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EXISTENCE OF MULTIPLE SOLUTIONS

FOR A QUASILINEAR ELLIPTIC PROBLEM

Jorge Cossio — Sigifredo Herrón — Carlos Vélez

Abstract. In this paper we prove the existence of multiple solutions for

a quasilinear elliptic boundary value problem, when the p-derivative at
zero and the p-derivative at infinity of the nonlinearity are greater than

the first eigenvalue of the p-Laplace operator. Our proof uses bifurcation

from infinity and bifurcation from zero to prove the existence of unbounded
branches of positive solutions (resp. of negative solutions). We show the

existence of multiple solutions and we provide qualitative properties of these

solutions.

1. Introduction

In this paper we study the existence of multiple solutions for the quasilinear

elliptic boundary value problem

(1.1)

∆pu+ f(u) = 0 in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN , N ≥ 2, is a bounded and smooth domain, 1 < p < 2, and

f : R→ R is a nonlinear function such that f(0) = 0 and
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(f1) |f(t)− f(s)| ≤ Cf |t− s|p−1, for all s, t ∈ R,

(f2) f
′

p(0) := lim
t→0

f(t)/|t|p−2t > λ1(p),

(f3) f
′

p(∞) := lim
|t|→∞

f(t)/|t|p−2t > λ1(p),

(f4) there exists a positive number α such that f(α) ≤ 0 ≤ f(−α),

where Cf := sup
s6=t
|f(s)−f(t)|/|s−t|p−1 ∈ R, and λ1(p) denotes the first eigenvalue

of the problem

(1.2)

−∆pu = λ|u|p−2u in Ω,

u = 0 on ∂Ω.

We call f ′p(0) the p-derivative at zero and f ′p(∞) the p-derivative at infinity.

We point out that under hypotheses (f2) and (f3), both thep-derivatives at zero

and at infinity can be arbitrarily greater than the eigenvalue λ1(p) (in particular,

each one of them can hit a larger eigenvalue of (1.2)).

We prove that problem (1.1) has at least four nontrivial solutions, two of

them are positive and the other two are negative. We also found some upper

and lower bounds for the L∞-norm of these solutions.

Theorem A. If f satisfies (f1)–(f4) then problem (1.1) has at least four

nontrivial solutions u1, u2, v1 and v2. Moreover, the solutions u1 and u2 are

positive in Ω, and the solutions v1 and v2 are negative in Ω. In addition,

‖u2‖L∞ < α < ‖u1‖L∞ and ‖v2‖L∞ < α < ‖v1‖L∞ .

Remarks 1.1. (a) The argument we present below allows to prove a more

general result: if f satisfies (f1)–(f3), and

(f′4) there exist numbers α > 0 and α̃ < 0 such that f(α) ≤ 0 ≤ f(α̃),

then problem (1.1) has at least four nontrivial solutions u1, u2, v1 and v2. More-

over, solutions u1 and u2 are positive on Ω, and solutions v1 and v2 are negative

on Ω. In addition,

‖u2‖L∞ < α < ‖u1‖L∞ and ‖v2‖L∞ < |α̃| < ‖v1‖L∞ .

For the sake of simplicity, from now on we assume hypothesis (f4) instead of (f′4)

(i.e. α̃ = −α).

(b) We provide an example of a family of functions satisfying hypotheses

(f1)–(f′4). Consider the following parameters: for i = 1, 2 let us fix Mi > 1,

0 < ai < αi < bi and a couple of differentiable functions hi : [ai, bi] → R such

that hi(αi) < 0, hi(ai) = Miλ1(p)ap−1
i , hi(bi) = Miλ1(p)bp−1

i , and h′i is bounded

in (ai, bi). Let us define the continuous functions

gi(t) =

Miλ1(p)tp−1 if 0 ≤ t ≤ ai ∨ t ≥ bi,
hi(t) if ai ≤ t ≤ bi.
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Let f : R→ R be the function given by

f(t) =

g1(t) if t ≥ 0,

−g2(−t) if t ≤ 0.

We see that f(0) = 0 and it is not difficult to check that (f2)–(f′4) hold (in

particular, taking α1 = α2 condition (f4) also holds). In order to verify that f

satisfies condition (f1), one can proceed as follows: consider the function Ψ(t) =

(1− t)p−1 + tp−1− 1, for t ∈ [0, 1], which has its maximum at the unique critical

point t = 1/2. From this it follows that Ψ(t) ≥ min{Ψ(0),Ψ(1)} = 0. By using

homogeneity arguments, one can establish that

|sp−1 − tp−1| ≤ |s− t|p−1, for all s, t ≥ 0.

Using this fact and considering different cases for s and t, one can finally verify

condition (f1) holds true.

(c) Observe that if p > 2 and f satisfies condition (f1), then f ′ ≡ 0 and f is

a constant function. Hence f cannot satisfy conditions (f2)–(f4). Hypothesis (f4),

on the other hand, is needed to prove that branches of solutions to problem (1.3)

(see below) cannot cross the asymptote ‖u‖L∞ = α (see Lemma 3.1 in Section 3

below). This is why we assumed 1 < p < 2 from the very beginning.

Our proof of Theorem A uses bifurcation from infinity and bifurcation from

zero, applied to the problem

(1.3)

∆p u+ λf(u) = 0 in Ω,

u = 0 on ∂Ω,

where λ > 0.

Theorem A is an extension to quasilinear equations of a result due to J. Cos-

sio, S. Herrón and C. Vélez (see [5]) for the semilinear case. A key ingredient to

extend the semilinear result to our situation is to prove that for problem (1.3)

there exist unbounded branches of positive solutions (resp. of negative solu-

tions) emanating from the bifurcation points (∞, λ1/f
′
p(∞)) and (0, λ1/f

′
p(∞))

(see Theorem 4.3 and Theorem 4.8 in Section 4 below). Theorem 4.3 is very much

inspired by a corresponding result in the semilinear case due to Ambrosetti and

Hess (see [2] and [3, Section 4.4]), and by [1, Theorem 4.1]. Although our proof

of Theorem 4.3 follows the ideas from [1], [2] and [3] our arguments have several

differences with respect to these references, as will be better explained in Sec-

tion 4. Theorem 4.8, on the other hand, essentially comes from the ideas by Del

Pino and Manásevich in [9].

The existence of solutions to quasilinear elliptic problems like (1.3) has been

widely investigated. Let us mention, besides [1] and [9], the papers [12], [11]

and [8], the books [14] and [13], and the references therein. A. Ambrosetti et al.



534 J. Cossio — S. Herrón — C. Vélez

in [1] showed the existence of an unbounded branch of positive solutions of

problem (1.3) emanating from either zero or infinity when f(u) w up−1 near 0

or near infinity; more precisely, when f ∈ C1(R+,R) and there exist m > 0,

m∞ > 0, and ε > 0 such that

lim
t→0+

f(t)

tp−1
= m and lim

t→∞

f(t)−m∞tp−1

tp−1−ε = 0.

