M{z′} = µM{αz + ψ(z( · ), · ) + ϕ} = 0,

and

(6.5) |M{z}| =
∣∣∣∣M{ψ(z( · ), · ) + ϕ}

α

∣∣∣∣ ≤ ‖ψ̃‖+ ‖ϕ‖
|α|

.

By integrating (6.4) one gets

I(z′) = z −M{z} = µI(αz + ψ(z( · ), · ) + ϕ),

‖z −M{z}‖ ≤ ‖I(αz + ψ(z( · ), · ) + ϕ)‖,

and

‖z‖ − |M{z}| ≤ β

δ
‖αz + ψ̃(z( · ), · ) + ϕ‖(6.6)

≤ β

δ

[
|α| · |z‖+ ‖ψ̃(z( · ), · )‖+ ‖ϕ‖

]
by Theorem 2.7. From (6.5), and (6.6) it follows that(

1− β

δ
|α|
)
· ‖z‖ ≤

(
1

|α|
+
β

δ

)
· (‖ψ̃‖+ ‖ϕ‖),

‖z‖ ≤ K(‖ψ̃‖+ ‖ϕ‖) ≤ R− ε

If there exist z ∈ ∂Ω ∩ domL and µ ∈ (0, 1) such that Lz = µN z, then z is also

a solution to (6.3). From the priori estimate above it follows that ‖z‖ ≤ R − ε,
which is a contradiction since z ∈ ∂Ω and ‖z‖ = R. So Lz 6= µN z for each

z ∈ ∂Ω ∩ domL and µ ∈ (0, 1). It is easy to show that T0(Ω) is the open ball in

ZH0
centered at 0 with radius R and T0(∂Ω) = ∂T0(Ω). Hence condition (C1)

of Theorem 2.13 is true for the pair (T0LT −1
0 , T0NT −1

0 ) on T0(Ω).

2. It is easy to see that ∂Ω ∩ kerL = {w ∈ C : |w| = R} and

T0(∂Ω ∩ kerL) = [∂T0(Ω)] ∩ ker T0LT −1
0 = {(x, y) ∈ R2 : |x+ iy| = R}.

For any z0 ∈ ∂Ω ∩ kerL, from the definition of N and Q it follows that

(N z0)(t) = αz0 + ψ(z0, t) + ϕ(t),
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and

QN z0 = M{N z0} = αz0 + M{ψ(z0, · ) + ϕ}.

By (1.3), if QN z0 = 0, then

|z0| = R > K

[
sup

|z|≤R, t∈R
|ψ(z, t)|+ ‖ϕ‖

]
,

|z0| ≤
1

|α|

[
sup

|z|≤R, t∈R
|ψ(z, t)|+ ‖ϕ‖

]
,

which yield the contradiction(
K − 1

|α|

)[
sup

|z|≤R, t∈R
|ψ(z, t)|+ ‖ϕ‖

]
< 0

since K · |α| > 1. Therefore, QN z 6= 0 on ∂Ω ∩ kerL and

(T0QT −1
0 )(T0NT −1

0 )(x, y) 6= 0

on [∂T0(Ω)] ∩ ker T0LT −1
0 . Thus condition (C2) of Theorem 2.13 is true for the

pair (T0LT −1
0 , T0NT −1

0 ) on T0(Ω).

3. It is easy to check that Ω ∩ kerL = {w ∈ C : |w| < R} and

T0(Ω ∩ kerL) = T0(Ω) ∩ ker T0LT −1
0 = {(x, y) ∈ R2 : |x+ iy| < R}.

From the definition of J ,Q and N it follows that

JQN z = M{N z} = αz + M{ψ(z, · ) + ϕ}

for all z ∈ Ω ∩ kerL, and for all (x, y) ∈ T0(Ω ∩ kerL)

T0JQNT −1
0 (x, y) =

(
ReJQN (x+ iy)

ImJQN (x+ iy)

)
.

We use the homotopy invariance property to calculate the Brouwer degree

deg(T0JQNT −1
0 , T0(Ω ∩ kerL), 0).

