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MULTI-BUMP SOLUTIONS

FOR SINGULARLY PERTURBED SCHRÖDINGER EQUATIONS

IN R2 WITH GENERAL NONLINEARITIES

Daniele Cassani — João Marcos do Ó — Jianjun Zhang

Abstract. We are concerned with the following equation:

−ε2∆u + V (x)u = f(u), u(x) > 0 in R2.

By a variational approach, we construct a solution uε which concentrates,
as ε → 0, around arbitrarily given isolated local minima of the confining

potential V : here the nonlinearity f has a quite general Moser’s critical

growth, as in particular we do not require the monotonicity of f(s)/s nor

the Ambrosetti–Rabinowitz condition.

1. Introduction

We are concerned with the existence of positive solutions to the ε-perturbed

Schrödinger equation

(1.1) −ε2∆u+ V (x)u = f(u), u > 0, x ∈ R2,

where ε > 0 and V ∈ C(R2,R). In the past decades, a lot of literature has been

devoted to bound states of (1.1) in RN . From the physical point of view, these

solutions represent semi-classical states for small ε > 0, living on the interface

between classical and quantum mechanics: for the physics aspects and related
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topics we refer to [4], [7], [14]–[16], [26], [28], [39]–[41], and references therein.

In the pioneering work [33], Floer and Weinstein considered problem (1.1) in

dimension one and f(s) = s3 and constructed a single-peak solution around any

given non-degenerate critical point of V . Motivated by [33], Oh [42] obtained

a similar result in the higher dimensional case. A key ingredient of [33] and

[42] is a reduction method and a non-degeneracy condition for ground states

to the limiting problem with constant potential. To overcome non-degeneracy

conditions, Rabinowitz [43] exploited the variational approach which has be-

come an important tool in studying semiclassical states of (1.1). In more recent

years, there have been further developments to cover more general nonlinearities,

see [48], [24]–[27]. In [24], Del Pino and Felmer used a penalization technique

to construct a single-peak solution around a local minimum point of V , with

some restrictions on the nonlinearity such as the monotonicity of f(t)/t which

is required to be nondecreasing in (0,∞) as well as the Ambrosetti–Rabinowitz

condition. More recently, Byeon and Jeanjean [8] introduced a new penalization

approach to show that the Berestycki–Lions conditions, see [5], are almost opti-

mal to get spike solutions around the local minima of V . Closely related results

can be found in [12], [13], [22], [49]. In [20], with the Berestycki–Lions conditions,

Cingolani, Jeanjean and Tanaka considered the multiplicity of solutions to (1.1)

concentrating around the local minima of V in RN for N ≥ 3. Moreover, the

authors established the number of solutions related to the topology of the set of

minima of V . An interesting class of solutions to (1.1) are semi-classical states

which have a spike shape concentrated around some point in R2, as ε → 0. In

this paper, we focus on localized bound states of (1.1), namely solutions which

develop multi bumps around the local minima of V . In the sequel, we assume

that V satisfies the following assumptions:

(V1) inf
x∈R2

V (x) = V0 > 0;

(V2) there exist k bounded disjoint open sets Oi, i = 1, . . . , k, such that

0 < mi = inf
x∈Oi

V (x) < min
x∈∂Oi

V (x), i = 1, . . . , k.

In 2008, Byeon, Jeanjean and Tanaka [11] constructed a single-spike solu-

tion of (1.1) exploiting the Berestycki–Lions conditions. Precisely, the authors

assumed k = 1 and f ∈ C(R+,R+) satisfies:

(f1) lim
t→0

f(t)/t = 0;

(f2) for any α > 0, there exists Cα > 0 such that |f(t)| ≤ Cα exp(αt2) for

t ≥ 0;