They used a priori estimates and topological arguments. In [9], M. Del Pino and

R. Manásevich proved that problem (1.1) has at least one nontrivial solution

when

(1.4) f
′

p(0) < λ1(p) < f
′

p(∞),

for 1 < p <∞. P. Drábek in [11], for p > 2, and S. Fučik et al. in [14], for p > 1,

focus on the existence of solutions to problem (1.3) in the case when f ′p(∞) is not

equal to an eigenvalue of −∆p. By using topological arguments based on degree

theory, they found conditions that allow to show that problem (1.3) has at least

one solution for λ either below λ1(p) or between λ1(p) and λ2(p). In [12], Drabek

et al. study a non-homogeneous version of problem (1.2) when parameter λ is

near λ1(p). More recently, Del Pezzo and Quaas in [8] generalize the results from

[9] to nonlocal problems involving fractional p-Laplacian operators. Contrary to

conditions in [9], [12], [11], [14], and [8], here the p-derivative at zero and the

p-derivative at infinity are both arbitrarily greater than the first eigenvalue of

the p-Laplace operator.

Regarding quasilinear equations in the radially symmetric case, there has

been a lot of research. We mention some works and refer the reader to references

therein. For instance, J. Cossio and S. Herrón in [4] studied problem (1.1) when

Ω is the unit ball in RN and the p-derivative of the nonlinearity at zero is greater

than µj(p), the j-radial eigenvalue of the p-Laplace operator, and the p-derivative

at infinity is equal to the p-derivative at zero. When p ≥ 2, they showed that

problem (1.1) has 4j − 1 radially symmetric solutions. In such a reference, the

authors used bifurcation theory and the fact that in the radially symmetric case

(1.1) reduces to an ordinary differential equation. J. Cossio, S. Herrón, and C.

Vélez in [6] studied problem (1.1) in the radially symmetric case, when Ω is the

unit ball in RN and the problem is p-superlinear at the origin with p > N ≥ 2.

They proved that problem (1.1) has infinitely many solutions. The main tool that

they used is the shooting method. M. Del Pino and R. Manásevich in [9] studied

the existence of multiple nontrivial solutions for a quasilinear boundary value

problem under radial symmetry; they extended the Global Bifurcation Theorem

of P. Rabinowitz (see [21]) and proved the existence of nontrivial solutions for

that kind of problems. In [15], Garćıa-Melián and Sabina de Lis study uniqueness

for quasilinear problems in radially symmetric domains.
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The paper is organized as follows: In Section 2 we recall several known and

important results. Then, in Section 3 we establish some lemmas which will be

used to prove Theorem A. We apply a nonlinear version of the strong maximum

principle due to J.L. Vázquez (see [23]) to prove that if u is a weak solution to

problem (1.3) (see the definition below for the precise meaning), then ‖u‖L∞ 6= α.

We also apply an interpolation theorem due to A. Lê (see Theorem 2.3 below) to

show that the function (u, λ) 7→ ‖u‖L∞ is continuous, where (u, λ) is a solution

of (1.3) (see Lemma 3.3 below for the precise statement). In Section 4 we prove

Theorem A.

2. Preliminary results

In this section we summarize some important results which we will use to

prove our theorem. From now on we will denote by ‖ · ‖Lq the norm in Lq(Ω),

for q ∈ [1,∞], and we will denote by ‖ · ‖W 1,p
0

the norm in the space W 1,p
0 (Ω)

given by ‖u‖W 1,p
0

= ‖∇u‖Lp . Also, ‖ · ‖C1,γ stands for the norm in the Hölder

space C1,γ(Ω), for γ ∈ (0, 1), and ‖ · ‖C1 stands for the norm in C1(Ω).

Let us recall the definition of weak solution to problem (1.3). Given λ > 0,

we say a function u ∈W 1,p
0 (Ω) solves (1.3) in the weak sense provided that

(2.1)

∫
Ω

|∇u|p−2∇u · ∇v dx =

∫
Ω

λf(u)v dx, for all v ∈W 1,p
0 (Ω).

We recall the following general regularity result, which is going to imply that a

weak solution of (1.3) is essentially bounded (we took this result from [16], more

precisely [16, Theorem 6.2.6], and adapt it to our context).

Theorem 2.1. Let λ > 0 and u ∈ W 1,p
0 (Ω) be a weak solution to (1.3). As-

sume that λf(u)∈L1
loc(Ω), and there exist σ∈ [1, Np/(N−p)), r∈ [1, N/(N−p)),

c > 0 and a ∈ Lr′(Ω), where 1/r+1/r′ = 1, such that a(x) ≥ 0, for almost every

x ∈ Ω, and λu(x)f(u(x)) ≤ c|u(x)|σ + a(x)|u(x)| for almost every x ∈ Ω. Then

u ∈ L∞(Ω) and ‖u‖L∞ ≤ η, where the constant η > 0 depends on N , p, σ, r,

‖a‖r′ , c and ‖u‖LNp/(N−p) .

In our case, given λ > 0, if u is a weak solution of (1.3), hypothesis (f1)

implies that

(2.2) |λf(u)| ≤ λCf |u|p−1 ∈ L1
loc(Ω) and λu f(u) ≤ λCf |u|p.

Hence, from Theorem 2.1, it follows that u ∈ L∞(Ω).

As pointed out by A. Lê in [17], from the results by E. DiBenedetto in [10]

and by G. Lieberman in [18], it follows that there exists γ ∈ (0, 1) such that the

inverse of the p-Laplace operator

L := (−∆p)
−1 : L∞(Ω)→ C1,γ(Ω)
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is a well-defined, continuous and compact mapping. Given λ > 0, if u is a weak

solution of (1.3), condition (f1) and Theorem 2.1 imply that u ∈ L∞(Ω) (as

verified above), and then condition (f1) implies λf(u) ∈ L∞(Ω). Thus, u =

L(λf(u)) ∈ C1,γ(Ω). From now on we will use this fact throughout the paper.

The following nonlinear version of the maximum principle, due to J.L. Váz-

quez (see [23, Theorem 5]) will be useful to prove Lemma 3.1 below. The hy-

pothesis ∆pu ∈ L2
loc(Ω) in the following statement is understood in the sense of

distributions.

Theorem 2.2. Let u ∈ C1(Ω) be such that ∆pu ∈ L2
loc(Ω), u ≥ 0 almost

everywhere in Ω, ∆pu ≤ ξ(u) almost everywhere in Ω with ξ : [0,∞)→ R contin-

uous, nondecreasing, ξ(0) = 0 and either ξ(s) = 0 for some s > 0 or ξ(s) > 0 for

all s > 0 but
∫ 1

0
(s ξ(s))−1/p ds =∞. Then if u does not vanish identically on Ω

it is positive everywhere in Ω. Moreover, if u ∈ C1(Ω ∪ {x0}) for an x0 ∈ ∂Ω

and u(x0) = 0, then ∂u/∂−→ν (x0) > 0, where −→ν is an interior normal at x0.

