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BOUNDEDNESS IN A TWO-SPECIES QUASI-LINEAR

CHEMOTAXIS SYSTEM WITH TWO CHEMICALS

Jiashan Zheng

Abstract. We consider the two-species quasi-linear chemotaxis system
generalizing the prototype

(0.1)


ut = ∇ · (D1(u)∇u)− χ1∇ · (S1(u)∇v), x ∈ Ω, t > 0,

0 = ∆v − v + w, x ∈ Ω, t > 0,

wt = ∇ · (D2(w)∇w)− χ2∇ · (S2(w)∇z), x ∈ Ω, t > 0,

0 = ∆z − z + u, x ∈ Ω, t > 0,

under homogeneous Neumann boundary conditions in a smooth bounded
domain Ω ⊆ RN (N ≥ 1). Here Di(u) = (u+1)mi−1, Si(u) = u(u+1)qi−1

(i = 1, 2), with parameters mi ≥ 1, qi > 0 and χ1, χ2 ∈ R. Hence, (0.1) al-
lows the interaction of attraction-repulsion, with attraction-attraction and
repulsion-repulsion type. It is proved that
(i) in the attraction-repulsion case χ1 < 0: if q1 < m1 + 2/N and q2 <
m2 + 2/N − (N − 2)+/N , then for any nonnegative smooth initial data,
there exists a unique global classical solution which is bounded;
(ii) in the doubly repulsive case χ1 = χ2 < 0: if q1 < m1 + 2/N −
(N − 2)+/N and q2 < m2 + 2/N − (N − 2)+/N , then for any nonnegative
smooth initial data, there exists a unique global classical solution which is
bounded;
(iii) in the attraction-attraction case χ1 = χ2 > 0: if q1 < 2/N + m1 − 1
and q2 < 2/N+m2−1, then for any nonnegative smooth initial data, there
exists a unique global classical solution which is bounded.

In particular, these results demonstrate that the circular chemotaxis mech-
anism underlying (0.1) goes along with essentially the same destabilizing

features as known for the quasi-linear chemotaxis system in the doubly

attractive case. These results generalize the results of Tao and Winkler
(Discrete Contin. Dyn. Syst. Ser. B. 20 (9) (2015), 3165–3183) and also

enlarge the parameter range q > 2/N − 1 (see Cieślak and Winkler (Non-

linearity 21 (2008), 1057–1076)).
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1. Introduction

In this paper, we consider the initial-boundary value problem for the two-

species quasi-linear chemotaxis system with two chemicals

(1.1)



ut = ∇ · (D1(u)∇u)− χ1∇ · (S1(u)∇v), x ∈ Ω, t > 0,

τvt = ∆v − v + w, x ∈ Ω, t > 0,

wt = ∇ · (D2(w)∇w)− χ2∇ · (S2(w)∇z), x ∈ Ω, t > 0,

τzt = ∆z − z + u, x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
=
∂w

∂ν
=
∂z

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), w(x, 0) = w0(x), x ∈ Ω,

where τ ∈ {0, 1}, Ω is a bounded domain in RN (N ≥ 1) with smooth boundary

∂Ω, ∆ =
N∑
i=1

∂2/∂x2
i , ∂/∂ν denotes the outward normal derivative on ∂Ω, χi ∈ R

(i = 1, 2) are parameters, which determine the attraction-repulsion case (χ1 = 1

and χ2 = −1), the repulsion-repulsion case (χ1 = χ2 = −1) and the attraction-

attraction case (χ1 = χ2 = 1), respectively.

The first species, with density denoted by u, adapts its motion according to a

chemical substance with concentration v, the latter being secreted by the second

species, mathematically represented through its density w. The individuals of

the second population themselves orient their movement along concentration

gradients of a second signal with density z which in turn is produced by the first

species. Moreover, we assume that

(1.2) Di, Si ∈ C2([0,∞)) and Si(u) ≥ 0 for all u ≥ 0,

satisfy

Di(u) ≥ CDi(u+ 1)mi−1 for all u ≥ 0,(1.3)

Si(u) ≤ CSiuqi for all u ≥ 0,(1.4)

with mi ≥ 1, qi, CDi , CSi > 0 (i = 1, 2).

System (1.1) may be viewed as a simplified variant of a fully parabolic two-

species chemotaxis model with two chemicals, involving slightly more general

crossdiffusion mechanisms, as it has been proposed in [22] to describe chemotaxis-

driven processes of cell sorting.

During the past decades, the chemotaxis models have become one of the best

study models in numerous biological and ecological contexts, and one of the main

issues is under what conditions the solutions of chemotaxis system blow up or

exist globally. In order to better understand problem (1.1), let us mention some

previous contributions in this direction. When w ≡ u and v ≡ z, PDE system
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(1.1) transforms into the classical chemotaxis system (one-species chemotaxis

system with one chemical),

(1.5)



ut = ∇ · (D(u)∇u)− χ∇ · (S(u)∇v), x ∈ Ω, t > 0,

τvt = ∆v + u− v, x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

where χ > 0. This model has been studied extensively on blow-up and global

existence (see e.g. Horstmann et al. [14], [15], Tao and Winkler [25], Ishida et

al. [16], Winkler [35], Cieślak and Stinner [6], [7]). In particular, with D(u) ≡ 1

and S(u) = u, (1.5) turns into the classical Keller–Segel system, which has

successfully been investigated up to now.