(f3) there exists T > 0 such that T 2m < 2F (T ), where m = m1 and F (s) :=∫ s
0
f(t) dt.
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Theorem A (Theorem 1 in [11]). Suppose that (V1)–(V2) with k = 1, m1 =

m, Oi = O and (f1)–(f3) hold. Then for sufficiently small ε > 0, (1.1) admits

a positive solution uε such that

(a) there exists a maximum point xε of uε such that lim
ε→0

dist(xε,M) = 0,

where M := {x ∈ O : V (x) = m} and (up to a subsequence) Uε(x) ≡
uε(εx+ xε) converges uniformly to a least energy solution of

(1.2) −∆U +mU = f(U), U > 0, U ∈ H1(R2);

(b) uε(x) ≤ C exp(−c|x− xε|/ε) for some c, C > 0.

Hypotheses (f1)–(f3) are the so-called Berestycki–Lions conditions (see [5],

[6], [8]), which are used to guarantee the existence of ground states to (1.2). In

[9], Byeon and Jeanjean considered problem (1.1) in RN for N ≥ 3 and for any

k ∈ N+, obtained k-bumps solutions provided (V1)–(V2) and the Berestycki–

Lions conditions hold. In the same spirit of [9], [8], it is natural to wonder

whether the results of Theorem A may hold for any k ∈ N+: the first purpose

of this paper is to give an affirmative answer to this open problem.

Let k ∈ N+ and for any i ∈ {1, . . . , k}, Mi := {x ∈ Oi : V (x) = mi}.
Without loss of generality and for the sake of simplicity we may assume V0 = 1.

The first result of this paper is the following

Theorem 1.1. Suppose that (V1)–(V2) and (f1)–(f3) hold. Then for suffi-

ciently small ε > 0, (1.1) admits a positive solution uε, which has the following

properties:

(a) there exist k local maxima xiε ∈ Oi, i = 1, . . . , k, of uε such that

lim
ε→0

max
1≤i≤k

dist(xiε,Mi) = 0,

and Uε(x) ≡ uε(εx + xiε) converges (up to a subsequence) uniformly to

a least energy solution of

(1.3) −∆U +miU = f(U), U > 0, U ∈ H1(R2);

(b) uε(x) ≤ C exp
(
− (c/ε) min

1≤i≤k
|x− xiε|

)
for some c, C > 0.

Condition (f2) casts problem (1.1) in the subcritical setting with respect to

the Moser critical growth, see [17], [29], [1], [44] and more recently [18], [35]. The

understanding of the limit problem (1.3) is important since it plays a crucial role

in the study of semiclassical states of (1.1). In [3], Alves et al. considered the

ground state of (1.3) in the Moser critical case, namely when in addition to (f1)

one has the following growth condition:

(f4) lim
s→+∞

f(s)exp(−αs2) =

0 for all α > 4π,

+∞ for all α < 4π.
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By a constraint minimization variational approach, it was proved in [3] that (1.3)

admits a ground state solution provided (f1), (f4) and the following hold:

(f5) there exist λ > 0 and p > 2 such that f(t) ≥ λtp−1 for t ≥ 0,

provided λ is sufficiently large. More recently, by means of a truncation argu-

ment, the second and third named authors extended Theorem A to the Moser

critical case [50]. In [45], Ruf and Sani obtained the result of [3] by replacing

condition (f5) with the following more natural assumption:

(f5)’ lim
|t|→+∞

tf(t)/ exp (4πt2) ≥ β0, where β0 > 0 is sufficiently large.

It is natural to wonder whether Theorem 1.1 holds in the case when the nonlin-

earity is in the Moser critical growth range: our second goal is to give a positive

answer to this question.

The second result of this paper reads as follows

Theorem 1.2. Suppose that (V1)–(V2), (f1) and (f4)–(f5)’ hold with

(1.4) β0 >
e

2π
max

1≤i≤k
mi.