In order to prove a continuity result (more precisely, Lemma 3.3 below), we

will make use of the following interpolation inequality due to A. Lê (see [17,

Corollary 1.3]).

Theorem 2.3. There exist constants c > 0 and 0 < θ < 1 such that, for any

u ∈ C1,γ(Ω) ∩W 1,p(Ω), ‖u‖C1 ≤ c ‖u‖1−θC1,γ ‖u‖θW 1,p .

3. Lemmas

We now establish some auxiliary results needed to prove our theorem in the

next section. From now on we assume f satisfies conditions (f1) to (f4).

Lemma 3.1. Assume that λ > 0 and u is a weak solution of the problem (1.3).

Then ‖u‖
L∞ 6= α.

Proof. From Section 2, we already know that u ∈ C1(Ω). We argue by

contradiction: assume ‖u‖
L∞ = α. Since λ|f(u)| ≤ λCf‖u‖p−1

L∞ , it follows that

−∆pu = λf(u) ∈ L2
loc(Ω).

We consider the function α− u ∈ C1(Ω), α− u ≥ 0 in Ω.

∆p(α− u) = div(|∇(α− u)|p−2∇(α− u)) = −div(|∇u|p−2∇u) ∈ L2
loc(Ω).

Since f(α) ≤ 0, from (f1) we see that

∆p(α− u) = λf(u) = λf(α− (α− u)) ≤ λf(α− (α− u))− λf(α)(3.1)

≤ λ|f(α− (α− u))− f(α)| ≤ λCf |α− u|p−1.

We now apply Theorem 2.2 to get the conclusion. Let us define ξ : R+ → R
by ξ(s) = λCfs

p−1. We see that ξ is continuous, increasing function, such that



Solutions for a Quasilinear Elliptic 537

ξ(0) = 0 and∫ 1

0

1

(s ξ(s))1/p
ds = c

∫ 1

0

1

(s sp−1)1/p
ds = c ln s]10 = +∞.

Hence, Theorem 2.2 implies α − u > 0 in Ω, i.e. u < α in Ω. Thus ‖u‖
L∞ < α,

which contradicts our initial assumption. �

In the proof of Theorem A inequalities (3.2) of the following lemma will

play an important role. These inequalities essentially come from the arguments

leading to regularity results due to [10], [22] and [18].

Lemma 3.2. For every λ > 0 there exist positive constants K1 and K2 de-

pending on |Ω|, N , Cf , p and λ, such that, if u ∈ W 1,p
0 (Ω) is a weak solution

of (1.3), then

‖u‖W 1,p
0
≤ K1 ‖u‖L∞ ,(3.2)

‖u‖L∞ ≤ K2 ‖u‖W 1,p
0
.(3.3)

Moreover, K1 and K2 are bounded if λ is bounded.

Proof. Let u ∈W 1,p
0 (Ω) be a solution of (1.3). Using the definition of weak

solution and hipothesis (f1) it follows that

(3.4) ‖u‖p
W 1,p

0

=

∫
Ω

|∇u|p−2∇u · ∇u dx =

∫
Ω

λu f(u) dx ≤ |Ω|λCf‖u‖pL∞ .

Defining K1 := (|Ω|λCf )1/p, inequality (3.2) follows from (3.4).

Using (2.2) and a boot-strap argument (see, for instance, the proof of Theorem

6.2.6 in [16]) we get that there exists a positive constant K := K(|Ω|, N,Cf , p, λ),

which is bounded when λ is bounded, such that

(3.5) ‖u‖L∞ ≤ K ‖u‖Lp0 ,

where p0 = Np/(N − p) is the critical Sobolev exponent. Since W 1,p
0 (Ω) is

continuously embedded in Lp0(Ω), we see that

(3.6) ‖u‖Lp0 ≤ c0‖u‖W 1,p
0
,

for a constant c0 > 0. From (3.5) and (3.6) we get a constant K2 > 0 satisfying

inequality (3.3). The proof of Lemma 3.2 is complete. �

Let us define

(3.7) S = {(u, λ) ∈W 1,p
0 (Ω)× R : u 6= 0 and u = (−∆p)

−1(λf(u))}.

We will make use of the next lemma in the proof of Theorem A.

Lemma 3.3. The function N∞ : S ⊂ W 1,p
0 (Ω) × R → R defined as (u, λ) 7→

‖u‖L∞ is continuous.
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Proof. We commence by observing that if (u, λ) ∈ W 1,p
0 (Ω) × R is a limit

point of S then u = (−∆p)
−1(λf(u)), and so ‖u‖L∞ is well-defined on all S.

Let us take (u, λu), (vn, λvn) ∈ S such that (vn, λvn) → (u, λu). Let us try to

estimate |N∞(vn, λvn)−N∞(u, λu)|. Observe that

‖vn − u‖L∞ = ‖L(λvnf(vn))− L(λuf(u))‖L∞(3.8)

= ‖λ1/(p−1)
vn L(f(vn))− λ1/(p−1)

u L(f(u))‖L∞

≤λ1/(p−1)
vn ‖L(f(vn))− L(f(u))‖L∞

+ |λ1/(p−1)
vn − λ1/(p−1)

u | ‖L(f(u))‖L∞ .

Let us define

(3.9) u∗ = L(f(u)) and vn
∗ = L(f(vn)).

In order to estimate ‖L(f(vn)) − L(f(u))‖L∞ we make use of Theorem 2.3.

Indeed, since u∗, v∗n ∈ C1,γ(Ω) ∩W 1,p
0 (Ω), by using Theorem 2.3 and Poincaré’s

inequality we see that

‖L(f(vn)) − L(f(u))‖L∞ ≤ ‖L(f(vn))− L(f(u))‖C1(3.10)

= ‖vn∗ − u∗‖C1 ≤ c‖vn∗ − u∗‖1−θC1,γ‖vn∗ − u∗‖θW 1,p
0
,

with 0 < θ < 1. We claim that there exists C > 0 such that

(3.11) ‖vn∗ − u∗‖1−θC1,γ ≤ C.

To prove (3.11) we first show that there exists M1 > 0 such that u, vn ∈ B∞M1
,

the ball with radius M1 centered at the origin in L∞(Ω). Since vn → u in

W 1,p
0 (Ω), ‖vn‖W 1,p

0
, ‖vn‖Lp0 , ‖u‖W 1,p

0
, and ‖u‖Lp0 are bounded by a constant.

From Lemma 3.2 we have

(3.12) ‖u‖L∞ ≤ K ‖u‖W 1,p
0

and ‖vn‖L∞ ≤ K ‖vn‖W 1,p
0
,

where K denotes a positive constant. Thus, there exists M1 > 0 such that

(3.13) u, vn ∈ B∞M1
.

