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SOME PROPERTIES OF SETS, FIXED POINT THEOREMS

IN ORDERED PRODUCT SPACES AND APPLICATIONS

TO A NONLINEAR SYSTEM

OF FRACTIONAL DIFFERENTIAL EQUATIONS

Chengbo Zhai — Jing Ren

Abstract. We study a partial order in product spaces and then present
some new properties of sets via the partial order. Based on these proper-

ties and monotone iterative technique, we establish some new fixed point

theorems in product spaces. As an application, we utilize the main fixed
point theorem to study a nonlinear system of fractional differential equa-

tions. We get the existence-uniqueness of positive solutions for this system,

which complements the existing results of positive solutions for this non-
linear problem in the literature.

1. Introduction

During the past several decades, nonlinear functional analysis has been an

active area of research. As an important content of nonlinear functional analy-

sis, nonlinear operator theory has attracted much attention and has been widely

studied (see for example [1]–[3], [6], [7], [10], [16], [18], [27], [31]). As we know,

nonlinear operator theory is an important theoretical foundation and basic tool

of nonlinear sciences, and it is a research field of modern mathematics which
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has profound theories and extensive applications. Nonlinear operator theory has

been extensively used to study nonlinear differential equations, integral equa-

tions, matrix equations and boundary value problems, etc. In most cases, we

deal with these nonlinear problems by means of some fixed point theorems for

single operator. However, multiple operators in product spaces can be regarded

as an integration, this motivates to consider multiple operators and establish

some nonlinear operator theories in product spaces. Let us mention the fol-

lowing papers concerned with fixed point theorems in product spaces: Fora [9],

Kuczumow [14], Tan and Xu [21], Ding et al. [8], Wísnicki [23], Kohlenbach and

Leustean [13]. These operators’ results have not been widely utilized to study

equation problems. The reason is that the conditions are difficult to verify for

particular operators.

In this article, we first study one partial order in product spaces, and then

present some properties of sets. Using these properties and monotone iterative

technique, we establish some new fixed point theorems in product spaces. Here

we mainly consider the following operator equation:

(1.1) (x, y) = (A(x, y), B(x, y)).

Motivated by our works [27], [31], we will establish some existence and uniqueness

results of positive solutions for operator equation (1.1), which extend the results

of [31] to some degree.

In the last section of this paper, we study a nonlinear system of fractional

differential equations. We give the existence-uniqueness of positive solutions for

this system, which complements the existence results of positive solutions for

this nonlinear problem. Moreover, we note that our main fixed point theorems

can be applied easily to many nonlinear problems.

2. Preliminaries and one partial order

Let E be a linear space on a scalar field K. Then the product space E × E
is a linear space with

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2),

λ(x, y) = (λx, λy), λ ∈ K.

If E is a Banach space with the norm ‖ · ‖E , then the product space E × E is

also a Banach space with the norm

(2.1) ‖(u, v)‖E×E = ‖u‖E + ‖v‖E , (u, v) ∈ E × E;

or

(2.2) ‖(u, v)‖E×E = max {‖u‖E , ‖v‖E}, (u, v) ∈ E × E.

Moreover, the norms (2.1) and (2.2) are equivalent.
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For convenience, we recall some definitions, notations and known results

which can be found in [1], [7], [10], [27], [31].

Let (E, ‖ · ‖E) be a real Banach space, by θ we denote the zero element of E.

A non-empty closed convex set P ⊂ E is a cone if it satisfies

(i) if x ∈ P , r ≥ 0 then rx ∈ P ;

(ii) if x ∈ P , −x ∈ P then x = θ.

Then E is partially ordered by P , i.e. x ≤ y if and only if y − x ∈ P . x < y or

y > x means that x ≤ y and x 6= y.

Put int(P ) = {x ∈ P : x is an interior point of P}. If int(P ) is non-empty,

then the cone P is said to be solid. If there is a constant N > 0 such that, for

all x, y ∈ E, θ ≤ x ≤ y implies ‖x‖E ≤ N‖y‖E , then P is called normal, in this

case N is the infimum of such constants and it is called the normality constant

of P . If x1, x2 ∈ E, the set [x1, x2] = {x ∈ E : x1 ≤ x ≤ x2} is called the order

interval between x1 and x2.

For all x, y ∈ E, the notation x ∼ y means that there are λ > 0 and µ > 0

such that λx ≤ y ≤ µx. Evidently, ∼ is an equivalence relation. Given h > θ

(i.e. h ≥ θ and h 6= θ), we define the set Ph = {x ∈ E : x ∼ h}. It is easy to see

that Ph ⊂ P .

2.1. One partial order. In this subsection we consider the product set

P × P = {(x, y) : x ≥ θ, y ≥ θ}. First, P × P is a closed convex set in E × E.

Lemma 2.1. P × P is a cone in E × E.

Proof. We only need prove that

(i) if (x, y) ∈ P × P , r ≥ 0 then r(x, y) ∈ P × P ;

(ii) if (x, y),−(x, y) ∈ P × P then (x, y) = (θ, θ).

On the one hand, evidently, r(x, y) = (rx, ry). Since x, y ≥ θ, we know that

rx, ry ≥ θ. So r(x, y) = (rx, ry) ∈ P × P . On the other hand, if (x, y) ∈ P × P
then x, y ∈ P and −(x, y) = (−x,−y) ∈ P ×P and then −x,−y ∈ P . Since P is

a cone in E, we get x = θ, y = θ. That is, (x, y) = (θ, θ). Consequently, P × P
is a cone in E × E. �

Remark 2.2. From Lemma 2.1, we obtain that E × E is partially ordered

by P × P . That is,

(x1, y1) ≤̇ (x2, y2) ⇔ (x2, y2)− (x1, y1) = (x2 − x1, y2 − y1) ∈ P × P

⇔ x2 ≥ x1, y2 ≥ y1.

We call this partial order partial-order-I. Further, we can define monotone op-

erators on the product space E × E, we say that an operator A : E × E → E

is increasing (decreasing) if (x1, y1) ≤̇ (x2, y2) implies A(x1, y1) ≤ A(x2, y2) (if

(x1, y1) ≥̇ (x2, y2) implies A(x1, y1) ≥ A(x2, y2)).
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Lemma 2.3. P is normal if and only if P ×P is normal; and their normality

constants coincide.

Proof. Suppose that P is normal and N is the normality constant of P .

For (x1, y1) ≤̇ (x2, y2), we have x2 ≥ x1, y2 ≥ y1. Then ‖x1‖E ≤ N‖x2‖E ,

‖y1‖E ≤ N‖y2‖E . Thus

‖(x1, y1)‖E×E = ‖x1‖E + ‖y1‖E ≤ N(‖x2‖E + ‖y2‖E) = N‖(x2, y2)‖E×E ;

or

‖(x1, y1)‖E×E = max {‖x1‖E , ‖y1‖E} ≤ max {N‖x2‖E , N‖y2‖E}

= N max {‖x2‖E , ‖y2‖E} = N‖(x2, y2)‖E×E .

So, P × P is normal.

Conversely, suppose that P ×P is normal and N1 is the normality constant.

From the above argument and the definition of normality, we have N ≥ N1. For

any x1 ≤ x2, we have (x1, θ) ≤̇ (x2, θ), and then ‖(x1, θ)‖E×E ≤ N1‖(x2, θ)‖E×E .

That is,

‖x1‖E + ‖θ‖E ≤ N1(‖x2‖E + ‖θ‖E).