It is known that the model has only bounded solutions if N = 1 ([21]); if

N = 2, there exists a threshold value for the initial mass that decides whether

the solutions can blow up or exist globally in time ([11], [14], [33]); while in the

case N ≥ 3, there is no such threshold ([6], [33]–[35]). Especially, if S(u) = u,

Horstmann and Winkler ([15]) showed that the solutions of (1.5) are global and

bounded provided that S(u) ≤ c(u + 1)2/N−ε for all u ≥ 0 with some ε > 0

and c > 0; while, if S(u) ≥ c(u + 1)2/N+ε for all u ≥ 0 with ε > 0 and c > 0,

Ω ⊂ RN (N ≥ 2) is a ball, and some further technical conditions are satisfied,

then the solutions become unbounded in finite or infinite time. In [25], Tao and

Winkler proved that if S(u)/D(u) ≤ c(u+ 1)2/N+ε for all u ≥ 0 with some ε > 0

and c > 0, then the corresponding solutions are global and bounded provided

that D(u) satisfies some other technical conditions. We should point out that

Winkler and Djie ([36]) discussed the following initial-boundary value problem:

(1.6)



ut = ∇ · (D(u)∇u)− χ∇ · (S(u)∇v), x ∈ Ω, t > 0,

0 = ∆v −M + u, x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,∫
Ω

v(x, t) = 0, t > 0,

where M := (1/|Ω|)
∫

Ω
u0(x) dx, and the functions D(u) ∼= u−p and S(u) ∼= uq

as u ∼= ∞ with some p ≥ 0 and q ∈ R. They proved that if p + q < 2/N , then

all solutions of (1.6) are global in time and bounded. Conversely, if p+ q > 2/N

with q > 0, and Ω is a ball, then the corresponding solutions of (1.6) will blow

up in finite time.

However, to the best of our knowledge, few results are known for the two-

species chemotaxis system with two chemicals (see Bellomo et al. [2], Murray [20],
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Cantrell et al. [5], Hibbing et al. [12], Kelly et al. [18], Painter and Sherratt [23],

Biler et al. [3], Conca et al. [9], Espejo et al. [10], Lin et al. [19], Tello et al.

[24], [28]). In particular, in [3], [24], [28], the authors showed that two species

produce the same signal the gradient of which directs their movement. Let us

remark that in the recent paper [27], Tao and Winkler proved the boundedness

and blow-up to a two-species chemotaxis system with two chemicals

(1.7)



ut = ∆u− χ1∇ · (u∇v), x ∈ Ω, t > 0,

0 = ∆v − v + w, x ∈ Ω, t > 0,

wt = ∆u− χ2∇ · (w∇z), x ∈ Ω, t > 0,

0 = ∆z − z + u, x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
=
∂w

∂ν
=
∂z

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), w(x, 0) = w0(x), x ∈ Ω.

They found that the circular chemotaxis mechanism underlying (1.7) goes along

with essentially the same destabilizing features as known for the classical Keller–

Segel system in the doubly attractive case, but totally suppresses any blow-up

phenomenon when only one, or both, taxis directions are repulsive.

Motivated by the above works, the aim of present paper is to study the

chemotaxis system

(1.8)



ut = ∇ · (D1(u)∇u)− χ1∇ · (S1(u)∇v), x ∈ Ω, t > 0,

0 = ∆v − v + w, x ∈ Ω, t > 0,

wt = ∇ · (D2(w)∇w)− χ2∇ · (S2(w)∇z), x ∈ Ω, t > 0,

0 = ∆z − z + u, x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
=
∂w

∂ν
=
∂z

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), w(x, 0) = w0(x), x ∈ Ω,

where Di and Si (i = 1, 2) satisfy (1.2)–(1.4).

Theorem 1.1. Assume that the initial data u0, w0 are nonnegative functions

with (u0, w0) ∈ (C0(Ω))2 and Di, Si (i = 1, 2) satisfy (1.2)–(1.4). If one of the

following cases holds:

χ1 < 0, q1 < m1 +
2

N
and q2 < m2 +

2

N
− (N − 2)+

N
,

χ1 = χ2 < 0, q1 < m1 +
2

N
− (N − 2)+

N
and q2 < m2 +

2

N
− (N − 2)+

N
,

χ1 = χ2 > 0, q1 <
2

N
+m1 − 1 and q2 <

2

N
+m2 − 1,

then problem (1.8) possesses a unique and uniformly bounded global classical

solution (u, v, w, z) ∈ (C0(Ω× [0,∞)) ∩ C2,1((Ω× (0,∞)))4.
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Remark 1.2. (a) If D1(u) = S1(u) = (u + 1)m−1, D2(u) = S2(u) = u(u +

1)q−1, χ1 = χ2 =: χ > 0 and m = 1 − p, then Theorem 1.1 is consistent with

Corollary 3.3 of Tello and Winkler ([36]). The result concerning a chemotactic

collapse in the special case D1(u) ≡ D2(u) = (u + 1)−p and S1(u) ≡ S2(u) =

u(u + 1)−q for problem is optimal. Namely, in [36], Winkler and Djie proved

that if p+ q > 2/N with p ≥ 0 and q ∈ R, Ω ⊂ RN is a ball, then the solutions

will blow up.

(b) If D1(u) = S1(u) = (u + 1)m−1, D2(u) = S2(u) = u, χ1 = χ2 =: χ > 0

and m = 1 − p, then problem (1.8) possesses a unique and uniformly bounded

global classical solution, which is consistent with Theorem 2.4 of Cieślak and

Winkler ([8]). The result concerning a chemotactic collapse in the special case

D1(u) ≡ D2(u) = (u + 1)−p and S1(u) ≡ S2(u) = u for problem is optimal.