Combining (3.13) with the inequalities

(3.14) ‖f(u)‖L∞ ≤ Cf‖u‖p−1
L∞ and ‖f(vn)‖L∞ ≤ Cf‖vn‖p−1

L∞ ,

we see that there exists M2 > 0 such that

(3.15) ‖f(u)‖L∞ ≤M2 and ‖f(vn)‖L∞ ≤M2.

As we mentioned above, in Section 2, from the regularity results the inverse of

the p-Laplace operator

(3.16) L := (−∆p)
−1 : L∞(Ω)→ C1,γ(Ω)
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is a continuous and compact mapping. An immediate consequence of (3.15) and

(3.16) is that there exists M > 0 such that

(3.17) ‖u∗‖C1,γ ≤M and ‖vn∗‖C1,γ ≤M.

Now (3.17) implies that there exists C > 0 such that

(3.18) ‖vn∗ − u∗‖1−θC1,γ ≤ C,

which proves (3.11). From (3.10), (3.11), and (3.18) we see that

(3.19) ‖L(f(vn))− L(f(u))‖L∞ ≤ C ‖vn∗ − u∗‖θW 1,p
0
.

Since

(3.20) vn
∗ =

vn

λvn
1/(p−1)

and u∗ =
u

λ
1/(p−1)
u

and s 7→ sθ is an increasing function, it follows that

‖L(f(vn))− L(f(u))‖L∞ ≤ C ‖vnλvn
−1/(p−1) − uλ−1/(p−1)

u ‖θ
W 1,p

0
(3.21)

=
C

λ
θ/(p−1)
u λ

θ/(p−1)
vn

‖vnλ1/(p−1)
u − uλ1/(p−1)

vn ‖θ
W 1,p

0

=
C

λ
θ/(p−1)
u λ

θ/(p−1
vn )

‖vn(λ1/(p−1)
u − λ1/(p−1)

vn ) + λ1/(p−1)
vn (vn − u)‖θ

W 1,p
0

≤ C

λ
θ/(p−1)
u λvn

θ/(p−1)

(
‖vn‖W 1,p

0
|λ1/(p−1)
u − λ1/(p−1)

vn |

+ |λvn |1/(p−1)‖vn − u‖W 1,p
0

)θ
.

Because the sequences {‖vn‖W 1,p
0
} and {λvn} are bounded, there exists C1 such

that

(3.22) ‖L(f(vn))− L(f(u))‖L∞ ≤ C1

(
|λ1/(p−1)
u − λ1/(p−1)

vn |+ ‖vn − u‖W 1,p
0

)θ
.

From (3.8), (3.22), λvn → λu, and vn → u in W 1,p
0 (Ω) it follows that

(3.23) |N∞(vn, λvn)−N∞(u, λu)| → 0,

which proves the lemma. �

4. Proof Theorem A

Let f be a function satisfying the hypotheses (f1)–(f4). Because of the

regularity theory recalled in Section 2 above, the problem of finding solutions

u ∈ C1,γ(Ω) to (1.3) is equivalent to find elements u ∈W 1,p
0 (Ω) such that

(4.1) u = (−∆p)
−1(λf(u)).

We will prove that there are nontrivial solutions of (4.1) when λ = 1, i.e. four

nontrivial solutions of (1.1).
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Let f+ : R→ R be defined as f+(t) = f(t) for t ≥ 0, and f+(t) = 0 for t < 0.

Similarly, let f− : R→ R be defined as f−(t) = f(t) for t ≤ 0, and f−(t) = 0 for

t > 0. We observe that f can be written as

f(t) = f ′p(∞)|t|p−2t+ g(t),

where g(t)/|t|p−2t→ 0 as |t| → ∞, and also

f(t) = f ′p(0)|t|p−2t+ ĝ(t),

where ĝ(t)/|t|p−2t→ 0 as t→ 0. We have the following lemma.

Lemma 4.1. For every λ > 0 and τ ≥ 0 if u ∈W 1,p
0 (Ω) \ {0} satisfies

u = (−∆p)
−1(λf+(u) + τ),

then u ∈ C1,γ(Ω), u > 0 on Ω and ∂u/∂−→n < 0 (where −→n denotes the outer unit

normal on ∂Ω).

Remark 4.2. Taking τ = 0 in Lemma 4.1, we observe that, if u ∈ W 1,p
0 (Ω)

is a solution of

(4.2) u = (−∆p)
−1(λf+(u))

and λ > 0, then u > 0 on Ω. Thus u satisfies (4.1), i.e. (u, λ) ∈ S. In a similar

way, if u ∈W 1,p
0 (Ω) is a nontrivial solution of

(4.3) u = (−∆p)
−1(λf−(u))

and λ > 0, then u < 0 on Ω. Thus u satisfies (4.1), i.e. (u, λ) ∈ S.

Proof. Using Theorem 2.1, hypothesis (f1), and the well-definition of op-

erator L := (−∆p)
−1 : L∞(Ω) → C1,γ(Ω), one can show u ∈ C1,γ(Ω) (as we

proved in Section 2 for the weak solutions of (1.3)). We claim u ≥ 0 on Ω: if

u < 0 on a subdomain D ⊂ Ω, because of the definition of f+, u = (−∆p)
−1(τ)

on D. Since the p-Laplacian operator satisfies the maximum principle (see e.g.

[16, Section 6.4]), u ≥ 0 on D. This contradicts our assumption, and so u ≥ 0

on Ω.

In order to conclude the proof, we apply again Theorem 2.2: let ξ : [0,∞)→
R be defined as ξ(s) = λCfs

p−1. We see that ξ is a continuous, increasing

function, such that ξ(0) = 0 and∫ 1

0

1

(s ξ(s))1/p
ds = +∞.

Moreover, ∆pu ≤ ξ(u) on Ω. The result follows from Theorem 2.2. �
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4.1. Bifurcation from infinity. We define

S+ = {(u, λ) ∈W 1,p
0 (Ω)× R : u 6= 0 and u = (−∆p)

−1(λf+(u))},

S− = {(u, λ) ∈W 1,p
0 (Ω)× R : u 6= 0 and u = (−∆p)

−1(λf−(u))}.

As we mentioned above, we use bifurcation theory (see [19], [20], [21] and [3])

to prove Theorem A. Let us recall that, in our framework, (0, λ∗) is a bifurca-

tion point from zero for equation u = (−∆p)
−1(λf+(u)) if (0, λ∗) ∈ S+ or,

equivalently, if there exists a sequence {(un, λn)}n in S+ which converges to

(0, λ∗). Also, (∞, λ∗) or simply λ∗ is a bifurcation point from infinity for equa-

tion u = (−∆p)
−1(λf+(u)) if there exists a sequence {(un, λn)}n in S+ such that

λn → λ∗ and ‖un‖W 1,p
0
→ ∞ as n → ∞. Similar definitions apply for equation

u = (−∆p)
−1(λf−(u)).