Thus, ‖x1‖E≤N1‖x2‖E ; or max{‖x1‖E , ‖θ‖E} ≤ N1 max{‖x2‖E , ‖θ‖E}. Thus,

‖x1‖E ≤ N1‖x2‖E . So P is normal and N1 ≥ N . Moreover, we have N1 = N .�

2.2. Some properties of sets by partial-order-I. Given h
(1)
0 , h

(2)
0 ≥ θ

with h
(1)
0 6= θ, h

(2)
0 6= θ. Let h0 = (h

(1)
0 , h

(2)
0 ), then h0 ∈ P × P . Define the set

P̃h0
=
{

(x, y) : x ∈ P
h
(1)
0
, y ∈ P

h
(2)
0

}
= P

h
(1)
0
× P

h
(2)
0

.

Lemma 2.4.

P̃h0
=
{

(x, y) : there exist λ, µ > 0 such that

λ(h
(1)
0 , h

(2)
0 ) ≤̇ (x, y) ≤̇µ(h

(1)
0 , h

(2)
0 )
}
,

where λ and µ depend on x and y.

Proof. Set

D =
{

(x, y) : there exist λ, µ > 0 such that

λ(h
(1)
0 , h

(2)
0 ) ≤̇ (x, y) ≤̇µ(h

(1)
0 , h

(2)
0 )
}
.

For (x, y)∈ P̃h0
, we know that x∈P

h
(1)
0

, y∈P
h
(2)
0

. Then there exist λ1, λ2, µ1, µ2

> 0 such that λ1h
(1)
0 ≤ x ≤ µ1h

(1)
0 and λ2h

(2)
0 ≤ y ≤ µ2h

(2)
0 .

Let λ = min {λ1, λ2}, µ = max {µ1, µ2}. Then

λ(h
(1)
0 , h

(2)
0 ) = (λh

(1)
0 , λh

(2)
0 ) ≤̇ (x, y)

≤̇ (µ1h
(1)
0 , µ2h

(2)
0 ) ≤̇ (µh

(1)
0 , µh

(2)
0 ) = µ(h

(1)
0 , h

(2)
0 ).
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That is, (x, y) ∈ D and thus P̃h0
⊂ D. Conversely, if (x, y) ∈ D, then

λ(h
(1)
0 , h

(2)
0 ) = (λh

(1)
0 , λh

(2)
0 ) ≤̇ (x, y)≤̇µ(h

(1)
0 , h

(2)
0 ) = (µh

(1)
0 , µh

(2)
0 ).

So we have λh
(1)
0 ≤ x ≤ µh

(1)
0 , λh

(2)
0 ≤ y ≤ µh

(2)
0 . That is, x ∈ P

h
(1)
0

, y ∈ P
h
(2)
0

.

Hence, (x, y) ∈ P̃h0
. Consequently, D ⊂ P̃h0

. Therefore, P̃h0
= D =

{
(x, y) :

there exist λ, µ > 0 such that λ(h
(1)
0 , h

(2)
0 ) ≤̇ (x, y) ≤̇µ(h

(1)
0 , h

(2)
0 )
}

. �

Remark 2.5. P̃h0
⊂ P × P and λP̃h0

⊂ P̃h0
for all λ ≥ 0.

Lemma 2.6. Let int(P × P ) be the set of all interior points of P × P . Then

int(P × P ) = int(P )× int(P ).

Proof. Suppose M0(x0, y0) ∈ int(P ×P ), then there exists r > 0 such that

B(M0, r) = {(x, y) : ‖(x, y) − (x0, y0)‖E×E ≤ r} ⊂ P × P . For any (x, y) ∈
B(M0, r), we have ‖(x, y)− (x0, y0)‖E×E ≤ r. That is,

‖(x− x0, y − y0)‖E×E = ‖x− x0‖E + ‖y − y0‖E ≤ r;

or

‖(x− x0, y − y0)‖E×E = max {‖x− x0‖E , ‖y − y0‖E} ≤ r.
Thus, ‖x − x0‖E ≤ r, ‖y − y0‖E ≤ r. Hence, B(x0, r) ⊂ P , B(y0, r) ⊂ P . So,

x0 ∈ int(P ), y0 ∈ int(P ) and thus (x0, y0) ∈ int(P )× int(P ).

Conversely, for any M0(x0, y0) ∈ int(P )× int(P ), we know that x0 ∈ int(P ),

y0 ∈ int(P ). Then there exist B(x0, r1), B(y0, r2) ⊂ P . Let r = min {r1, r2}, for

any (x, y) ∈ B(M0, r), we obtain ‖(x, y)− (x0, y0)‖E×E ≤ r, that is, ‖x−x0‖E +

‖y − y0‖E ≤ r or max {‖x− x0‖E , ‖y − y0‖E} ≤ r. So ‖x − x0‖E ≤ r ≤ r1,

‖y − y0‖E ≤ r ≤ r2. Hence, x ∈ B(x0, r1) ⊂ P , y ∈ B(x0, r2) ⊂ P . Then we get

B(M0, r) ⊂ P × P . Consequently, (x0, y0) is an interior point of P × P , that is,

(x0, y0) ∈ int(P × P ). �

Remark 2.7. If h0 ∈ int(P × P ), then P̃h0 = int(P × P ).

3. Fixed point theorems by partial-order-I

In this section we present some new results for operator equation (1.1).

Theorem 3.1. Let P be a normal cone in a Banach space E and h0 =

(h
(1)
0 , h

(2)
0 ) ∈ P × P with h

(1)
0 , h

(2)
0 6= θ. Let operators A,B : P × P → P be

increasing and satisfy the following conditions:

(H1) for x, y ∈ P , there exist ϕ1, ϕ2 : (0, 1)→ (0, 1) such that

A(tx, ty) ≥ ϕ1(t)A(x, y), B(tx, ty) ≥ ϕ2(t)B(x, y),

where ϕi(t) > t, t ∈ (0, 1), i = 1, 2;

(H2) there exists (e1, e2) ∈ P̃h0
such that A(e1, e2) ∈ P

h
(1)
0
, B(e1, e2) ∈ P

h
(2)
0
.

Then:



630 C. Zhai — J. Ren

(a) A : P̃h0
→ P

h
(1)
0
, B : P̃h0

→ P
h
(2)
0

and there exist u
(1)
0 , v

(1)
0 ∈ P

h
(1)
0
,

u
(2)
0 , v

(2)
0 ∈ P

h
(2)
0
, r ∈ (0, 1) such that

r(v
(1)
0 , v

(2)
0 ) ≤̇ (u

(1)
0 , u

(2)
0 ) ≤̇ (v

(1)
0 , v

(2)
0 ),

u
(1)
0 ≤ A(u

(1)
0 , u

(2)
0 ) ≤ v(1)0 , u

(2)
0 ≤ B(u

(1)
0 , u

(2)
0 ) ≤ v(2)0 ;

(b) operator equation (1.1) has a unique solution (x∗, y∗) in P̃h0 . In addition,

for any given point (x0, y0) ∈ P̃h0 , if

(xn, yn) = (A(xn−1, yn−1), B(xn−1, yn−1)), n = 1, 2, . . . ,

then ‖xn − x∗‖E → 0, ‖yn − y∗‖E → 0 as n→∞.