Then for ε > 0 sufficiently small, (1.1) admits a positive solution vε, which

satisfies:

(a) there exist k local maximum points xiε ∈ Oi of vε such that

lim
ε→0

max
1≤i≤k

dist(xiε,Mi) = 0,

and wε(x) ≡ vε(εx + xiε) converges (up to a subsequence) uniformly to

a least energy solution of

(1.5) −∆u+miu = f(u), u > 0, u ∈ H1(R2);

(b) vε(x) ≤ C exp
(
− (c/ε) min

1≤i≤k
|x− xiε|

)
for some c, C > 0.

2. Proof of Theorem 1.1

In this section, in the spirit of Byeon and Jeanjean [9] (see also [8]), we next

prove Theorem 1.1. Since we are interested in the positive solutions of (1.1),

from now on we may assume f(t) = 0 for t ≤ 0. By denoting uε(x) = u(εx) and

Vε(x) = V (εx), (1.1) is equivalent to

(2.1) −∆uε + Vε(x)uε = f(uε), uε > 0, uε ∈ H1(R2).

Let Hε be the completion of C∞0 (R2) with respect to the norm

‖u‖ε =

(∫
R2

(|∇u|2 + Vεu
2) dx

)1/2

.

For any set S ⊂ R2 and ε, δ > 0, we define

Sε = {x ∈ R2 : εx ∈ S} and Sδ = {x ∈ R2 : dist(x, S) ≤ δ}.
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Next we penalize the nonlinearity f of Del Pino and Felmer [24]. Let

M =

k⋃
i=1

Mi and O =

k⋃
i=1

Oi.

By (f1) there exists a > 0 such that f(t) ≤ 1/2t for t ∈ (0, a). For x ∈ R2, t ∈ R,

let

g(x, t) = χO(x)f(t) + (1− χO(x))f̃(t),

where χO(x) = 1 if x ∈ O, χO(x) = 0 if x 6∈ O and define

f̃(t) =

f(t) if t ≤ a,

min{f(t), 1/2t} if t > a.

In the following, we consider the modified problem

(2.2) −∆uε + Vε(x)uε = g(εx, uε), uε > 0, uε ∈ H1(R2),

where g(εx, t) = χOε(x)f(t) + (1 − χOε(x))f̃(t) and we show that (2.2) has

a positive solution uε satisfying uε(x) ≤ a for x ∈ RN \Oε.
For u ∈ Hε, let

Pε(u) =
1

2

∫
R2

(|∇u|2 + Vεu
2) dx−

∫
R2

G(εx, u) dx,

where G(x, t) =
∫ t

0
g(x, s) ds. The following penalization functions were intro-

duced in [15]. Fix µ > 0 and set

(2.3) χε(x) =

0 if x ∈ Oε,
ε−µ if x ∈ RN \Oε,

χiε(x) =

0 if x ∈ Oiε,
ε−µ if x ∈ RN \Oiε,

and

Qε(u) =

(∫
R2

χεu
2 dx− 1

)2

+

, Qiε(u) =

(∫
R2

χiεu
2 dx− 1

)2

+

.

Let Γε,Γ
i
ε : Hε → R, i = 1, . . . , k, be given by

Γε(u) = Pε(u) +Qε(u), Γiε(u) = Pε(u) +Qiε(u),

which enjoy Γε,Γ
i
ε ∈ C1(Hε).

Let us recall some results about the ground state solutions of (1.3). In [6],

Berestycki, Gallouët and Kavian, under the assumptions on f as in Theorem 1.1,

proved that for any mi > 0, (1.3) admits a positive ground state solution Ui such

that

(2.4) Lmi(Ui) = Emi ,

∫
R2

(
F (Ui)−

mi

2
U2
i

)
dx = 0,

where

Lmi(u) =
1

2

∫
R2

(|∇u|2 +mi u
2) dx−

∫
R2

F (u) dx, u ∈ H1(R2).
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Moreover, the least energy Emi turns out to be a mountain pass level, see [36].

Let Smi be the set of positive ground state solutions Ui of (1.3) normalized

as follows:

Ui(0) = max
x∈R2

Ui(x).