First we present an argument using bifurcation from infinity to show the

existence of two one-sign solutions of (1.1). Secondly, we use bifurcation from

zero to show the existence of two additional one-sign solutions. At the end of

this section we include a bifurcation diagram which summarizes the arguments

presented below.

Let us define Ψ+ : W 1,p
0 (Ω)× R→W 1,p

0 (Ω) by

Ψ+(z, λ) =


z − ‖z‖2

W
1,p
0

(−∆p)
−1

[
λf+

(
z

‖z‖2
W

1,p
0

)]
if z 6= 0,

0 if z = 0,

and Ψ− in the same way, changing f+ by f−. Let us denote i(Ψ+( · , λ), 0) the

index of Ψ+( · , λ) with respect to zero. The following result will be used to prove

the existence of two one-sign solutions for problem (1.1).

Theorem 4.3. The following assertions hold true.

(a) (0, λ1/f
′
p(∞)) is the unique bifurcation point from zero for equation

Ψ+(z, λ) = 0. Moreover, there exists an unbounded connected compo-

nent Γ+
∞ of

Γ+ = {(z, λ) ∈W 1,p
0 (Ω)× R : z 6= 0 and Ψ+(z, λ) = 0},

emanating from the trivial solution of Ψ+(z, λ) = 0 at (0, λ1/f
′
p(∞)).

Analogously, (0, λ1/f
′
p(∞)) is the unique bifurcation point from zero for

equation Ψ−(z, λ) = 0. Moreover, there exists an unbounded connected

component Γ−∞ of

Γ− = {(z, λ) ∈W 1,p
0 (Ω)× R : z 6= 0 and Ψ−(z, λ) = 0},

emanating from the trivial solution of Ψ−(z, λ) = 0 at (0, λ1/f
′
p(∞)).

(b) (∞, λ1/f
′
p(∞)) is the unique bifurcation point from infinity for (4.2).

Moreover, there exists an unbounded connected component Σ+
∞ of S+
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bifurcating from (∞, λ1/f
′
p(∞)). Analogously, the point (∞, λ1/f

′
p(∞))

is the unique bifurcation point from infinity for equation (4.3). Moreover,

there exists an unbounded connected component Σ−∞ of S− bifurcating

from (∞, λ1/f
′
p(∞)).

Remark 4.4. As we mentioned in the introduction above, Theorem 4.3 is

inspired by a corresponding result in the semilinear case due to Ambrosetti and

Hess (see [2] and [3, Section 4.4]), and by Theorem 4.1 in [1] (see also [9]).

The proof we present below closely follows the ideas from [2], [3] and [1], but

our arguments have several differences with respect to these references. First,

as expected, a lot of technicalities arise when trying to adapt the ∆-approach

from [2] and [3] to the ∆p nonlinear operator. Second, our hypotheses on f

slightly differ from those in Theorem 4.1 of [1] (ours are a little less restrictive

near infinity) and, in the proof presented in [1], several details are omitted. And

third, our choice of functional spaces is different from both references. For the

sake of completeness we include full details here.

In order to prove Theorem 4.3 we need the following lemmas.

Lemma 4.5. Let J ⊂ R+ be a compact interval such that λ∞ :=λ1/f
′
p(∞) /∈J .

Then:

(a) There exists r > 0 such that u 6= (−∆p)
−1(λf+(u)) for every λ ∈ J and

every u ∈W 1,p
0 (Ω) with ‖u‖W 1,p

0
≥ r.

(b) i(Ψ+( · , λ), 0) = 1 for every λ < λ∞.

(c) (∞, λ1/f
′
p(∞)) is the only possible bifurcation point from infinity for

equation (4.2).

Proof. In order to prove a) we argue by contradiction. Assume there exist

a sequence {λn}n ⊂ J and a sequence {un}n ⊂ W 1,p
0 (Ω) such that ‖un‖W 1,p

0
→

+∞ and

(4.4) un = (−∆p)
−1(λnf

+(un)) for every n ∈ N.

Because of Lemma 4.1, un > 0 for every n. Dividing (4.4) by ‖un‖W 1,p
0

we get

(4.5)
un

‖un‖W 1,p
0

= (−∆p)
−1

(
λnf

′
p(∞)up−1

n + λng(un)

‖un‖p−1

W 1,p
0

)
for every n ∈ N,

where g(t)/|t|p−2t → 0 as t → ∞. What follows is a standard compactness

argument. Indeed, since {un/‖un‖W 1,p
0
}n is a bounded sequence in W 1,p

0 (Ω),

there exists a subsequence, for which we keep the same notation, v ∈ W 1,p
0 (Ω)
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and h ∈ Lp(Ω) such that

(4.6)



un
‖un‖

W
1,p
0

⇀ v weakly in W 1,p
0 (Ω),

un
‖un‖

W
1,p
0

→ v strongly in Lp(Ω),

un(x)

‖un‖
W

1,p
0

→ v(x) a.e. x ∈ Ω,

un(x)

‖un‖
W

1,p
0

≤ h(x) a.e. x ∈ Ω.

Now, let us verify up−1
n /‖un‖p−1

W
1,p
0

⇀ v p−1 and g(un)/‖un‖p−1

W
1,p
0

⇀ 0 weakly in

Lp
′
(Ω), where 1/p+ 1/p

′
= 1. Let ω ∈ Lp(Ω). Then, from (4.6),

up−1
n (x)ω(x)

‖un‖p−1

W
1,p
0

→ v p−1(x)ω(x) a.e. x ∈ Ω and
up−1
n ω

‖un‖p−1

W
1,p
0

≤ |h|p−1ω.

Since h ∈ Lp(Ω), |h|p−1 ∈ Lp
′
(Ω). Hence, dominated convergence theorem

implies that ∫
Ω

up−1
n ω

‖un‖p−1

W
1,p
0

dx→
∫

Ω

v p−1ω dx as n→∞.

Since this holds true for every ω ∈ Lp(Ω), Riesz representation theorem guar-

antees that up−1
n /‖un‖p−1

W
1,p
0

⇀ vp−1 weakly in Lp
′
(Ω). In order to verify that

g(un)/‖un‖p−1

W
1,p
0

⇀ 0 weakly in Lp
′
(Ω), we take ε > 0 arbitrary and then, since

g(t)/|t|p−2t→ 0 as t→∞, there exists Mε > 0 such that

(4.7) t > Mε =⇒ |g(t)| < εtp−1.

Given n ∈ N, we observe that

(4.8)

∫
Ω

g(un)

‖un‖p−1

W
1,p
0

ω dx =

∫
|un|>Mε

g(un)

‖un‖p−1

W
1,p
0

ω dx+

∫
|un|≤Mε

g(un)

‖un‖p−1

W
1,p
0

ω dx.