Proof. From (H1), for any x, y ∈ P , t ∈ (0, 1), we have

A(x, y) = A

(
t · 1

t
x, t · 1

t
y

)
≥ ϕ1(t)A

(
1

t
x,

1

t
y

)
,

B(x, y) = B

(
t · 1

t
x, t · 1

t
y

)
≥ ϕ2(t)B

(
1

t
x,

1

t
y

)
,

and thus

(3.1) A

(
1

t
x,

1

t
y

)
≤ 1

ϕ1(t)
A(x, y), B

(
1

t
x,

1

t
y

)
≤ 1

ϕ2(t)
B(x, y).

Since e1 ∈ Ph(1)
0

, e2 ∈ Ph(2)
0

, A(e1, e2) ∈ P
h
(1)
0

, B(e1, e2) ∈ P
h
(2)
0

, we can choose

sufficiently small numbers ti ∈ (0, 1) (i = 1, 2, 3, 4) such that

(3.2)

t1h
(1)
0 ≤ e1 ≤

1

t1
h
(1)
0 , t2h

(2)
0 ≤ e2 ≤

1

t2
h
(2)
0 ,

t3h
(1)
0 ≤ A(e1, e2) ≤ 1

t3
h
(1)
0 , t4h

(2)
0 ≤ B(e1, e2) ≤ 1

t4
h
(2)
0 .

Also, for u ∈ P
h
(1)
0

, v ∈ P
h
(2)
0

, there exist µ1, µ2 ∈ (0, 1) such that

(3.3) µ1h
(1)
0 ≤ u ≤ 1

µ1
h
(1)
0 , µ2h

(2)
0 ≤ v ≤ 1

µ2
h
(2)
0 .

Let µ = min {µ1, µ2}, t0 = min {t1, t2}, then µ, t0 ∈ (0, 1). From (H1) and

(3.1)–(3.3), we have

A(u, v) ≥A(µ1h
(1)
0 , µ2h

(2)
0 ) ≥ A(µh

(1)
0 , µh

(2)
0 )

≥ϕ1(µ)A(h
(1)
0 , h

(2)
0 ) ≥ ϕ1(µ)A(t1e1, t2e2)

≥ϕ1(µ)A(t0e1, t0e2) ≥ ϕ1(µ)ϕ1(t0)A(e1, e2) ≥ ϕ1(µ)ϕ1(t0)t0h
(1)
0 ,
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A(u, v) ≤A
(

1

µ1
h
(1)
0 ,

1

µ2
h
(2)
0

)
≤ A

(
1

µ
h
(1)
0 ,

1

µ
h
(2)
0

)
≤ 1

ϕ1(µ)
A(h

(1)
0 , h

(2)
0 ) ≤ 1

ϕ1(µ)
A

(
1

t1
e1,

1

t2
e2

)
≤ 1

ϕ1(µ)
A

(
1

t0
e1,

1

t0
e2

)
≤ 1

ϕ1(µ)ϕ1(t0)
A(e1, e2) ≤ 1

ϕ1(µ)ϕ1(t0)t3
h
(1)
0 .

From (H1), ϕ1(µ)ϕ1(t0)t3 > µt0t3 > 0 and thus A(u, v) ∈ P
h
(1)
0

. Hence, we have

A : P
h
(1)
0
× P

h
(2)
0
→ P

h
(1)
0

. That is, A : P̃h0
→ P

h
(1)
0

. Similarly, we can prove that

B : P̃h0
→ P

h
(2)
0

. Since h0 = (h
(1)
0 , h

(2)
0 ) ∈ P̃h0

, we obtain

Ah0 = A(h
(1)
0 , h

(2)
0 ) ∈ P

h
(1)
0
, Bh0 = B(h

(1)
0 , h

(2)
0 ) ∈ P

h
(2)
0
.

So there are t5, t6 ∈ (0, 1) such that

(3.4) t5h
(1)
0 ≤ A(h

(1)
0 , h

(2)
0 ) ≤ 1

t5
h
(1)
0 , t6h

(2)
0 ≤ B(h

(1)
0 , h

(2)
0 ) ≤ 1

t6
h
(2)
0 .

Set τ0 = min {t5, t6}, then τ0 ∈ (0, 1). Note τ0 < ϕi(τ0) < 1, i = 1, 2, so we can

choose a positive integer k such that

(3.5)

(
ϕ1(τ0)

τ0

)k
≥ 1

τ0
,

(
ϕ2(τ0)

τ0

)k
≥ 1

τ0
.

Let u
(1)
0 = τk0 h

(1)
0 , u

(2)
0 = τk0 h

(2)
0 , v

(1)
0 = τk0 h

(1)
0 /τk0 , v

(2)
0 = τk0 h

(2)
0 /τk0 . Clearly,

u
(1)
0 , v

(1)
0 ∈ P

h
(1)
0

, u
(2)
0 , v

(2)
0 ∈ P

h
(2)
0

and

u
(1)
0 = τ2k0 v

(1)
0 < v

(1)
0 , u

(2)
0 = τ2k0 v

(2)
0 < v

(2)
0 .

Take any r ∈ (0, τ2k0 ], then r ∈ (0, 1) and u
(1)
0 ≥ rv

(1)
0 , u

(2)
0 ≥ rv

(2)
0 . By (H1),

(3.1), (3.4), (3.5), we have

A(u
(1)
0 , u

(2)
0 ) =A(τk0 h

(1)
0 , τk0 h

(2)
0 ) = A(τ0τ

k−1
0 h

(1)
0 , τ0τ

k−1
0 h

(2)
0 )

≥ϕ1(τ0)A(τk−10 h
(1)
0 , τk−10 h

(2)
0 ) ≥ . . . ≥ (ϕ1(τ0))kA(h

(1)
0 , h

(2)
0 )

≥ (ϕ1(τ0))kt5h
(1)
0 ≥ (ϕ1(τ0))kτ0h

(1)
0 ≥ τk0 h

(1)
0 = u

(1)
0 ,

A(v
(1)
0 , v

(2)
0 ) =A

(
1

τk0
h
(1)
0 ,

1

τk0
h
(2)
0

)
= A

(
1

τ0

1

τk−10

h
(1)
0 ,

1

τ0

1

τk−10

h
(2)
0

)
≤ 1

ϕ1(τ0)
A

(
1

τk−10

h
(1)
0 ,

1

τk−10

h
(2)
0

)
≤ . . . ≤ 1

(ϕ1(τ0))k
A(h

(1)
0 , h

(2)
0 )

≤ 1

(ϕ1(τ0))kt5
h
(1)
0 ≤ 1

(ϕ1(τ0))kτ0
h
(1)
0 ≤ 1

τk0
h
(1)
0 = v

(1)
0 .

Similarly, we can prove that

B(u
(1)
0 , u

(2)
0 ) ≥ u(2)0 , B(v

(1)
0 , v

(2)
0 ) ≤ v(2)0 .
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Let u0 = (u
(1)
0 , u

(2)
0 ), v0 = (v

(1)
0 , v

(2)
0 ), ϕ(t) = min {ϕ1(t), ϕ2(t)}. From the

above, we have

u0, v0 ∈ P̃h0
, ϕ(t) ∈ (t, 1), u0 ≤ v0, Au0 ≥ u(1)0 , Av0 ≤ v(1)0 ,

Bu0 ≥ u(2)0 , Bv0 ≤ v(2)0 ,

u0 = (u
(1)
0 , u

(2)
0 ) ≥̇ (rv

(1)
0 , rv

(2)
0 ) = r(v

(1)
0 , v

(2)
0 ) = rv0.

Now, let us define an operator T : E × E → E × E by

T (x, y) = (A(x, y), B(x, y)).