Indeed, in [8], the boundedness result was obtained for p < 2/N − 1, whereas for

each p > 2/N − 1 radially symmetric solutions were constructed that blow up in

finite time.

This paper is organized as follows. In Section 2, we recall some preliminary

results and prove the local existence of classical solution to (1.8). Section 3 is

devoted to prove the main results of this paper. More precisely, in this section,

we first give a suitable upper bound of the Lk(Ω) (k ≥ 1) norm of solutions to

problem (1.8). Next, the main results are proved by the standard Alikakos–Moser

iteration (see e.g. [1] and Lemma A.1 of [25]).

2. Preliminaries

Before proving our main results, we will give some preliminary lemmas, which

play a crucial role in getting the main results. As for the proofs of these lemmas,

here we will not repeat them again. Throughout this paper the Hilbert space

H = L2(Ω) is equipped with usual inner product ( · , · ) and norm | · |2.

Lemma 2.1 ([37]). Let θ ∈ (0, p). There exists a positive constant CGN such

that for all u ∈W 1,2(Ω) ∩ Lθ(Ω),

‖u‖Lp(Ω) ≤ CGN (|∇u|a2‖u‖1−aLθ(Ω)
+ ‖u‖Lθ(Ω)),

is valid with a = (N/θ −N/p)/(1−N/2 +N/θ) ∈ (0, 1).

The following lemma plays an important role in the proof of Theorem 1.1.

Lemma 2.2 ([29]). Let y(t) ≥ 0 be a solution of problem

(2.1)

y′(t) +Ayp ≤ B, t > 0,

y(0) = y0 ≥ 0,
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with A > 0, p > 0 and B ≥ 0. Then we have

y(t) ≤ max

{
y0,

(
B

A

)1/p}
, t > 0.

The following local existence result is rather standard, which is similar with

the reasoning in [8], [30], [31], [32], [36], [37]. We omit it here.

Lemma 2.3. Let the nonnegative pair of functions (u0, w0) ∈ (W 1,∞(Ω))2.

Then there exist a maximal existence time Tmax ∈ (0,∞] and a quadruple of

nonnegative functions (u, v, w, z) ∈ (C0(Ω × [0, Tmax)) ∩ C2,1(Ω × [0, Tmax)))4

classically solving (1.8) in Ω× [0, Tmax). Moreover, if Tmax < +∞, then

(2.2) ‖u( · , t)‖L∞(Ω) + ‖w( · , t)‖L∞(Ω) →∞ as t↗ Tmax.

3. A priori estimates

In this section, we are going to establish an iteration step to develop the main

ingredient of our results. Before proving the main results, we shall introduce

some notations. We can assume that CDi = CSi = 1 (i = 1, 2) without loss of

generality. The iteration depends on a series of a priori estimates.

Lemma 3.1 ([4]). Suppose f ∈ L1(Ω). Let ψ be a solution of the following

initial boundary value problem:−∆ψ + ψ = f, x ∈ Ω,

∂ψ

∂ν
= 0, x ∈ ∂Ω.

Then, for all l ∈ (1, N/(N − 1)), there exists a constant c > 0 such that

‖ψ( · , t)‖W 1,l ≤ c‖f‖L1(Ω) + c‖ψ‖L1(Ω) for all ψ ∈ C(Ω) fulfilling
∂ψ

∂ν
= 0.

Firstly, let us derive the following a priori boundness for the solutions of

model (1.8).

Lemma 3.2. Assume that (u, v, w, z) is the solution of (1.8). Then∫
Ω

u(x, t) dx =

∫
Ω

u0(x) dx for all t ∈ (0, Tmax)

and ∫
Ω

w(x, t) dx =

∫
Ω

w0(x) dx for all t ∈ (0, Tmax).

Applying Lemmas 3.1 and 3.2, we can get the following lemma:

Lemma 3.3. For all l ∈ (1, N/(N − 1)), there exists a constant c > 0 such

that

‖v( · , t)‖W 1,l ≤ c and ‖z( · , t)‖W 1,l ≤ c for all t ∈ (0, Tmax).
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Proof. By Lemma 3.1, for all l ∈ (1, N/(N − 1)), there exists a constant

c > 0 such that

‖ψ( · , t)‖W 1,l ≤ c‖f‖L1(Ω) + c‖ψ‖L1(Ω) for all ψ ∈ C(Ω) fulfilling
∂ψ

∂ν
= 0,

where f = −∆ψ + ψ. Hence

‖v( · , t)‖W 1,l ≤ c‖−∆v+v‖L1(Ω)+c‖v‖L1(Ω) for all v ∈ C(Ω) fulfilling
∂v

∂ν
= 0.

On the other hand, due to Lemma 3.2, we have

‖v( · , t)‖W 1,l ≤ c‖ −∆v + v‖L1(Ω) + c‖v‖L1(Ω) = c‖w‖L1(Ω) + c‖v‖L1(Ω) ≤ c.

By the same arguments as in the above proof, we get ‖w(·, t)‖W 1,l ≤ c. �

Next, we are in a position to improve the regularity of u in a higher Lp space.

Firstly, we give the following lemma which plays an important role in obtaining

the main results.

Lemma 3.4. Assume that χ2 < 0. Let (u, v, w, z) be a solution to (1.8) on

(0, Tmax). Then, for all k > 1, there exists a positive constant C such that

(3.1)

∫
Ω

(w(x, t) + 1)k dx ≤ C for all t ∈ (0, Tmax).