Regarding the first integral on the right-hand side of (4.8), from (4.7), Hölder

inequality, and the continuity of the embedding, we get

(4.9)

∣∣∣∣ ∫
|un|>Mε

g(un)

‖un‖p−1

W
1,p
0

ω dx

∣∣∣∣ =

∫
|un|>Mε

|g(un)|
up−1
n

up−1
n

‖un‖p−1

W
1,p
0

|ω| dx

≤ ε
∫
|un|>Mε

up−1
n

‖un‖p−1

W
1,p
0

|ω| dx ≤ ε‖ω‖Lp
∥∥∥∥ up−1

n

‖un‖p−1

W
1,p
0

∥∥∥∥
Lp′
≤ Cε‖ω‖Lp .
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With respect to the second integral on the right-hand side of (4.8), we have

(4.10)

∣∣∣∣ ∫
|un|≤Mε

g(un)

‖un‖p−1

W
1,p
0

ω dx

∣∣∣∣
= ‖g‖L∞[0,Mε]

∫
|un|≤Mε

|ω|
‖un‖p−1

W
1,p
0

dx ≤
‖g‖L∞[0,Mε]

‖un‖p−1

W
1,p
0

‖ω‖L1 .

Since ε > 0 is fixed, ‖g‖L∞[0,Mε] is fixed. The right-hand side of (4.10) tends to

zero as n→∞, because ‖un‖W 1,p
0
→ +∞. Thus, from (4.8)–(4.10), and the fact

that ω ∈ Lp(Ω) is arbitrary, we conclude g(un)/‖un‖p−1

W
1,p
0

⇀ 0 weakly in Lp
′
(Ω).

We then have that the argument on the right-hand side in (4.5) converges

weakly to λf ′p(∞)v in Lp
′
(Ω), for some λ ∈ J . As (−∆p)

−1 : Lp
′
(Ω)→W 1,p

0 (Ω)

is compact, from (4.5) we get a further subsequence {un/‖un‖W 1,p
0
}n such that

(4.11)
un

‖un‖W 1,p
0

= (−∆p)
−1

(
λnf

′
p(∞)up−1

n + λng(un)

‖un‖p−1

W 1,p
0

)
→ (−∆p)

−1(λf ′p(∞)v)

as n→∞, strongly in W 1,p
0 (Ω). From (4.6) and (4.11) we conclude

(4.12) (−∆p)
−1
(
λf ′p(∞)v

)
= v.

Let us denote vn := un/‖un‖W 1,p
0

for each n. From (4.11) and (4.12), it follows

that vn → v strongly in W 1,p
0 (Ω). Since ‖un‖W 1,p

0
= 1 for every n, it follows

v 6= 0. Therefore (4.12) means λf ′p(∞) is an eigenvalue of −∆p and v is an asso-

ciated eigenfunction. This is absurd since v ≥ 0 (from (4.6)) and λf ′p(∞) 6= λ1

(since λ ∈ J and λ1/f
′
p(∞) /∈ J). This contradiction completes our proof of (a).

We now prove (b). Let λ < λ∞. Consider J = [0, λ]. For every t ∈ [0, 1] we

have tλ ∈ J . From (a) there exists r > 0 such that

u− (−∆p)
−1(tλf+(u)) 6= 0

for every tλ∈J (i.e. for every t∈ [0, 1]) and every u∈W 1,p
0 (Ω) with ‖u‖W 1,p

0
≥r.

For such an u, taking z = u/‖u‖2
W

1,p
0

, we get

z − ‖z‖2
W

1,p
0

(−∆p)
−1(tλf+

(
z/‖z‖2

W
1,p
0

)
) 6= 0

for every z ∈ W 1,p
0 (Ω) such that ‖z‖W 1,p

0
≤ 1/r. Hence, Ψ+(z, tλ) 6= 0 for

every z ∈ W 1,p
0 (Ω) such that 0 < ‖z‖W 1,p

0
≤ 1/r. Let us define the homotopy

H : W 1,p
0 (Ω) × [0, 1] → W 1,p

0 (Ω) by H(u, t) = Ψ+(u, tλ). Using Leray–Schauder

degree invariance under homotopies, we get

deg(H( · , 1), B1/r(0), 0) = deg(H( · , 0), B1/r(0), 0)
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equivalently

deg(Ψ+( · , λ), B1/r(0), 0) = deg(I,B1/r(0), 0) = 1.

To prove (c), again we argue by contradiction. Assume there is a bifurcation

point λ from ∞ such that λ 6= λ∞. Let J ⊂ R+ be a compact interval such that

λ ∈ J and λ∞ /∈ J . Then, there exists a sequence {(un, λn)} ⊂ S+ such that

‖un‖W 1,p
0
→ +∞ and λn ∈ J for large n ∈ N. But this contradicts (a). �

Lemma 4.6. The following assertions hold true:

(a) Let λ∞ := λ1/f
′
p(∞). For every λ > λ∞ there exists R > 0 such that

for all τ ≥ 0 and for every positive u ∈ W 1,p
0 (Ω), with ‖u‖W 1,p

0
≥ R, it

holds that u 6= (−∆p)
−1(λf+(u) + τ).

(b) i(Ψ+( · , λ), 0) = 0 for all λ > λ∞.

Proof. In order to prove (a) we argue by contradiction. Actually, our

argument is similar to the one we used above when proving Lemma 4.5 part (a),

but in this case it is more involved because of the τ -term. Assume there exist

{τn}n ⊂ [0,∞) and a sequence {un}n ⊂ W 1,p
0 (Ω) of nonnegative functions such

that ‖un‖W 1,p
0
→∞ as n→∞ and

(4.13) un = (−∆p)
−1(λf+(un) + τn) for every n ∈ N.

Since f+(t) = f ′p(∞)|t|p−2t + g(t), where g(t)/|t|p−2t → 0 as t → +∞, (4.13)

can be written as

(4.14) un = (−∆p)
−1(λf ′p(∞)up−1

n + λg(un) + τn) for every n ∈ N.

Let vn = un/‖un‖W 1,p
0

for every n ∈ N. Then vn satisfies equation

(4.15) vn = (−∆p)
−1

(
λf ′p(∞)vp−1

n + λ
g(un)

‖un‖p−1

W
1,p
0

+
τn

‖un‖p−1

W
1,p
0

)
for all n ∈ N.

We may assume (by passing to a subsequence) that either

(i) τn/‖un‖p−1

W
1,p
0

→ c ≥ 0 as n→∞, or

(ii) τn/‖un‖p−1

W
1,p
0

→ +∞ as n→∞.

Let us consider case (i). Assume first that c = 0. Since ‖vn‖W 1,p
0

= 1 for every

n ∈ N, we can suppose (by taking a subsequence) that there exists v ∈W 1,p
0 (Ω)

such that vn ⇀ v (weakly) in W 1,p
0 (Ω) and (4.6) holds true. Arguing as in the

proof of Lemma 4.5,

(4.16) λf ′p(∞)vp−1
n ⇀ λf ′p(∞)vp−1 and

g(un)

‖un‖p−1

W
1,p
0

⇀ 0 weakly in Lp
′
(Ω),

and, by our assumption that c = 0 in (i),

(4.17)
τn

‖un‖p−1

W
1,p
0

⇀ 0 weakly in Lp
′
(Ω).
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Since (−∆p)
−1 : Lp

′
(Ω)→W 1,p

0 (Ω) is a compact operator, it follows from (4.15),

(4.16) and (4.17)

(4.18) v = (−∆p)
−1
(
λf ′p(∞)vp−1

)
⇔ −∆pv = λf ′p(∞)vp−1.