Define a function on T0(Ω ∩ kerL)× [0, 1] by

(x, y, µ) 7→ Fµ(x, y) =

(
Re [α(x+ iy) + µM{ψ(x+ iy, · ) + ϕ}]
Im [α(x+ iy) + µM{ψ(x+ iy, · ) + ϕ}]

)
.

Suppose that Fµ(x, y) = 0 for some (x, y) ∈ ∂T0(Ω∩ kerL) and µ ∈ [0, 1]. If put

z = x+ iy, it follows that |z| = R and αz + µM{ψ(z, · ) + ϕ} = 0.

With a similar proof to that for QN z 6= 0 on ∂Ω∩ kerL, one can obtain the

same contradiction:

|α| ·R ≤ |M{ψ(z, ·) + ϕ}| ≤ sup
|z|≤R, t∈R

|ψ(z, t)|+ ‖ϕ‖.

Consequently, the function Fµ(x, y) is a homotopy from F0(x, y) to F1(x, y) on

T0(Ω ∩ kerL).
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From the homotopy invariance property and the definition of degree for non-

degenerate linear maps [11] it follows that

deg(T0JQNT −1
0 ,T0(Ω ∩ kerL), 0)

= deg(F1, T0(Ω ∩ kerL), 0) = deg(F0, T0(Ω ∩ kerL), 0)

= sgn det

(
Reα −Imα

Imα Reα

)
= sgn |α|2 = 1 6= 0.

Thus condition (C3) of Theorem 2.13 is true for the pair (T0LT −1
0 , T0NT −1

0 )

on T0(Ω). Therefore, the complex uniformly quasi-bounded differential equation

(1.2) has at least one solution in Ω ∩AP 1
H0

(R,C) by Theorem 2.13. �

6.2. Real linear differential equations with delays. In this subsection,

we consider a class of real differential equations of the form

(6.7) x′(t) =

m∑
j=1

αjx(t+ τj) + ϕ(t),

where αj , τj ∈ R for j = 1, . . . ,m and ϕ ∈ AP (R,R), Λϕ has no limit point.

The linear differential equation (6.7) is simpler than the complex one (1.2).

Since a linear map always preserves the spectrum of an almost periodic function,

there is no request for H to be a semigroup.

Let H = {λk}∞k=1 := Λϕ∩ (0,∞), δ > 0 be a number satisfying λk ≥ δ for all

k ∈ Z+, and H0 = H ∪{0}. Denote by VR, APH(R,R), APH0
(R,R) the function

spaces as before. Define spaces

AP 1
H(R,R) = {f ∈ APH(R,R) : there exists f ′ ∈ APH(R,R)},

AP 1
H0

(R,R) = AP 1
H(R,R)⊕ VR.

Theorem 6.2. Let the following conditions hold:

(A4) ϕ ∈ AP (R,R) and Λϕ has no limit point.

(A5) H = {λk}∞k=1 = Λϕ ∩ (0,∞), H0 = H ∪ {0}, and δ > 0 satisfies λk ≥ δ

for all k ∈ Z+.

(A6) αj , τj ∈ R for j = 1, . . . ,m.

(A7)
m∑
j=1

αj 6= 0 and
m∑
j=1

|αj | < δ/β, where β > 0 is an absolute constant given

by Theorem 2.7.

Then there exists a unique solution φ ∈ AP 1
H0

(R,R) to (6.7) with Λφ = Λϕ.

Proof. Existence. The proof of the existence of a solution to (6.7) is similar

to that of Theorem 1.2. For the reader’s convenience, we provide a detailed one

which may help in the understanding of the role of each assumption. Since

APH(R,R) is a closed subspace of

APH∪(−H)(R,C) = {f ∈ AP (R,C) : Λf ⊂ H ∪ (−H)},
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from assumptions (A4) and (A5) and Theorem 1.1 for integral operators on the

space APH∪(−H)(R,C) it follows that the following integral operator on a real

almost periodic function space:

IR : APH(R,R)→ APH(R,R),

f(t) 7→
∫ t

0

f(s) ds−M

{∫ t

0

f(s) ds

}
,

is compact. Define the following two operators:

L : AP 1
H0

(R,R) → APH0(R,R), f 7→ f ′,

N : APH0(R,R) → APH0(R,R), x(t) 7→
m∑
j=1

αjx(t+ τj) + ϕ(t),

and two projectors

P = Q : APH0
(R,R)→ APH0

(R,R), f 7→M{f}.