Proof. Without loss of generality, we may assume that χ2 = −1. Multi-

plying (1.8)3 by (w + 1)k−1, integrating over Ω, we get

(3.2)
1

k

d

dt
‖w + 1‖kLk(Ω) + (k − 1)

∫
Ω

D2(w)(w + 1)k−2|∇w|2 dx

= −(k − 1)

∫
Ω

S2(w)(w + 1)k−2∇w · ∇z dx.

Integrating by parts the first term on the right-hand side of (3.2), we obtain from

the second equation in (1.8)

−(k − 1)

∫
Ω

S2(w)(w + 1)k−2∇w · ∇z dx = −(k − 1)

∫
Ω

∇Ψ(w) · ∇z dx(3.3)

= (k − 1)

∫
Ω

Ψ(w)(z − w) dx ≤ (k − 1)

∫
Ω

Ψ(w)z dx

≤ (k − 1)

∫
Ω

(z + 1)

∫ w

0

S2(τ)(τ + 1)k−2 dτdx

≤ (k − 1)

k + q2 − 1

∫
Ω

(z + 1)(w + 1)k+q2−1 dx

≤ (k − 1)

k + q2 − 1

(∫
Ω

(w + 1)(k+q2−1)γ dx

)1/γ(∫
Ω

(z + 1)γ
′
dx

)1/γ′

,

where

(3.4) Ψ(w) =

∫ w

0

S2(τ)(τ + 1)k−2 dτ
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and 1/γ + 1/γ′ = 1.

Case 1. N ≤ 2, due to Lemma 3.3 and the Sobolev embedding theorem, we

have

(3.5)

(∫
Ω

(z + 1)γ
′
dx

)1/γ′

≤ C1‖z + 1‖W 1,s(Ω) ≤ C2,

where Ci (i = 1, 2) are independent of Tmax and γ′ < +∞. As q2 < m2 + 2/N ,

choose γ′ = 1 + 1/(m2 + 2/N − q2) > 1 in (3.5). Next, due to (3.3) and (3.5),

we have

−(k − 1)

∫
Ω

S2(w)(w + 1)k−2∇u · ∇z dx(3.6)

≤C3

(∫
Ω

(w + 1)(q2+k−1)γ dx

)1/γ

=C3

∥∥(w + 1)(k+m2−1)/2
∥∥2(q2+k−1)/(k+m2−1)

2(q2+k−1)γ/(k+m2−1)

≤C4

(∣∣∇(w + 1)(k+m2−1)/2
∣∣λ
2

∥∥(w + 1)(k+m2−10/2
∥∥1−λ

2/(k+m2−1)

+
∥∥(w + 1)(k+m2−1)/2

∥∥
2/(k+m2−1)

)2(q2+k−1)/(k+m2−1)

≤C5

(∣∣∇(w + 1)(k+m2−1)/2
∣∣2λ(q2+k−1)/(k+m2−1)

2
+ 1
)

with

λ =

N [k +m2 − 1]

2
− N [k +m2 − 1]

2(q2 + k − 1)γ

1− N

2
+
N [k +m2 − 1]

2

= [k +m2 − 1]

N

2
− N

2(q2 + k − 1)γ

1− N

2
+
N [k +m2 − 1]

2

in (0, 1). As q2 < m2 + 2/N , we have

2λ(q2 + k − 1)

k +m2 − 1
= 2(q2 + k − 1)

N

2
− N

2(q2 + k − 1)γ

1− N

2
+
N [k +m2 − 1]

2

(3.7)

=

N

(
q2 + k − 1− 1

γ

)
1− N

2
+
N [k +m2 − 1]

2

< 2.

Case 2. N ≥ 3, due to Lemma 3.3 and the Sobolev embedding theorem, we

have

(3.8)

(∫
Ω

(z + 1)γ
′
dx

)1/γ′

≤ C1‖z + 1‖W 1,s(Ω) ≤ C2,

where Ci (i = 1, 2) are independent of Tmax and γ′ < N/(N − 2).

As q2 < m2 + 4/N − 1, choose γ′ = N/(N − 2)− ε(m2 + 4/N − 1− q2) > 1

in (3.8), where ε > 0 is a small constant.
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Due to q2 < m2 + 4/N − 1, we have

2λ(q2 + k − 1)

k +m2 − 1
= 2(q2 + k − 1)

N

2
− N

2(q2 + k − 1)γ

1− N

2
+
N [k +m2 − 1]

2

(3.9)

=

N

(
q2 + k − 1− 1

γ

)
1− N

2
+
N [k +m2 − 1]

2

< 2.

Next, due to (3.3) and (3.8), we have

−(k − 1)

∫
Ω

S2(w)(w + 1)k−2∇w · ∇z dx(3.10)

≤C3

(∫
Ω

(w + 1)(q2+k−1)γ dx

)1/γ

=C3

∥∥(w + 1)(k+m2−1)/2
∥∥2(q2+k−1)/(k+m2−1)

2(q2+k−1)γ/(k+m2−1)

≤C4

(∣∣∇(w + 1)(k+m2−1)/2
∣∣λ
2

∥∥(w + 1)(k+m2−1)/2
∥∥1−λ

2/(k+m2−1)

+
∥∥(w + 1)(k+m2−1)/2

∥∥
2/(k+m2−1)

)2(q2+k−1)/(k+m2−1)

≤C5

(
|∇(w + 1)(k+m2−1)/2

∣∣2λ(q2+k−1)/(k+m2−1)