Due to monotonicity of operators A,B, we know that T : P × P → P × P is

increasing. Further, for any (x, y) ∈ P × P , t ∈ (0, 1), we have

T (tx, ty) = (A(tx, ty), B(tx, ty)) ≥̇ (ϕ1(t)A(x, y), ϕ2(t)B(x, y))(3.6)

≥̇ (ϕ(t)A(x, y), ϕ(t)B(x, y)) = ϕ(t)T (x, y).

Moreover,

Tu0 = (Au0, Bu0) ≥̇ (u
(1)
0 , u

(2)
0 ) = u0,

T v0 = (Av0, Bv0) ≤̇ (v
(1)
0 , v

(2)
0 ) = v0,

Tu0 = (Au0, Bu0) ≤̇ (Av0, Bv0) = Tv0,

Tu0 = (Au0, Bu0) ≥̇ (A(rv0), B(rv0))

≥̇ (ϕ1(r)Av0, ϕ2(r)Bv0) ≥̇ (ϕ(r)Av0, ϕ(r)Bv0) = ϕ(r)Tv0.

Consider the following sequences:

u1 = Tu0, . . . , un = Tun−1, . . . , v1 = Tv0, . . . , vn = Tvn−1, . . .

Then, {un}, {vn} ⊂ P × P . In a usual way, we obtain

(3.7) u0 ≤̇u1 ≤̇ . . . ≤̇un ≤̇ . . . ≤̇ vn ≤̇ . . . ≤̇ v1 ≤̇ v0.

Note that u0 ≥̇ rv0, thus un ≥̇u0 ≥̇ rv0 ≥̇ rvn, n = 1, 2, . . . Define

tn = sup {t > 0 : un ≥̇ tvn}, n = 1, 2, . . .

It is clear that un ≥̇ tnvn, n = 1, 2, . . ., and thus

un+1 ≥̇un ≥̇ tnvn ≥̇ tnvn+1, n = 1, 2, . . .

So, tn+1 ≥ tn, that is, {tn} is increasing with {tn} ⊂ (0, 1]. Let tn → t∗

as n → ∞, then t∗ = 1. Otherwise, 0 < t∗ < 1, then from (H1), (3.6) and

tn/t
∗ ≤ 1, we easily obtain

un+1 = Tun ≥̇T (tnvn) = T

(
tn
t∗
t∗vn

)
≥̇ tn
t∗
T (t∗vn) ≥̇ tn

t∗
ϕ(t∗)Tvn.

It follows from the definition of tn that tn+1 ≥ tnϕ(t∗)/t∗. Letting n → ∞, we

get t∗ ≥ ϕ(t∗) > t∗, this is a contradiction. So, lim
n→∞

tn = 1.
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Next we prove that {un}, {vn} are Cauchy sequences. For any given natural

number p, we have

(θ, θ) ≤̇un+p − un ≤̇ vn − un ≤̇ vn − tnvn = (1− tn)vn ≤̇ (1− tn)v0,

(θ, θ) ≤̇ vn − vn+p ≤̇ vn − un ≤̇ (1− tn)v0.

As P is normal, from Lemma 2.3, we know that P × P is normal. Let n → ∞,

then

‖un+p − un‖E×E ≤ N(1− tn)‖v0‖E×E → 0,

‖vn − vn+p‖E×E ≤ N(1− tn)‖v0‖E×E → 0,

where N is the normality constant of P . So, {un}, {vn} are Cauchy sequences in

E ×E. Since E ×E is complete, there exist u∗, v∗ ∈ E ×E such that un → u∗,

vn → v∗ as n → ∞. By (3.7), we have un ≤̇u∗ ≤̇ v∗ ≤̇ vn with u∗, v∗ ∈ P̃h0 and

(θ, θ) ≤̇ v∗ − u∗ ≤̇ vn − un ≤̇ (1− tn)v0. Further, we get

‖v∗ − u∗‖E×E ≤ N(1− tn)‖v0‖E×E → 0, n→∞,

which shows that u∗ = v∗. So we obtain

un+1 = Tun ≤̇Tu∗ ≤̇Tvn = vn+1.

Also, we get u∗ = Tu∗ as n → ∞. That is, u∗ is a fixed point of T in P̃h0 . Let

u∗ = (x∗, y∗), then

(x∗, y∗) = T (x∗, y∗) = (A(x∗, y∗), B(x∗, y∗)).

This implies that (x∗, y∗) is a positive solution of operator equation (1.1).

In the sequel, we show that u∗ = (x∗, y∗) is the unique positive solution of

operator equation (1.1) in P̃h0
. Suppose ũ is any positive solution of operator

equation (1.1) in P̃h0
. It is easy to see that u∗, ũ are fixed points of the operator

T . Since u∗, ũ ∈ P̃h0
, there exist positive numbers µ1, µ2, λ1, λ2 > 0 such that

µ1h0 ≤̇u∗ ≤̇λ1h0, µ2h0 ≤̇ ũ ≤̇λ2h0.

Then we obtain ũ ≥̇µ2h0 ≥̇µ2u
∗/λ1. Let t̃ = sup {t > 0 : ũ ≥ tu∗}. We get

0 < t̃ <∞, ũ ≥̇ t̃u∗. Next we prove that t̃ ≥ 1. If 0 < t̃ < 1, then

ũ = T ũ ≥̇T (t̃u∗) ≥̇ϕ(t̃)Tu∗ = ϕ(t̃)u∗.

Note that ϕ(t̃) > t̃, this contradicts the definition of t̃. Hence, t̃ ≥ 1 and we get

ũ ≥̇ t̃u∗ ≥̇u∗. Similarly, we can show that u∗ ≥ ũ, thus ũ = u∗. Therefore, T

has a unique fixed point u∗ in P̃h0
. That is to say, operator equation (1.1) has

a unique solution in P̃h0
.

Now we construct successively the sequence

(xn, yn) = (A(xn−1, yn−1), B(xn−1, yn−1)), n = 1, 2, . . . ,
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for any given point (x0, y0) ∈ P̃h0
. Since (x0, y0) ∈ P̃h0

, we can choose a suffi-

ciently small number λ0 ∈ (0, 1) such that

(3.8) λ0(h
(1)
0 , h

(2)
0 ) ≤̇ (A(x0, y0), B(x0, y0)) ≤̇ 1

λ0
(h

(1)
0 , h

(2)
0 ).

Since λ0 < ϕ(λ0) < 1, there is a positive integer m such that(
ϕ(λ0)

λ0

)m
>

1

λ0
.

Let u0 = λm0 (x0, y0) = (λm0 x0, λ
m
0 y0), v0 = (x0, y0)/λm0 = (x0/λ

m
0 , y0/λ

m
0 ).

Clearly, u0, v0 ∈ P̃h0
and u0 ≤̇ (x0, y0) ≤̇ v0. Put un = Tun−1, vn = Tvn−1,

n = 1, 2, . . . Similarly to the above proof, it follows that there exists u∗ ∈ P̃h0

such that Tu∗ = u∗. Due to uniqueness of fixed points of the operator T in P̃h0
,

we get u∗ = u∗. By induction, un ≤̇Tn(x0, y0) ≤̇ vn, n = 1, 2, . . . Since the cone

P × P is normal, we have Tn(x0, y0)→ u∗ as n→∞. That is,

(xn, yn) = (A(xn−1, yn−1), B(xn−1, yn−1))→ (x∗, y∗) as n→∞.