Next we construct a set of approximate solutions to (2.2). Set

δ =
1

10
min

{
dist(M, Oc),min

i 6=j
dist(Oi, Oj)

}
.

Let us fix β ∈ (0, δ) and a cut-off ϕ ∈ C∞0 (R2) such that 0 ≤ ϕ ≤ 1, ϕ(x) = 1

for |x| ≤ β and ϕ(x) = 0 for |x| ≥ 2β. Let ϕε(y) = ϕ(εy), y ∈ R2, and for some

xi ∈ (Mi)β , 1 ≤ i ≤ k, and Ui ∈ Smi , we define

Ux1,x2,··· ,xk
ε (y) =

k∑
i=1

ϕε

(
y − xi

ε

)
Ui

(
y − xi

ε

)
.

From [9], one finds a solution in some neighborhood of the set

Xε = {Ux1,...,xk
ε : xi ∈ (Mi)β , Ui ∈ Smi , i = 1, . . . , k},

for sufficiently small ε > 0 (see Proposition 2.6). From [11] one can construct

a family of mountain pass levels Emi , 1 ≤ i ≤ k, as follows.

Proposition 2.1. For each 1 ≤ i ≤ k, there exists Ti > 0 such that, for any

δ > 0, there exists a path γδi ∈ C([0, Ti], H
1(R2)) with the following properties:

(a) γδi (0) = 0, Lmi(γ
δ
i (Ti)) < −1 and max

t∈[0,Ti]
Lmi(γ

δ
i (t)) = Emi ;

(b) there exists T i ∈ (0, Ti) such that γδi (T i) ∈ Smi , Lmi(γδi (T i)) = Emi and

Lmi(γ
δ
i (t)) < Emi for ‖γδi (t)− γδi (T i)‖ ≥ δ;

(c) there exist C, c > 0 such that for any t ∈ [0, Ti] one has

|Dα
x (γδi (t))(x)| ≤ C exp(−c|x|), x ∈ R2, |α| = 0, 1.

Without loss of generality, in what follows, we may assume Ti = 1 for all

i = 1, . . . , k. For any 1 ≤ i ≤ k and some fixed xi ∈ (Mi)β , let γδε,i(t)( · ) =

(ϕεγ
δ
i (t))( · − xi/ε) for t > 0, then Γε(γ

δ
ε,i(t)) = Pε(γ

δ
ε,i(t)) for t ∈ [0, 1]. Now,

define a min-max value Ciε as follows

Ciε = inf
ϕ∈Φiε

max
s∈[0,1]

Γiε(ϕ(s)),

where Φiε = {ϕ ∈ C([0, 1], Hε) : ϕ(0) = 0, ϕ(1) = γδε,i(1)}. As a consequence

of [11], we have

lim
ε→0

Ciε = Emi for any 1 ≤ i ≤ k.

Finally, set

γδε(s) =

k∑
i=1

γδε,i(si), s = (s1, . . . , sk) ∈ T,
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where T = [0, 1]k and define

(2.5) Dδ
ε := max

s∈T
Γε(γ

δ
ε(s)).

Proposition 2.2. The following hold:

(a) lim
ε→0

Dδ
ε =

k∑
i=1

Emi =: E;

(b) lim sup
ε→0

max
s∈∂T

Γε(γ
δ
ε(s)) ≤ Ẽ, where Ẽ = max

1≤j≤k

( ∑
i 6=j

Emi

)
;

(c) there exists M0 > 0 (independent of δ) such that for any δ > 0, there

exist αδ > 0 and εδ ∈ (0, 1) such that for ε ∈ (0, εδ):

Γε(γ
δ
ε(s)) ≥ Dδ

ε − αδ implies that γδε(s) ∈ XM0δ
ε .