2
+ 1
)

with

λ =

N [k +m2 − 1]

2
− N [k +m2 − 1]

2(q2 + k − 1)γ

1− N

2
+
N [k +m2 − 1]

2

= [k +m2 − 1]

N

2
− N

2(q2 + k − 1)γ

1− N

2
+
N [k +m2 − 1]

2

in (0, 1). Thus, combining (3.6)–(3.9) and using the Young inequality, we have

that there exists a positive constant C6 such that

(3.11) − (k − 1)

∫
Ω

S2(w)(w + 1)k−2∇w · ∇z dx

≤ (k − 1)

2

∫
Ω

D2(w)(w + 1)k−2|∇w|2 dx+ C6,

which together with (3.2) implies that

(3.12)
1

k

d

dt
‖w + 1‖kLk(Ω) +

(k − 1)

2

∫
Ω

D2(w)(w + 1)k−2|∇w|2 dx ≤ C7,

where C7 is a positive constant. Employing the Hölder inequality to the second

term on the left-hand side of (3.12) and using Lemma 2.2, we obtain the desired

results. �
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Lemma 3.5. Let (u, v, w, z) be a solution to (1.8) on (0, Tmax). Then for any

k > 1, there exists a positive constant C such that

(3.13)

∫
Ω

(u(x, t) + 1)k dx ≤ C for all t ∈ (0, Tmax).

Proof. Multiplying (1.8)1 by (u+ 1)k−1, integrating over Ω, we get

(3.14)
1

k

d

dt
‖u+ 1‖kLk(Ω) + (k − 1)

∫
Ω

D1(u)(u+ 1)k−2|∇u|2 dx

= (k − 1)χ1

∫
Ω

S1(u)(u+ 1)k−2∇u · ∇v dx.

Integrating by parts to the first term on the right-hand side of (3.14), we obtain

from the second equation in (1.8)

(k − 1)χ1

∫
Ω

S1(u)(u+ 1)k−2∇u · ∇v dx(3.15)

= (k − 1)χ1

∫
Ω

∇Ψ̃(u) · ∇v dx

=−(k − 1)χ1

∫
Ω

Ψ̃(u)(v − w) dx ≤ (k − 1)χ1

∫
Ω

Ψ̃(u)w dx

≤ (k − 1)χ1

∫
Ω

(w + 1)

∫ u

0

S1(τ)(τ + 1)k−2 dτdx

≤ (k − 1)

k + q1 − 1
χ1

∫
Ω

(w + 1)(u+ 1)k+q1−1 dx

≤ (k − 1)

k + q1 − 1
χ1

(∫
Ω

(u+ 1)(k+q1−1)γ dx

)1/γ(∫
Ω

(w + 1)γ
′
dx

)1/γ′

,

where

(3.16) Ψ̃(u) =

∫ u

0

S1(τ)(τ + 1)k−2 dτ

and 1/γ + 1/γ′ = 1. On the other hand, due to Lemma 3.4, we have

(3.17)

(∫
Ω

(w + 1)γ
′
dx

)1/γ′

≤ C1 for all γ′ > 1.

By q1 < m1 + 2/N , choosing γ′ = 1 + 1/(m1 + 2/N − q1) > 1 in (3.17) and from

(3.15), we have

(k − 1)χ1

∫
Ω

S1(u)(u+ 1)k−2∇u · ∇v dx(3.18)

≤C2

(∫
Ω

(u+ 1)(k+q1−1)γ dx

)1/γ

=C2

∥∥(u+ 1)(k+m1−1)/2
∥∥2(q1+k−1)/(k+m1−1)

2(q1+k−1)γ/(k+m1−1)

≤C3

(∣∣∇(u+ 1)(k+m1−1)/2
∣∣λ
2

∥∥(u+ 1)(k+m1−1)/2
∥∥1−λ

2/(k+m1−1)
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+
∥∥(u+ 1)(k+m1−1)/2

∥∥
2/k+m1−1

)2(q1+k−1)/(k+m1−1)

≤C4

(
|∇(u+ 1)(k+m1−1)/2

∣∣2λ(q1+k−1)/(k+m1−1)

2
+ 1
)

with

λ =

N [k +m1 − 1]

2
− N [k +m1 − 1]

2(q1 + k − 1)γ

1− N

2
+
N [k +m1 − 1]

2

= [k +m1 − 1]

N

2
− N

2(q1 + k − 1)γ

1− N

2
+
N [k +m1 − 1]

2

in (0, 1). Since q1 < m1 + 2/N , we have

2λ(q1 + k − 1)

k +m1 − 1
= 2(q1 + k − 1)

N

2
− N

2(q1 + k − 1)γ

1− N

2
+
N [k +m1 − 1]

2

(3.19)

=

N

(
q1 + k − 1− 1

γ

)
1− N

2
+
N [k +m1 − 1]

2

< 2.

Thus, combining (3.18) with (3.19) and using the Young inequality, we have that

there exists a positive constant C5 such that

(3.20) (k − 1)χ1

∫
Ω

S1(u)(u+ 1)k−2∇u · ∇v dx

≤ (k − 1)

2

∫
Ω

D1(u)(u+ 1)k−2|∇u|2 dx+ C5,

which together with (3.2) implies that

(3.21)
1

k

d

dt
‖u+ 1‖kLk(Ω) +

(k − 1)

2

∫
Ω

D1(u)(u+ 1)k−2|∇u|2 dx ≤ C6,

where C6 is a positive constant. Employing the Hölder inequality to the second

term on the left-hand side of (3.21) and using Lemma 2.2, we obtain the desired

results. �

Lemma 3.6. Assume that χ1, χ2 > 0,

(3.22) q1 <
2

N
+m1 − 1 and q2 <

2

N
+m2 − 1.