Evidently, ‖xn − x∗‖E → 0, ‖yn − y∗‖E → 0 as n→∞. �

From the proof of Theorem 3.1, it is ease to obtain the following conclusion.

Corollary 3.2. Let P be a normal cone in a Banach space E and h
(1)
0 ∈ P

with h
(1)
0 6= θ. Let the operator A : P × P → P be increasing and satisfy (H1).

Let there exist e0 ∈ Ph(1)
0

such that A(e0, e0) ∈ P
h
(1)
0
. Then:

(a) A : P
h
(1)
0
× P

h
(1)
0
→ P

h
(1)
0

and there are u
(1)
0 , v

(1)
0 ∈ P

h
(1)
0

and r1 ∈ (0, 1)

such that

r1v
(1)
0 ≤ u(1)0 ≤ v(1)0 , u

(1)
0 ≤ A(u

(1)
0 , u

(1)
0 ) ≤ A(v

(1)
0 , v

(1)
0 ) ≤ v(1)0 ;

(b) the operator equation A(x, x) = x has a unique solution x∗ in P
h
(1)
0
.

In addition, for any given point x0 ∈ P
h
(1)
0
, if xn = A(xn−1, xn−1),

n = 1, 2, . . ., then ‖xn − x∗‖E → 0 as n→∞.

Theorem 3.3. Let P be a normal cone in a Banach space E and h0 = (h
(1)
0 ,

h
(2)
0 ) ∈ P×P with h

(1)
0 , h

(2)
0 6= θ. Let operators A,B,C : P×P → P be increasing

and satisfy the following conditions:

(H3) there exist σ ∈ (0, 1), δ > 0 such that, for x, y ∈ P , t ∈ (0, 1),

A(tx, ty) ≥ tσA(x, y), B(tx, ty) ≥ tB(x, y), A(x, y) ≥ δB(x, y);

(H4) for x, y ∈ P , t ∈ (0, 1), there exists ϕ3(t) ∈ (t, 1) such that

C(tx, ty) ≥ ϕ3(t)C(x, y);

(H5) there exists (e1, e2) ∈ P̃h0
such that

A(e1, e2) ∈ P
h
(1)
0
, B(e1, e2) ∈ P

h
(1)
0
, C(e1, e2) ∈ P

h
(2)
0
.
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Then:

(a) there exist u
(1)
0 , v

(1)
0 ∈ P

h
(1)
0
, u

(2)
0 , v

(2)
0 ∈ P

h
(2)
0
, r ∈ (0, 1) such that

r(v
(1)
0 , v

(2)
0 ) ≤̇ (u

(1)
0 , u

(2)
0 ) ≤̇ (v

(1)
0 , v

(2)
0 ),

u
(1)
0 ≤ A(u

(1)
0 , u

(2)
0 ) +B(u

(1)
0 , u

(2)
0 ) ≤ v(1)0 ,

u
(2)
0 ≤ C(u

(1)
0 , u

(2)
0 ) ≤ v(2)0 ;

(b) the operator equation

(3.9) (x, y) = (A(x, y) +B(x, y), C(x, y))

has a unique solution (x∗, y∗) in P̃h0
. In addition, for any given point

(x0, y0) ∈ P̃h0
, if

(xn, yn) = (A(xn−1, yn−1) +B(xn−1, yn−1), C(xn−1, yn−1)), n = 1, 2, . . . ,

then ‖xn − x∗‖E → 0, ‖yn − y∗‖E → 0 as n→∞.

Proof. Define an operator F : P × P → P by F (x, y) = A(x, y) + B(x, y).

From Theorem 3.1, we only need to prove that F satisfies conditions (H1), (H2).

As A,B are increasing, we know that F is increasing. From (H5), F (e1, e2) =

A(e1, e2)+B(e1, e2) ∈ P
h
(1)
0

. In the sequel, we show that there exists ϕ(t) ∈ (t, 1),

t ∈ (0, 1), such that

F (tx, ty) ≥ ϕ(t)F (x, y), for all x, y ∈ P.

Consider the following function:

f(t, β) =
tβ − t
tσ − tβ

, t ∈ (0, 1), β ∈ (σ, 1).

One can easily prove that f(t, β) is increasing in t ∈ (0, 1) for fixed β ∈ (σ, 1),

and

lim
t→0+

f(t, β) = 0, lim
t→1−

f(t, β) =
1− β
β − σ

.

Further, for fixed t ∈ (0, 1), we get

lim
β→1−

f(t, β) = lim
β→1−

tβ − t
tσ − tβ

= 0.

So there is β0(t) ∈ (σ, 1) depending on t such that

tβ0(t) − t
tσ − tβ0(t)

≤ δ, t ∈ (0, 1).

Hence, from (H3) we get

A(x, y) ≥ δB(x, y) ≥ tβ0(t) − t
tσ − tβ0(t)

B(x, y), for all t ∈ (0, 1), x, y ∈ P.

Then

tσA(x, y) + tB(x, y) ≥ tβ0(t)[A(x, y) +B(x, y)], for all t ∈ (0, 1), x, y ∈ P.
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Consequently, for any t ∈ (0, 1) and x, y ∈ P ,

F (tx, ty) = A(tx, ty) +B(tx, ty) ≥ tσA(x, y) + tB(x, y)

≥ tβ0(t)[A(x, y) +B(x, y)] = tβ0(t)F (x, y).

Set ϕ(t) = tβ0(t), t ∈ (0, 1). Then ϕ(t) ∈ (t, 1) and F (tx, ty) ≥ ϕ(t)F (x, y) for

any t ∈ (0, 1) and x, y ∈ P . Hence condition (H1) in Theorem 3.1 is satisfied.

By Theorem 3.1, we have the following conclusions:

(i) there exist u
(1)
0 , v

(1)
0 ∈ P

h
(1)
0

, u
(2)
0 , v

(2)
0 ∈ P

h
(2)
0

, r ∈ (0, 1) such that

r(v
(1)
0 , v

(2)
0 ) ≤̇ (u

(1)
0 , u

(2)
0 ) ≤̇ (v

(1)
0 , v

(2)
0 ),

u
(1)
0 ≤ F (u

(1)
0 , u

(2)
0 ) ≤ v(1)0 , u

(2)
0 ≤ C(u

(1)
0 , u

(2)
0 ) ≤ v(2)0 ;

(ii) the operator equation (x, y) = (F (x, y), C(x, y)) has a unique solution

(x∗, y∗) in P̃h0
. Moreover, for any (x0, y0) ∈ P̃h0

, if

(xn, yn) = (F (xn−1, yn−1), C(xn−1, yn−1)), n = 1, 2, . . . ,

then ‖xn − x∗‖E → 0, ‖yn − y∗‖E → 0 as n → ∞. That is, the conclusion of

Theorem 3.3 holds. �

Theorem 3.4. Assume that all conditions of Theorem 3.1 hold. Then, for

any given λ, µ > 0, the operator equation

(3.10) (x, y) = (λA(x, y), µB(x, y))

has a unique solution (x∗λ,µ, y
∗
λ,µ) in P̃h0

. In addition, for any given point

(x0, y0) ∈ P̃h0
, if

(xn, yn) = (λA(xn−1, yn−1), µB(xn−1, yn−1)), n = 1, 2, . . . ,

then ‖xn − x∗λ,µ‖E → 0, ‖yn − y∗λ,µ‖E → 0 as n→∞.