Arguing as we did above after getting (4.12), we get that the nonnegative function

v is also nonzero. Thus, (4.18) provides a contradiction since λ > λ1(p)/f ′p(∞).

We now assume τn/‖un‖p−1

W
1,p
0

→ c > 0 as n→∞. Let ε ∈ (0, λf ′p(∞)− λ1).

Claim 4.7. there exists a weak positive supersolution ω ∈W 1,p
0 (Ω) of problem

(4.19)

−∆pω = (λ1 + ε)ωp−1 in Ω,

ω = 0 on ∂Ω.

Proof of Claim 4.7. Let γ ∈ ((λ1 + ε)/λ, f ′p(∞)), so that

(4.20) λ1 + ε < λγ < λf ′p(∞).

We show that there exists a large n ∈ N such that

(4.21)

∫
Ω

(
λf ′p(∞)vp−1

n + λ
g(un)

‖un‖p−1

W
1,p
0

+
τn

‖un‖p−1

W
1,p
0

)
φdx ≥

∫
Ω

λγvp−1
n φdx,

for every φ ∈ W 1,p
0 (Ω) such that φ ≥ 0. Let η ∈ (0, (f ′p(∞) − γ)/2). Since

g(t)/tp−1 → 0 as t→ +∞, there exists Mη > 0 such that

(4.22)

∣∣∣∣ g(t)

tp−1

∣∣∣∣ < η, for all t > Mη.

Since λ and Mη are fixed, λ‖g‖L∞[0,Mη ]/‖un‖p−1

W
1,p
0

→ 0 as n → ∞. So, we can

pick a large n, so that

(4.23)
−λ‖g‖L∞[0,Mη ]

‖un‖p−1

W
1,p
0

+
τn

‖un‖p−1

W
1,p
0

≥ c

2
.

Given φ ∈W 1,p
0 (Ω) such that φ ≥ 0, in order to obtain (4.21) we write∫

Ω

(
λf ′p(∞)vp−1

n + λ
g(un)

‖un‖p−1

W
1,p
0

+
τn

‖un‖p−1

W
1,p
0

)
φdx−

∫
Ω

λγvp−1
n φdx(4.24)

=

∫
{un>Mη}

(
λ(f ′p(∞)− γ)vp−1

n + λ
g(un)

‖un‖p−1

W
1,p
0

)
φdx

+

∫
{un≤Mη}

(
λ

g(un)

‖un‖p−1

W
1,p
0

+
τn

‖un‖p−1

W
1,p
0

)
φdx

+

∫
{un≤Mη}

λ(f ′p(∞)− γ)vp−1
n φdx

+

∫
{un>Mη}

τn

‖un‖p−1

W
1,p
0

φdx =: I1 + I2 + I3 + I4.
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Observe I3 ≥ 0 and I4 ≥ 0. From (4.23) we get

I2 ≥
∫
{un≤Mη}

c

2
φdx ≥ 0.

Regarding I1, observe that writing

g(un)

‖un‖p−1

W
1,p
0

=
g(un)

up−1
n

up−1
n

‖un‖p−1

W
1,p
0

we get

(4.25) I1 =

∫
{un>Mη}

(
λ(f ′p(∞)− γ) + λ

g(un)

up−1
n

)
vp−1
n φdx.

Using (4.22), (4.25) and our choice of η, we have

I1 ≥
∫
{un>Mη}

λ

(
f ′p(∞)− γ

2

)
vp−1
n φdx ≥ 0.

We conclude (4.21) holds true. From (4.15), (4.21) and our choice of γ (namely,

(4.20)), we get vn is a supersolution of (4.19) for n ∈ N large, i.e. the following

inequalities hold true in the weak sense

(4.26) −∆pvn = λf ′p(∞)vp−1
n +λ

g(un)

‖un‖p−1

W
1,p
0

+
τn

‖un‖p−1

W
1,p
0

≥ λγvp−1
n > (λ1+ε)vp−1

n

for large n. So, for such an n, vn is a supersolution of (4.19). Moreover, since

vn = un/‖un‖W 1,p
0

, from (4.13) and Lemma 4.1 we conclude vn > 0 on Ω and

∂vn/∂
−→n < 0 on ∂Ω. This completes the proof of claim. �

Now, for every t > 0 and a positive eigenfunction φ1 corresponding to λ1, tφ1

is a subsolution of problem (4.19). Let vn be a positive supersolution of (4.19).

Using that ∂vn/∂
−→n < 0 and ∂φ1/∂

−→n < 0 on ∂Ω (where −→n denotes the outer

unit normal on ∂Ω), one can prove there exists t > 0 such that tφ1 ≤ vn on Ω.

Using standard truncation and penalization techniques (see e.g. [7, Section 3],

[13], the appendix in [15], or Section 4.5 in [16]), it can be proved the existence of

a solution ω ∈W 1,p
0 (Ω)∩L∞(Ω), of problem (4.19), such that tφ1 ≤ ω ≤ vn in Ω.

Thus ω is a positive eigenfunction corresponding to the eigenvalue λ1 + ε 6= λ1.

This is a contradiction that shows case (i) above cannot actually occur.

Let us now consider case (ii). Let γ be as in (4.20). Arguing as in case i), from

(4.15) it follows that, for n ∈ N sufficiently large, inequality −∆pvn ≥ λγvp−1
n

holds true. Then, the same argument as presented in case i) follows, and we also

get a contradiction. We have completed the proof of part (a).

We now prove (b). Let λ > λ∞. From (a), taking τ = t, we know

that for every t ∈ [0, 1] and every u ∈ W 1,p
0 (Ω) with ‖u‖W 1,p

0
≥ R, u 6=
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(−∆p)
−1(λf+(u) + t). Using again inversion z = u/‖u‖2

W 1,p
0

and the homo-

geneity of (−∆p)
−1, we observe that for every t ∈ [0, 1] and every z ∈ W 1,p

0 (Ω)

such that 0 < ‖z‖W 1,p
0
≤ 1/R,

(4.27) z 6= (−∆p)
−1
(
λ‖z‖2(p−1)

W 1,p
0

f+
(
z/‖z‖2

W
1,p
0

)
+ t
)
.

Let ε ∈ (0, 1/R). We now define homotopy H : Bε(0)× [0, 1]→W 1,p
0 (Ω) as

H(z, t) = z − (−∆p)
−1
(
λ‖z‖2(p−1)

W
1,p
0

f+
(
z/‖z‖2

W
1,p
0

)
+ t
)

for every z 6= 0,

and H(0, t) := −(−∆p)
−1(t). Using the same ideas we used above to prove

part (a) of Lemma 4.5, it can be proved that H is actually continuous, and also

that it is of the form identity − compact.