Let (u, v, w, z) be a solution to (1.8) on (0, Tmax). Then there exist positive

constants C and γ0 such that

(3.23)

∫
Ω

(u(x, t) + 1)k dx+

∫
Ω

(w(x, t) + 1)k dx ≤ C

for all t ∈ (0, Tmax) and k ∈ (1, γ0].
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Proof. Firstly, due to (3.22) there exists

γ1 ∈
(

1, 1 + min

{
2/N +m1 − 1− q1

q1
,

2/N +m2 − 1− q2

q2
,

2

(N − 2)+
,

1

N

})
,

such that

(3.24) γ1q1 <
2

N
+m1 − 1 and γ1q2 <

2

N
+m2 − 1.

Hence, it then follows from qi > 0 (i = 1, 2) that there exists γ0 > max {N/2,

γ1/(γ1 − 1)− q1, γ1/(γ1 − 1)− q2} such that

max

{
γ1(γ0 + q1 − 1),

γ1

γ1 − 1

}
= γ1(γ0 + q1 − 1) < γ0 +

2

N
+m1 − 1,(3.25)

max

{
γ1(γ0 + q2 − 1),

γ1

γ1 − 1

}
= γ1(γ0 + q2 − 1) < γ0 +

2

N
+m2 − 1.(3.26)

Multiplying (1.8)1 and (1.8)3 by (u + 1)k−1 and (w + 1)k−1, respectively, and

integrating over Ω, we get

(3.27)
1

k

d

dt
‖u+ 1‖kLk(Ω) + (k − 1)

∫
Ω

D1(u)(u+ 1)k−2|∇u|2 dx

= (k − 1)χ1

∫
Ω

S1(u)(u+ 1)k−2∇u · ∇v dx,

(3.28)
1

k

d

dt
‖w + 1‖kLk(Ω) + (k − 1)

∫
Ω

D2(w)(w + 1)k−2|∇w|2 dx

= (k − 1)χ2

∫
Ω

S2(w)(w + 1)k−2∇w · ∇z dx.

Integrating by parts the first term on the right-hand side of (3.27) and (3.28),

we obtain from the second and the fourth equation in (1.8)

(3.29) (k − 1)χ1

∫
Ω

S1(u)(u+ 1)k−2∇u · ∇v dx

≤ (k − 1)

k + q1 − 1
χ1

∫
Ω

(w + 1)(u+ 1)k+q1−1 dx,

(3.30) (k − 1)χ2

∫
Ω

S2(w)(w + 1)k−2∇w · ∇z dx

≤ (k − 1)

k + q2 − 1
χ2

∫
Ω

(u+ 1)(w + 1)k+q2−1 dx.

Hence, by the Young inequality and (3.25)–(3.26), we have

(k − 1)χ1

∫
Ω

S1(u)(u+ 1)k−2∇u · ∇v dx(3.31)

+ (k − 1)χ2

∫
Ω

S2(w)(w + 1)k−2∇w · ∇z dx
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≤C1

∫
Ω

(
(u+ 1)k+q1−1(w + 1) + (u+ 1)(w + 1)k+q2−1

)
dx

≤C2

(∫
Ω

(u+ 1)γ1(k+q1−1) + (w + 1)γ
′
1 dx

+

∫
Ω

(w + 1)γ1(k+q2−1) + (u+ 1)γ
′
1 dx

)
≤C3(

∫
Ω

(u+ 1)α1 dx+

∫
Ω

(w + 1)α2 dx),

where

(3.32) α1 = γ1(k + q1 − 1), α2 = γ1(k + q2 − 1),
1

γ1
+

1

γ′1
= 1.

and Ci (i = 1, 2, 3) are independent of Tmax and k. On the other hand, due to

Lemma 2.1, we have

(k − 1)χ1

∫
Ω

S1(u)(u+ 1)k−2∇u · ∇v dx(3.33)

+ (k − 1)χ2

∫
Ω

S2(w)(w + 1)k−2∇w · ∇z dx

≤C3

∫
Ω

(u+ 1)α1 dx+ C3

∫
Ω

(w + 1)α2 dx

=C3‖u+ 1‖α1
α1

+ C3‖w + 1‖α2
α2

=C3

∥∥(u+ 1)(k+m1−1)/2
∥∥2α1/(k+m1−1)

2α1/(k+m1−1)

+ C3

∥∥(w + 1)(k+m2−1)/2
∥∥2α2/(k+m2−1)

(2α2)/(k+m2−1)

≤C4

(∣∣∇(u+ 1)(k+m1−1)/2
∣∣λ
2

∥∥(u+ 1)(k+m1−1)/2
∥∥1−λ

2/(k+m1−1)

+
∥∥(u+ 1)(k+m1−1)/2

∥∥
2/(k+m1−1)

)2α1/(k+m1−1)

+ C5

(∣∣∇(w + 1)k+m2−1/2
∣∣µ
2

∥∥(w + 1)(k+m2−1)/2
∥∥1−µ

2/(k+m2−1)

+
∥∥(w + 1)(k+m2−1)/2

∥∥
2/(k+m2−1)

)2α2/(k+m2−1)

≤C6

(∣∣∇(u+ 1)(k+m1−1)/2
∣∣2λα1/(k+m1−1)