Proof. Let Aλ = λA, Bµ = µB for λ, µ > 0. Then operators Aλ, Bµ satisfy

(H1), (H2). From Theorem 3.1, the operator equation (x, y)=(Aλ(x, y), Bµ(x, y))

has a unique solution (x∗λ,µ, y
∗
λ,µ) in P̃h0

. Moreover, for any initial point (x0, y0) ∈
P̃h0

, constructing successively the sequence (xn, yn)=(Aλ(xn−1, yn−1), Bµ(xn−1,

yn−1)), n = 1, 2, . . ., we have ‖xn − x∗λ,µ‖E → 0, ‖yn − y∗λ,µ‖E → 0 as n → ∞.

That is, the operator equation (x, y) = (λA(x, y), µB(x, y)) has a unique so-

lution (x∗λ,µ, y
∗
λ,µ) in P̃h0

. Further, for any (x0, y0) ∈ P̃h0
, constructing the

sequence (xn, yn) = (λA(xn−1, yn−1), µB(xn−1, yn−1)), n = 1, 2, . . ., we have

‖xn − x∗λ,µ‖E → 0, ‖yn − y∗λ,µ‖E → 0 as n→∞. �

From Remark 2.7 and Lemma 2.6, we the following conclusions which are

similar to Theorem 3.1, Corollary 3.2, Theorems 3.3 and 3.4 can be established.
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Theorem 3.5. Let P be a normal cone in a Banach space E. Let operators

A,B : int(P × P ) → int(P ) be increasing and satisfy (H1) for x, y ∈ int(P ),

t ∈ (0, 1). Then:

(a) there exist u
(1)
0 , v

(1)
0 , u

(2)
0 , v

(2)
0 ∈ int(P ), r ∈ (0, 1) such that

r(v
(1)
0 , v

(2)
0 ) ≤̇ (u

(1)
0 , u

(2)
0 ) ≤̇ (v

(1)
0 , v

(2)
0 ),

u
(1)
0 ≤ A(u

(1)
0 , u

(2)
0 ) ≤ v(1)0 , u

(2)
0 ≤ B(u

(1)
0 , u

(2)
0 ) ≤ v(2)0 ;

(b) operator equation (1.1) has a unique solution (x∗, y∗) in int(P × P ). In

addition, for any given point (x0, y0) ∈ int(P × P ), if

(xn, yn) = (A(xn−1, yn−1), B(xn−1, yn−1)), n = 1, 2, . . . ,

then ‖xn − x∗‖E → 0, ‖yn − y∗‖E → 0 as n→∞.

Theorem 3.6. Let P be a normal cone in a Banach space E. Let the operator

A : int(P × P )→ int(P ) be increasing and satisfy (H1). Then:

(a) there are u
(1)
0 , v

(1)
0 ∈ int(P ) and r1 ∈ (0, 1) such that

r1v
(1)
0 ≤ u(1)0 ≤ v(1)0 , u

(1)
0 ≤ A(u

(1)
0 , u

(1)
0 ) ≤ A(v

(1)
0 , v

(1)
0 ) ≤ v(1)0 ;

(b) the operator equation A(x, x) = x has a unique solution x∗ in int(P ).

In addition, for any given point x0 ∈ int(P ), if xn = A(xn−1, xn−1),

n = 1, 2, . . ., then ‖xn − x∗‖E → 0 as n→∞.

Theorem 3.7. Let P be a normal cone in a Banach space E. Let operators

A,B,C : int(P × P ) → int(P ) be increasing and satisfy (H3), (H4) for x, y ∈
int(P ), t ∈ (0, 1). Then:

(a) there exist u
(1)
0 , v

(1)
0 , u

(2)
0 , v

(2)
0 ∈ int(P ), r ∈ (0, 1) such that

r(v
(1)
0 , v

(2)
0 ) ≤̇ (u

(1)
0 , u

(2)
0 ) ≤̇ (v

(1)
0 , v

(2)
0 ),

u
(1)
0 ≤ A(u

(1)
0 , u

(2)
0 ) +B(u

(1)
0 , u

(2)
0 ) ≤ v(1)0 , u

(2)
0 ≤ C(u

(1)
0 , u

(2)
0 ) ≤ v(2)0 ;

(b) the operator equation

(x, y) = (A(x, y) +B(x, y), C(x, y))

has a unique solution (x∗, y∗) in int(P × P ). In addition, for any given

point (x0, y0) ∈ int(P × P ), if

(xn, yn) = (A(xn−1, yn−1) +B(xn−1, yn−1), C(xn−1, yn−1)), n = 1, 2, . . . ,

then ‖xn − x∗‖E → 0, ‖yn − y∗‖E → 0 as n→∞.

Theorem 3.8. Assume that all conditions of Theorem 3.5 hold. Then, for

any given λ, µ > 0, the operator equation (x, y) = (λA(x, y), µB(x, y)) has a
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unique solution (x∗λ,µ, y
∗
λ,µ) in int(P × P ). In addition, for any given point

(x0, y0) ∈ int(P × P ), if

(xn, yn) = (λA(xn−1, yn−1), µB(xn−1, yn−1)), n = 1, 2, . . . ,

then ‖xn − x∗λ,µ‖E → 0, ‖yn − y∗λ,µ‖E → 0 as n→∞.

Remark 3.9. As we know, the condition of upper-lower solutions is difficult

to verify for particular operators. So the condition was required directly in many

known results. Here we do not suppose the condition and we give the iterative

forms. Moreover, the existence of a unique solution for (1.1) has not been studied

in literature.

4. Applications

Many problems that arise from differential equations, integral equations, non-

linear matrix equations and boundary value problems, etc., have been studied via

various operator equations but none results were obtained via operator equation

(1.1). In this section, we apply the main result of Section 3 to study a nonlinear

system of fractional differential equations. Let Dα
0+ be the Riemann–Liouville

fractional derivative of order α > 0, defined by

Dα
0+y(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

0

(t− τ)n−α−1y(τ) dτ,

where n = [α] + 1, [α] denotes the integer part of the number α, see [20].

We study the existence-uniqueness of positive solutions for the following sys-

tem of nonlinear fractional differential equations:

(4.1)

−Dν1
0+y1(t) = f(t, y1(t), y2(t)),

−Dν2
0+y2(t) = g(t, y1(t), y2(t)),

where t ∈ (0, 1), ν1, ν2 ∈ (n − 1, n] for n > 3 and n ∈ N , subject to a couple of

boundary conditions

y
(i)
1 (0) = 0 = y

(i)
2 (0), 0 ≤ i ≤ n− 2,(4.2)

[Dα
0+y1(t)]t=1 = 0 = [Dα

0+y2(t)]t=1, 1 ≤ α ≤ n− 2.(4.3)

In the recent years, many fractional differential equations that arise from

physics, mechanics, chemistry, engineering and biological sciences (see [12], [17],

[19]) have been studied (see the papers [5], [11], [15], [20], [22], [24] and the

references therein). In many papers, the authors have investigated the existence

of positive solutions for nonlinear fractional differential equation boundary value

problems. In addition, the uniqueness of positive solutions for nonlinear frac-

tional differential equation boundary value problems has been considered by sev-

eral authors, see [25]–[30] for example. However, there are few papers concerned
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with the uniqueness of positive solutions for systems of nonlinear fractional dif-

ferential equations. In this section, we apply Theorem 3.1 to study the system of

nonlinear fractional differential equations (4.1) with boundary conditions (4.2)

and (4.3).