Put DR = L|AP 1
H(R,R) : AP 1

H(R,R) → APH0
(R,R). It is easy to check that the

following statements hold for the operators defined above:

(i) IR : APH(R,R)→ran IR is the inverse to DR : AP 1
H(R,R)→APH(R,R).

(ii) kerL = VR, ranL = ranDR = APH(R,R).

(iii) L : AP 1
H(R,R)⊕ VR → APH0

(R,R) is a Fredholm operator of index 0.

Let an isomorphism J : ranQ → kerL be given by J = idVR . Since equation

(6.7) is equivalent to Lx = Nx, we will show that the pair (L,N ) satisfies

all the conditions (C1)–(C3) of Theorem 2.13 on an open bounded subset of

APH0(R,R).

1. Suppose that Lx = µNx for some x ∈ AP 1
H0

(R,R) and µ ∈ (0, 1). Then

(6.8) x′(t) = µ

[ m∑
j=1

αjx(t+ τj) + ϕ(t)

]

for all t ∈ R, which implies

M{x′} = µ

[ m∑
j=1

αjM{x( · + τj)}+ M{ϕ}
]

= µ

[( m∑
j=1

αj

)
M{x}+ M{ϕ}

]
= 0,

and

(6.9) M{x} = −M{ϕ}
/ m∑

j=1

αj .
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By integrating (6.8) one gets

IR(x′) = x−M{x} = µIR
( m∑
j=1

αj
[
x( · + τj)−M{x}

]
+ ϕ−M{ϕ}

)

= µ

[ m∑
j=1

αjIR
(
x( · + τj)−M{x}

)
+ IR

(
ϕ−M{ϕ}

)]
and

‖x−M{x}‖ ≤
m∑
j=1

|αj | ·
∥∥IR(x( · + τj)−M{x}

)∥∥+
∥∥IR(ϕ−M{ϕ}

)∥∥
≤ β

δ

[ m∑
j=1

|αj | · ‖x( · + τj)−M{x}‖+ ‖ϕ−M{ϕ}‖
]

=
β

δ

[( m∑
j=1

|αj |
)
· ‖x−M{x}‖+ ‖ϕ−M{ϕ}‖

]
,

where (6.9) and Theorem 2.7 are used to obtain the above inequalities. Conse-

quently,(
δ

β
−

m∑
j=1

|αj |
)
· ‖x−M{x}‖ ≤ ‖ϕ−M{ϕ}‖,

‖x‖ − |M{x}| ≤ ‖x−M{x}‖ ≤ ‖ϕ−M{ϕ}‖
/(

δ

β
−

m∑
j=1

|αj |
)
,

and by (6.9),

(6.10) ‖x‖ ≤ ‖ϕ−M{ϕ}‖
/(

δ

β
−

m∑
j=1

|αj |
)

+

∣∣∣∣M{ϕ}/ m∑
j=1

αj

∣∣∣∣ =: R0.

Choose R > R0 and let Ω = BR(0) be the open ball centered at 0 with radius R

in APH0(R,R). Then Lx 6= µNx for each x ∈ ∂Ω∩ dom L and µ ∈ (0, 1) by the

above priori estimate. Hence condition (C1) of Theorem 2.13 is true for the pair

(L,N ) on Ω.

2. It is easy to see that ∂Ω ∩ kerL = {R,−R}. For any x0 ∈ ∂Ω ∩ kerL,

from the definition of N and Q it follows that

(Nx0)(t) =

( m∑
j=1

αj

)
x0 + ϕ(t), t ∈ R,

QNx0 =

( m∑
j=1

αj

)
x0 + M{ϕ}.