Using the homotopy invariance property of Leray–Schauder degree, we obtain

deg(H( · , 0), Bε(0), 0) = deg(H( · , 1), Bε(0), 0).

On the other hand, deg(H( · , 0), Bε(0), 0) = deg(Ψ+( · , λ), Bε(0), 0) and, from

(4.27) and the definition of H,

deg(H( · , 1), Bε(0), 0) = 0. �

Proof of Theorem 4.3. Lemmas 4.5 and 4.6 assert that i(Ψ+( · , λ), 0) = 1

when λ < λ∞, and i(Ψ+( · , λ), 0) = 0 when λ > λ∞. The fact that these two

local degrees are different allows one to repeat the original arguments used by

P. Rabinowitz to prove his global bifurcation theorem (see [19], [20], and [3,

Sections 4.3 and 4.4]). �

We now prove the existence of two solutions for problem (1.1). Since Σ+
∞

bifurcates from (∞, λ1/fp
′(∞)), there exist elements (u, λ) ∈ Σ+

∞ such that

‖u‖W 1,p
0

is arbitrarily large and λ is near λ1/f
′
p(∞). Hence, because of inequality

(3.2) in Lemma 3.2, there exist elements (u, λ) ∈ Σ+
∞ such that N∞(u, λ) =

‖u‖L∞ > α. Lemma 3.3 implies that N∞(Σ+
∞) is connected. Thus, Lemma 3.1

implies that

(4.28) ‖u‖L∞ > α for all (u, λ) ∈ Σ+
∞.

Because of inequality (3.3) in Lemma 3.2,

(4.29) ‖u‖W 1,p
0

> (K2)−1α for all (u, λ) ∈ Σ+
∞ ∩ (W 1,p

0 (Ω)× [0, 2]).

The constant K2 in the previous inequality, technically, depends on λ. As it was

pointed out in Lemma 3.2, K2 is bounded if λ is bounded. Since λ ∈ [0, 2] in this

case, the constant K2 > 0 can be chosen independent of λ. Now we claim that

there exists an element of the form (u1, 1) ∈ Σ+
∞. Let us argue by contradiction.

Assume this is not true. Consider the cylinder

P = {(u, λ) ∈W 1,p
0 (Ω)× R : λ ∈ [0, 1], ‖u‖W 1,p

0
≥ (K2)−1α}.
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Hypothesis (f2) implies that λ1/f
′
p(∞) < 1. Therefore, from Theorem 4.3 it

follows that intP ∩ Σ+
∞ 6= ∅. Also, since Σ+

∞ corresponds to the unbounded

connected component Γ+
∞ of Γ+, then int(W 1,p

0 (Ω) × R \ P ) ∩ Σ+
∞ 6= ∅. From

(4.29) and our assumption, ∂P ∩ Σ+
∞ = ∅. Thus, ∂P separates Σ+

∞, i.e.

Σ+
∞ ⊂ intP ∪ int(W 1,p

0 (Ω)× R \ P ),

which contradicts the connectedness of Σ+
∞. This contradiction shows there

exists (u1, 1) ∈ Σ+
∞. From Theorem 4.3, u1 6= 0, i.e. (u1, 1) ∈ Σ+

∞ ⊂ S+. As

mentioned above, this means u1 > 0 on Ω and u1 satisfies (1.1). In a similar

fashion we obtain a negative solution v1. The previous argument shows these

two solutions have L∞(Ω)-norm greater than α.

4.2. Bifurcation from zero. First we state the following analogue of The-

orem 4.3.

Theorem 4.8. There exists an unbounded connected component Σ+
0 of S+

so that (0, λ1/f
′
p(0)) belongs to Σ+

0 and, if (0, λ) ∈ Σ+
0 , then λ = λ1/f

′
p(0). Also,

there exists an unbounded connected component Σ−0 of S− such that (0, λ1/f
′
p(0))

in Σ−0 and, if (0, λ) ∈ Σ−0 , then λ = λ1/f
′
p(0).

Remark 4.9. This result is essentially an adaptation of Lemma 3.1 in [9]

to our case, and it can be proved either by following the arguments of [9, The-

orem 1.1 and Lemma 3.1] or by using the same ideas we used above to prove

Theorem 4.3.

We now prove the existence of two additional solutions for problem (1.1).

Since (0, λ1/fp
′(0)) ∈ Σ+

0 , there exist elements (u, λ) ∈ Σ+
0 such that ‖u‖W 1,p

0

is close to zero and λ is near λ1/f
′
p(0). Hence, because of inequality (3.3) in

Lemma 3.2, there exist elements (u, λ) ∈ Σ+
0 such that N∞(u, λ) = ‖u‖L∞ < α.

From Lemma 3.3 it follows that N∞(Σ+
0 ) is connected. Thus, Lemma 3.1 implies

that

(4.30) ‖u‖L∞ < α for all (u, λ) ∈ Σ+
0 .

Because of inequality (3.2) in Lemma 3.2,

(4.31) ‖u‖W 1,p
0

< K1α for all (u, λ) ∈ Σ+
0 ∩ (W 1,p

0 (Ω)× [0, 2]).

Now we claim that there exists (u2, 1) ∈ Σ+
0 . Let us argue by contradiction.

Assume this is not true. Define the cylinder

P = {(u, λ) ∈W 1,p
0 (Ω)× R : λ ∈ [0, 1], ‖u‖W 1,p

0
≤ K1α}.

Hypothesis (f2) implies that λ1/f
′
p(0) < 1. Therefore, from Theorem 4.8 it fol-

lows that intP ∩Σ+
0 6= ∅. Also, the unboundedness of Σ+

0 implies int (W 1,p
0 (Ω)×
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R \ P ) ∩ Σ+
0 6= ∅. From (4.31) and our assumption, ∂P ∩ Σ+

0 = ∅. Thus, ∂P

separates Σ+
0 , i.e.

Σ+
0 ⊂ intP ∪ int(W 1,p

0 (Ω)× R \ P ),

which contradicts the connectedness of Σ+
0 . This contradiction shows there exists

(u2, 1) ∈ Σ+
0 . From Theorem 4.8, u2 6= 0, i.e. (u2, 1) ∈ Σ+

0 ⊂ S+. As mentioned

above, this means u2 > 0 on Ω and u2 satisfies (1.1).

Arguing in a similar fashion with Σ−0 , the existence of a negative solu-

tion v2 of (1.1) is obtained. From (4.30) (and its analogue for Σ−0 ) we have

‖u2‖L∞ , ‖v2‖L∞ < α.

We summarize the arguments presented above, in the following bifurcation

diagram of Figure 1.

Figure 1. Bifurcation diagram for problem (1.3).
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