2
+ 1
)

+ C7

(∣∣∇(w + 1)(k+m2−1)/2
∣∣2µα2/(k+m2−1)

2
+ 1
)

with

λ =

N [k +m1 − 1]

2
− N [k +m1 − 1]

2α1

1− N

2
+
N [k +m1 − 1]

2

= [k +m1 − 1]

N

2
− N

2α1

1− N

2
+
N [k +m1 − 1]

2
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in (0, 1) and

µ =

N [k +m2 − 1]

2
− N [k +m2 − 1]

2α2

1− N

2
+
N [k +m2 − 1]

2

= [k +m2 − 1]

N

2
− N

2α2

1− N

2
+
N [k +m2 − 1]

2

in (0, 1). By (3.25) and (3.26) and k ≤ γ0, we have

2λα1

k +m1 − 1
= 2α1

N

2
− N

2α1

1− N

2
+
N [k +m1 − 1]

2

(3.34)

=
N(α1 − 1)

1− N

2
+
N [k +m1 − 1]

2

< 2

and

2λα2

k +m2 − 1
= 2α2

N

2
− N

2α2

1− N

2
+
N [k +m2 − 1]

2

(3.35)

=
N(α2 − 1)

1− N

2
+
N [k +m2 − 1]

2

< 2.

Thus, combining (3.33)–(3.35) and using the Young inequality, we have that

there exists a positive constant C7 such that

(k − 1)χ1

∫
Ω

S1(u)(u+ 1)k−2∇u · ∇v dx(3.36)

+ (k − 1)χ2

∫
Ω

S2(w)(w + 1)k−2∇w · ∇z dx

≤ (k − 1)

2

∫
Ω

D1(u)(u+ 1)k−2|∇u|2 dx

+
(k − 1)

2

∫
Ω

D2(w)(w + 1)k−2|∇w|2 dx+ C7,

which together with (3.27) and (3.28) implies that

1

k

d

dt

(
‖u+ 1‖kLk(Ω) + ‖w + 1‖kLk(Ω)

)
(3.37)

+
(k − 1)

2

∫
Ω

D1(u)(u+ 1)k−2|∇u|2 dx

+
(k − 1)

2

∫
Ω

D2(w)(w + 1)k−2|∇w|2 dx ≤ C8,

where C8 is a positive constant.
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Since ∫
Ω

D1(u)(u+ 1)k−2|∇u|2 dx ≥
∫

Ω

∣∣∇(u+ 1)(m1+k−1)/2
∣∣2 dx

≥C9

∫
Ω

∣∣(u+ 1)(m1+k−1)/2
∣∣2 dx

and ∫
Ω

D2(w)(w + 1)k−2|∇w|2 dx ≥
∫

Ω

∣∣∇(w + 1)(m2+k−1)/2
∣∣2 dx

≥C10

∫
Ω

∣∣(w + 1)(m2+k−1)/2
∣∣2 dx,

letting

y :=

∫
Ω

(u+ 1)k dx+

∫
Ω

(w + 1)k dx

in (3.37), we get

d

dt
y(t) + C11y

h(t) ≤ C12 for all t ∈ (0, Tmax)

with some positive constant h. Thus a standard ODE comparison argument

implies boundedness of y(t) for all t ∈ (0, Tmax). The proof of Lemma 3.6 is

complete. �

A straightforward adaptation of the well-established Moser-type iteration

procedure ([1] or Lemma A.1 of [25]) allows us to formulate a general condition

which is sufficient for the boundedness of u and w.

Lemma 3.7. Assume that χ1, χ2 > 0 and (3.25)–(3.26) hold. Moreover,

suppose that the solutions of (1.8) fulfill

(3.38) sup
t∈(0,Tmax)

‖1 + u( · , t)‖Lk(Ω) + sup
t∈(0,Tmax)

‖1 + w( · , t)‖Lk(Ω) <∞

with some k > 1 satisfying k > max {N/2, γ1/(γ1 − 1) − q1, γ1/(γ1 − 1) − q2},
where

γ1 = 1 +
1

2k
min

{
2/N +m1 − 1− q1

q1
,

2/N +m2 − 1− q1

q2
,

2

(N − 2)+
,

1

N

}
.

Then there exists C > 0 such that

(3.39) ‖u( · , t)‖L∞(Ω) + ‖w( · , t)‖L∞(Ω) ≤ C for all t ∈ (0, Tmax).

Proof. Firstly, according to (3.38) we can pick k0 ≥ max {N/2, γ1/(γ1 − 1)

−q1, γ1/(γ1 − 1)− q2} such that

(3.40)

∫
Ω

(u+ 1)k0(x, t) dx+

∫
Ω

(w + 1)k0(x, t) dx ≤ C0 for all t ∈ (0, Tmax)
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with some C0 > 0. Now, we may invoke Lemma A.1 in [25] which by means

of a Moser-type iteration applied to the first and the third equation in (1.8)

establishes

(3.41) ‖u( · , t)‖L∞(Ω) + ‖w( · , t)‖L∞(Ω) ≤ C for all t ∈ (0,∞).

The proof of Lemma 3.7 is complete. �

Collecting Lemmas 3.4–3.7, we can prove Theorem 1.1.