If QNx0 = 0, then

|x0| = R =

∣∣∣∣M{ϕ}/ m∑
j=1

αj

∣∣∣∣,
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which contradicts (6.10). Therefore, QNx 6= 0 on ∂Ω∩kerL and condition (C2)

of Theorem 2.13 is true for the pair (L,N ) on Ω.

3. It is easy to check that Ω ∩ kerL = (−R,R). The definitions of J ,Q and

N imply

JQNx = M{Nx} =

( m∑
j=1

αj

)
x+ M{ϕ}

for all x ∈ Ω ∩ kerL. A direct calculation shows that

JQNx = M{ϕ} ±R ·
m∑
j=1

αj 6= 0

on ∂Ω∩ kerL. From the definition of degree for non-degenerate linear maps [11]

it follows that

deg(JQN ,Ω ∩ kerL, 0) = sgn

( m∑
j=1

αj

)
= ±1 6= 0.

Thus condition (C3) of Theorem 2.13 is true for the pair (L,N ) on Ω. Con-

sequently, equation (6.7) has at least one solution in Ω ∩ AP 1
H0

(R,R) by Theo-

rem 2.13.

Uniqueness. Suppose that φ ∈ AP 1
H0

(R,R) is a solution to equation (6.7),

and

ϕ(t) ∼ ϕ0 +

∞∑
k=1

(ϕke
iλkt + ϕke

−iλkt) ∈ APH0(R,R),

φ(t) ∼ φ0 +

∞∑
k=1

(φke
iλkt + φke

−iλkt) ∈ AP 1
H0

(R,R).

It follows that

φ′(t) ∼
∞∑
k=1

(iλkφke
iλkt − iλkφke−iλkt),

φ(t+ τj) ∼ φ0 +

∞∑
k=1

(φke
iλkτjeiλkt + φke

−iλkτje−iλkt)

for j = 1, . . . ,m. Since

a(φ′, λ) =

m∑
j=1

αja(φ(τj + · ), λ) + a(ϕ, λ)

for all λ ∈ R, there holds

φk = ϕk

/(
iλk −

m∑
j=1

αje
iλkτj

)
for each k ∈ Z+. So the solution φ to (6.7) is uniquely determined. �
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Birkhäuser, Basel, 2008, 345–356.

[29] R. Ortega, The pendulum equation: from periodic to almost periodic forcings, Differential

Integral Equations 22 (2009), no. 9–10, 801–814.

[30] W. Rudin, Functional Analysis, Second edition, International Series in Pure and Applied

Mathematics, McGraw-Hill, New York, 1991.

[31] W.M. Schmidt, Diophantine Approximation, Lecture Notes in Mathematics, Vol. 785,

Springer, Berlin, 1980.

[32] L. Wang and M. Yu, Favard’s theorem of piecewise continuous almost periodic functions

and its application, J. Math. Anal. Appl. 413 (2014), no. 1, 35–46.

[33] L. Wang and H. Zhang, Almost periodic solution of an impulsive multispecies logarithmic

population model, Adv. Difference Equ. 96 (2015), 11 pp.

[34] Y. Xie and X. Li, Almost periodic solutions of single population model with hereditary

effects, Appl. Math. Comput. 203 (2008), no. 2, 690–697.

[35] R. Yuan, Existence of almost periodic solutions of neutral functional-differential equa-

tions via Liapunov–Razumikhin function, Z. Angew. Math. Phys. 49 (1998), no. 1, 113–

136.

[36] R. Yuan, On Favard’s theorems, J. Differential Equations 249 (2010), no. 8, 1884–1916.

[37] C. Zhang, Almost Periodic Type Functions and Ergodicity, Science Press, Beijing, 2003.

[38] Q. Zhou and J. Shao, A note on Arzela–Ascoli’s lemma in almost periodic problems,

Math. Methods Appl. Sci. 40 (2017), no. 1, 274–278.

Manuscript received August 18, 2016

accepted February 28, 2017

Liangping Qi and Rong Yuan

School of Mathematical Sciences

Beijing Normal University
Beijing 100875, P.R. CHINA

E-mail address: l.qi@mail.bnu.edu.cn, ryuan@bnu.edu.cn

TMNA : Volume 50 – 2017 – No 1