Lemma 4.1 (see [11]). If g ∈ C[0, 1], then the solution for the problem

−Dν
0+y(t) = g(t) with boundary conditions y(i)(0) = 0 = [Dα

0+y(t)]t=1, where

1 ≤ α ≤ n− 2 and 0 ≤ i ≤ n− 2, is

y(t) =

∫ 1

0

G(t, s)g(s) ds,

where

G(t, s) =


tν−1(1− s)ν−α−1 − (t− s)ν−1

Γ(ν)
, 0 ≤ s ≤ t ≤ 1,

tν−1(1− s)ν−α−1

Γ(ν)
, 0 ≤ t ≤ s,≤ 1,

is the Green function for this problem.

Lemma 4.2 (see [11], [28]). Let G be as given in the statement of Lemma 4.1.

Then:

(a) G is a continuous function on the unit square [0, 1]× [0, 1];

(b) G(t, s) ≥ 0 for every (t, s) ∈ [0, 1]× [0, 1] and, for t, s ∈ [0, 1],

[1− (1− s)α](1− s)ν−α−1tν−1 ≤ Γ(ν)G(t, s) ≤ (1− s)ν−α−1tν−1.

In the following, set E = C[0, 1], the Banach space of continuous functions

on [0, 1] with the norm ‖y‖ = max {|y(t)| : t ∈ [0, 1]}. Let P = {y ∈ C[0, 1] :

y(t) ≥ 0, t ∈ [0, 1]}. Then P is a normal cone with the normality constant 1. The

partial ordering defined by P is given by x ≤ y ⇔ x(t) ≤ y(t) for all t ∈ [0, 1].

Theorem 4.3. Assume that:

(D1) f, g ∈ C([0, 1]× [0,+∞)× [0,+∞), [0,+∞)) and f(t, 0, 0), g(t, 0, 0) 6≡ 0;

(D2) f(t, u1, v1) ≤ f(t, u2, v2), g(t, u1, v1) ≤ g(t, u2, v2), for any t ∈ [0, 1],

u2 ≥ u1 ≥ 0, v2 ≥ v1 ≥ 0;

(D3) for any λ ∈ (0, 1), there exist ϕi(λ) ∈ (λ, 1), i = 1, 2, such that

f(t, λu, λv) ≥ ϕ1(λ)f(t, u, v), g(t, λu, λv) ≥ ϕ2(λ)g(t, u, v)

for t ∈ [0, 1], u, v ∈ [0,+∞).

Then:

(a) there exist x
(1)
0 , y

(1)
0 ∈ Ptν1−1 , x

(2)
0 , y

(2)
0 ∈ Ptν2−1 and r ∈ (0, 1) such that

r(y
(1)
0 , y

(2)
0 ) ≤̇ (x

(1)
0 , x

(2)
0 ) ≤̇ (y

(1)
0 , y

(2)
0 ) and

x
(1)
0 (t) ≤

∫ 1

0

G1(t, s)f(s, x
(1)
0 (s), x

(2)
0 (s)) ds ≤ y(1)0 (s), t ∈ [0, 1],
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x
(2)
0 (t) ≤

∫ 1

0

G2(t, s)g(s, x
(1)
0 (s), x

(2)
0 (s)) ds ≤ y(2)0 (s), t ∈ [0, 1],

where Gi, i = 1, 2, are the Green functions of Lemma 4.1 with ν replaced

by νi, i = 1, 2;

(b) problem (4.1)–(4.3) has a unique positive solution (x∗, y∗) in P̃h0
, where

h0(t) = (tν1−1, tν2−1), t ∈ [0, 1];

(c) for any given point (x0, y0) ∈ P̃h0
, if

xn+1(t) =

∫ 1

0

G1(t, s)f(s, xn(s), yn(s)) ds, n = 1, 2, . . . ,

yn+1(t) =

∫ 1

0

G2(t, s)g(s, xn(s), yn(s)) ds, n = 1, 2, . . . ,

then xn(t)→ x∗(t), yn(t)→ y∗(t) as n→∞.

Proof. We work in the product space E × E = C[0, 1] × C[0, 1] with the

partial-order-I. Define two operators A,B : P × P → E by

A(x, y)(t) =

∫ 1

0

G1(t, s)f(s, x(s), y(s)) ds,

B(x, y)(t) =

∫ 1

0

G2(t, s)g(s, x(s), y(s)) ds,

where Gi, i = 1, 2, are the Green functions of Lemma 4.1 with ν replaced by

νi, i = 1, 2. From [11], we know that a pair of functions (x, y) ∈ E × E is a

solution of problem (4.1)–(4.3) if and only if (x, y) is a solution of the operator

equation (x, y) = (A(x, y), B(x, y)). From Lemma 4.2 and (D1), we know that

A,B : P × P → P . In the sequel, we check that A,B satisfy all assumptions of

Theorem 3.1.

Firstly, we prove that A,B are increasing. Indeed, for xi, yi ∈ P , i = 1, 2,

with x1 ≤ x2, y1 ≤ y2, we know that x1(t) ≤ x2(t), y1(t) ≤ y2(t), t ∈ [0, 1], and

by (D2) and Lemma 4.2,

A(x1, y1)(t) =

∫ 1

0

G1(t, s)f(s, x1(s), y1(s)) ds

≤
∫ 1

0

G1(t, s)f(s, x2(s), y2(s)) ds = A(x2, y2)(t),

B(x1, y1)(t) =

∫ 1

0

G2(t, s)g(s, x1(s), y1(s)) ds

≤
∫ 1

0

G2(t, s)g(s, x2(s), y2(s)) ds = B(x2, y2)(t).

That is, A(x1, y1) ≤ A(x2, y2) and B(x1, y1) ≤ B(x2, y2).
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Further, we prove that A,B satisfy condition (H1) of Theorem 3.1. For any

λ ∈ (0, 1) and x, y ∈ P , by (D3) we have

A(λx, λy)(t) =

∫ 1

0

G1(t, s)f(s, λx(s), λy(s)) ds

≥ ϕ1(λ)

∫ 1

0

G1(t, s)f(s, x(s), y(s)) ds = ϕ1(λ)A(x, y)(t),

B(λx, λy)(t) =

∫ 1

0

G2(t, s)g(s, λx(s), λy(s)) ds

≥ ϕ2(λ)

∫ 1

0

G2(t, s)g(s, x(s), y(s)) ds = ϕ2(λ)B(x, y)(t).

That is, A(λx, λy) ≥ ϕ1(λ)A(x, y), B(λx, λy) ≥ ϕ2(λ)B(x, y) for any λ ∈ (0, 1),

x, y ∈ P .

Let h0 = (h
(1)
0 , h

(2)
0 ), where h

(1)
0 (t) = tν1−1, h

(2)
0 (t) = tν2−1, t ∈ [0, 1]. Then

(h
(1)
0 , h

(2)
0 ) ∈ P̃h0 . Next we show that A(h

(1)
0 , h

(2)
0 ) ∈ P

h
(1)
0

, B(h
(1)
0 , h

(2)
0 ) ∈ P

h
(2)
0

.

On the one hand, from (D2) and Lemma 4.2, for any t ∈ [0, 1], we have

A(h
(1)
0 , h

(2)
0 )(t) =

∫ 1

0

G1(t, s)f(s, sν1−1, sν2−1) ds

≥ 1

Γ(ν1)
h
(1)
0 (t)

∫ 1

0

[1− (1− s)α](1− s)ν1−α−1f(s, 0, 0) ds.