Proof of Theorem 1.1. Theorem 1.1 will be proved if we can show that

Tmax = ∞. Suppose on the contrary that Tmax < ∞. In view of Lemmas 3.4–

3.7, ‖u( · , t)‖L∞(Ω) ≤ C and ‖w( · , t)‖L∞(Ω) ≤ C for all t ∈ (0, Tmax), where the

constant C is independent of Tmax. This contradicts with Lemma 2.3. Hence

the classical solution (u, v, w, z) of (1.8) is global in time and bounded. �
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[8] T. Cieślak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis,

Nonlinearity 21 (2008), 1057–1076.

[9] C. Conca, E.E. Espejo and K. Vilches, Global existence and blow-up for a two species

Keller–Segel model for chemotaxis, European J. Appl. Math. 22 (2010), 553–580.

[10] E.E. Espejo, A. Stevens and J.J.L. Velázquez, Simultaneous finite time blow-up in

a two-species model for chemotaxis, Analysis (Munich) 29 (2009), 317–338.

[11] M. Herrero and J. Velázquez, A blowup mechanism for a chemotaxis model, Ann.

Scuola Norm. Sup. 24 (1997), 663–683.



Boundedness in a Two-Species Quasi-Linear Chemotaxis System 479

[12] M. Hibbing, C. Fuqua, M.R. Parsek and S.B. Peterson, Bacterial competition: sur-

viving and thriving in the microbial jungle, Nature Reviews Microbiology 8 (1) (2010),

15–25.

[13] D. Horstmann, From 1970 until present: the Keller–Segel model in chemotaxis and

its consequences, I. Jahresberichte der Deutschen Mathematiker-Vereinigung 105 (2003),

103–165.

[14] D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry as-

sumptions, Eur. J. Appl. Math. 12 (2001), 159–177.

[15] D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system,

J. Differential Equations 215 (2005), 52–107.

[16] S. Ishida, K. Seki and T. Yokota, Boundedness in quasilinear Keller–Segel systems of

parabolic–parabolic type on non-convex bounded domains, J. Differential Equations 256

(2014), 2993–3010.

[17] E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an instability,

J. Theor. Biol. 26 (1970), 399–415.

[18] F. Kelly, K. Dapsis and D. Lauffenburger, Effect of bacterial chemotaxis on dynamics

of microbial competition, Microbial Ecology 16 (1988), 115–131.

[19] K. Lin, C. Mu and L. Wang, Boundedness in a two-species chemotaxis system, Models

Methods Appl. Sci., DOI: 10.1002/mma.3429.

[20] J. Murray, Mathematical Biology: II. Spatial Models and Biomedical Applications

(3rd edn.), Springer, New York, 2003.

[21] K. Osaki and A. Yagi, Finite dimensional attractors for one-dimensional Keller–Segel

equations, Funkc. Ekvac. 44 (2001), 441–469.

[22] K. Painter, Continuous models for cell migration in tissues and applications to cell

sorting via differential chemotaxis, Bull. Math. Biol. 71 (2009), 1117–1147.

[23] K. Painter and J. Sherratt, Modelling the movement of interacting cell populations,

J. Theor. Biol. 225 (2003), 327–339.

[24] C. Stinner, J. Tello and M. Winkler, Competitive exclusion in a two-species chemo-

taxis model, J. Math. Biol. 68 (2014), 1607–1626.

[25] Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic–parabolic Keller–Segel

system with subcritical sensitivity, J. Differential Equations 252 (2012), 692–715.

[26] , Energy-type estimates and global solvability in a two-dimensional chemotaxis–

haptotaxis model with remodeling of non-diffusible attractant, J. Differential Equations

257 (2014), 784–815.

[27] , Boundedness vs. blow-up in a two-species chemotaxis system with two chemicals,

Discrete Contin. Dyn. Syst. Ser. B. 20 (9) (2015), 3165–3183.

[28] J. Tello and M. Winkler, Stabilization in a two-species chemotaxis system with a lo-

gistic source, Nonlinearity 25 (2012), 1413–1425.

[29] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics (2nd

edn.), Applied Mathematical Sciences, Springer, New York, 1997.

[30] L. Wang, Y. Li and C. Mu, Boundedness in a parabolic–parabolic quasilinear chemotaxis

system with logistic source, Discrete Contin. Dyn. Syst. Ser. A. 34 (2014), 789–802.

[31] L. Wang, C. Mu and P. Zheng, On a quasilinear parabolic–elliptic chemotaxis system

with logistic source, J. Differential Equations 256 (2014), 1847–1872.

[32] Z. Wang, M. Winkler and D. Wrzosek, Global regularity vs. infinite-time singularity

formation in a chemotaxis model with volume-filling effect and degenerate diffusion, SIAM

J. Math. Anal. 44 (2012), 3502–3525.



480 J. Zheng

[33] M. Winkler, Does a volume-filling effect always prevent chemotactic collapse, Math.

Methods Appl. Sci. 33 (2010), 12–24.

[34] , Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel

model, J. Differential Equations 248 (2010), 2889–2905.

[35] , Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel

system, J. Math. Pures Appl. 100 (2013), 748–767.

[36] M. Winkler and K. Djie, Boundedness and finite-time collapse in a chemotaxis system

with volume-filling effect, Nonlinear Anal. 72 (2010), 1044–1064.

[37] J. Zheng, Boundedness of solutions to a quasilinear parabolic–elliptic Keller–Segel system

with logistic source, J. Differential Equations 259 (1) (2015), 120–140.

Manuscript received December 2, 2015

accepted April 17, 2016

Jiashan Zheng
School of Mathematics and Statistics Science

Ludong University

Yantai 264025, P.R. CHINA

E-mail address: zhengjiashan2008@163.com

TMNA : Volume 49 – 2017 – No 2