On the other hand, also from (D2) and Lemma 4.2, for any t ∈ [0, 1], we obtain

A(h
(1)
0 , h

(2)
0 )(t) =

∫ 1

0

G1(t, s)f(s, sν1−1, sν2−1) ds

≤ 1

Γ(ν1)
h
(1)
0 (t)

∫ 1

0

(1− s)ν1−α−1f(s, 1, 1) ds.

From (D2), we have f(s, 1, 1) ≥ f(s, 0, 0) ≥ 0. Since f(t, 0, 0) 6≡ 0, we get

[1− (1− t)α](1− t)ν1−α−1f(t, 0, 0) 6≡ 0, (1− t)ν1−α−1f(t, 1, 1) 6≡ 0.

Note that ν1 − α− 1 > 0, so we have

l1 :=
1

Γ(ν1)

∫ 1

0

[1− (1− s)α](1− s)ν1−α−1f(s, 0, 0) ds > 0,

l2 :=
1

Γ(ν1)

∫ 1

0

(1− s)ν1−α−1f(s, 1, 1) ds > 0.

So l1h
(1)
0 (t) ≤ A(h

(1)
0 , h

(2)
0 )(t) ≤ l2h

(1)
0 (t), t ∈ [0, 1]; and hence A(h

(1)
0 , h

(2)
0 ) ∈

P
h
(1)
0

. Similarly, we can prove that B(h
(1)
0 , h

(2)
0 ) ∈ P

h
(2)
0

.

Finally, by Theorem 3.1, we have the following conclusions:
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(1) there exist x
(1)
0 , y

(1)
0 ∈ Ptν1−1 , x

(2)
0 , y

(2)
0 ∈ Ptν2−1 and r ∈ (0, 1) such that

r(y
(1)
0 , y

(2)
0 ) ≤̇ (x

(1)
0 , x

(2)
0 ) ≤̇ (y

(1)
0 , y

(2)
0 ),

x
(1)
0 ≤ A(x

(1)
0 , x

(2)
0 ) ≤ y(1)0 , x

(2)
0 ≤ B(x

(1)
0 , x

(2)
0 ) ≤ y(2)0 ,

that is

x
(1)
0 (t) ≤

∫ 1

0

G1(t, s)f(s, x
(1)
0 (s), x

(2)
0 (s)) ds ≤ y(1)0 (s), t ∈ [0, 1],

x
(2)
0 (t) ≤

∫ 1

0

G2(t, s)g(s, x
(1)
0 (s), x

(2)
0 (s)) ds ≤ y(2)0 (s), t ∈ [0, 1];

(2) the operator equation (x, y) = (A(x, y), B(x, y)) has a unique solution

(x∗, y∗) in P̃h0 , that is, problem (4.1)–(4.3) has a unique positive solution (x∗, y∗)

in P̃h0 ;

(3) for any (x0, y0) ∈ P̃h0 , if (xn, yn) = (A(xn−1, yn−1), B(xn−1, yn−1)),

n = 1, 2, . . ., then ‖xn − x∗‖E → 0, ‖yn − y∗‖E → 0 as n→∞. That is, for

xn+1(t) =

∫ 1

0

G1(t, s)f(s, xn(s), yn(s)) ds, n = 1, 2, . . . ,

yn+1(t) =

∫ 1

0

G2(t, s)g(s, xn(s), yn(s)) ds, n = 1, 2, . . . ,

we have xn(t)→ x∗(t), yn(t)→ y∗(t) as n→∞. �

Example 4.4. Let us consider the following system:

(4.4)

−D
7/2
0+ y1(t) = [y1(t)]τ1 + [y2(t)]τ1 + ψ1(t), t ∈ (0, 1),

−D10/3
0+ y2(t) = [y1(t)]τ2 + [y2(t)]τ2 + ψ2(t), t ∈ (0, 1),

subject to a couple of boundary conditions

y
(i)
1 (0) = 0 = y

(i)
2 (0), 0 ≤ i ≤ 2, ,(4.5)

[D
3/2
0+ y1(t)]t=1 = 0 = [D

3/2
0+ y2(t)]t=1,(4.6)

where τ1, τ2 ∈ (0, 1), ψ1, ψ2 : [0, 1]→ [0,+∞) are continuous with ψi 6≡ 0. Let

f(t, u, v) = uτ1 + vτ1 + ψ1(t), g(t, u, v) = uτ2 + vτ2 + ψ2(t).

Take n = 4, ν1 = 7/2, ν2 = 10/3, α = 3/2. Then ν1, ν2 ∈ (3, 4], α ∈ [0, 2].

Obviously, f, g ∈ C([0, 1]× [0,+∞)× [0,+∞), [0,+∞)) and

f(t, 0, 0) = ψ1(t), g(t, 0, 0) = ψ2(t) 6≡ 0.

Note that xτi , i = 1, 2, are increasing in [0,+∞), f(t, u, v), g(t, u, v) are increas-

ing in u, v for any t ∈ [0, 1]. Moreover, set ϕ1(λ) = λτ1 , ϕ2(λ) = λτ2 , λ ∈ (0, 1).

Then ϕ1(λ), ϕ2(λ) ∈ (λ, 1) and

f(t, λu, λv) = λτ1 [uτ1 + vτ1 ] + ψ1(t) ≥ λτ1 [uτ1 + vτ1 ] + λτ1ψ1(t) = λτ1f(t, u, v).
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Similarly, g(t, λu, λv) ≥ λτ2g(t, u, v) for t ∈ [0, 1], u, v ∈ [0,+∞). Hence, all

conditions of Theorem 4.3 are satisfied. Application of Theorem 4.3 implies

that problem (4.4)–(4.6) has a unique positive solution (x∗, y∗) in P̃h0
, where

h0(t) = (t5/2, t7/3), t ∈ [0, 1], and for any given point (x0, y0) ∈ P̃h0
, if

xn+1(t) =

∫ 1

0

G1(t, s) {[xn(s)]τ1 + [yn(s)]τ1 + ψ1(s)} ds, n = 1, 2, . . . ,

yn+1(t) =

∫ 1

0

G2(t, s) {[xn(s)]τ2 + [yn(s)]τ2 + ψ2(s)} ds, n = 1, 2, . . . ,

then xn(t)→ x∗(t), yn(t)→ y∗(t) as n→∞, where

G1(t, s) =


t5/2(1− s)− (t− s)5/2

Γ(7/2)
, 0 ≤ s ≤ t ≤ 1,

t5/2(1− s)
Γ(7/2)

, 0 ≤ t ≤ s ≤ 1,

G2(t, s) =


t7/3(1− s)5/6 − (t− s)7/3

Γ(10/3)
, 0 ≤ s ≤ t ≤ 1,

t7/3(1− s)5/6

Γ(10/3)
, 0 ≤ t ≤ s ≤ 1.

Remark 4.5. If in Example 4.4 we replace f, g by f ≡ Γ(7/2), g ≡ Γ(10/3),

then problem (4.4)–(4.6) has a unique solution (x∗, y∗), where x∗(t) = (1/2 −
2t/7)t5/2, y∗(t) = (6/11− 3t/10)t7/3, t ∈ [0, 1]. We can obtain that

3

14
t5/2 ≤ x∗(t) ≤ 1

2
t5/2,

27

110
t7/3 ≤ y∗(t) ≤ 6

11
t7/3, t ∈ [0, 1].

So the unique solution is a positive solution and (x∗, y∗) ∈ P̃(t5/2,t7/3).
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