Proof. The proof buys the line of [9]. Since supp(γδε,i) ⊂ (M3β
i )ε for any

1 ≤ i ≤ k,

(2.6) Γε(γ
δ
ε(s)) =

k∑
i=1

Γε(γ
δ
ε,i(si)) =

k∑
i=1

Pε(γ
δ
ε,i(si)), s ∈ T.

Moreover, by Proposition 2.1, as ε→ 0, we get

(2.7) Pε(γ
δ
ε,i(si)) =

1

2

∫
R2

(
|∇γδε,i(si)|2 + Vε|γδε,i(si)|2

)
dx−

∫
Oε

F (γδε,i(si)) dx

= Lmi(γ
δ
ε,i(si)) +

1

2

∫
R2

(Vε −mi)|γδε,i(si)|2 dx+

∫
R2\Oε

F (γδε,i(si)) dx

= Lmi(γ
δ
i (si)) +O(ε),

which implies that max
si∈[0,1]

Pε(γ
δ
ε,i(si)) = Emi +O(ε). Thus, (a) follows.

For s ∈ ∂T , there exists 1 ≤ j ≤ k with sj = 0 or sj = 1. Then

max
s∈∂T

Γε(γ
δ
ε(s)) ≤ max

s∈T

∑
i6=j

Γε(γ
δ
ε,i(si)).

Similarly as above, we have

lim sup
ε→0

max
s∈∂T

Γε(γ
δ
ε(s)) ≤

∑
i 6=j

Emi ≤ Ẽ,

and also (b) follows.

By Proposition 2.1, there exists αδ > 0 such that for all 1 ≤ i ≤ k:

(2.8) Lmi(γ
δ
i (si)) ≥ Emi − 2αδ implies ‖γδi (si)− γδi (T i)‖ ≤ δ.

From (2.6)–(2.7) we have

sup
s∈T

∣∣∣∣Γε(γδε)(s)−
k∑
i=1

Lmi(γ
δ
i )(si)

∣∣∣∣ = O(ε),
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and hence there exists εδ ∈ (0, 1) such that for all ε ∈ (0, εδ), we have Dδ
ε ≥

E − αδ/2 and

sup
s∈T

∣∣∣∣Γε(γδε)(s)−
k∑
i=1

Lmi(γ
δ
i )(si)

∣∣∣∣ ≤ αδ
2
.

It follows that for ε ∈ (0, εδ), Γε(γ
δ
ε)(s) ≥ Dδ

ε − αδ implies

k∑
i=1

Lmi(γ
δ
i )(si) ≥ Dδ

ε −
3αδ
2
≥ E − 2αδ.

Recalling that for any 1 ≤ i ≤ k, max
si∈[0,1]

Lmi(γ
δ
i )(si) = Emi , we get Lmi(γ

δ
i )(si) ≥

Emi − 2αδ for all 1 ≤ i ≤ k, which implies by (2.8):

‖γδi (si)− γδi (T i)‖ ≤ δ, for all i = 1, . . . , k.

We claim there exists M1 > 0 (independent of ε, δ) such that for all ε ∈ (0, 1)

and u ∈ Hε,

(2.9) ‖(ϕεu)( · − xi/ε)‖ε ≤M1‖u‖, i = 1, . . . , k.

Indeed, for small ε > 0, we have

‖(ϕεu)( · − xi/ε)‖2ε =

∫
B(0,2β/ε)

(
|∇(ϕεu)|2 + V (εx+ xi)ϕ

2
εu

2
)
dx

≤
∫
B(0,2β/ε)

(
2|∇ϕε|2u2 + 2|∇u|2 + V (εx+ xi)u

2
)
dx

≤
∫
B(0,2β/ε)

[
2|∇u|2 +

(
sup

x∈B(xi,2β)

V (x) + 1

)
u2

]
dx

≤
(

sup
x∈B(xi,2β)

V (x) + 2

)
‖u‖2.

Hence, it is enough to choose

M1 :=

(
max

1≤i≤k
sup

x∈B(xi,2β)

V (x) + 2

)1/2

.

Thus ∥∥γδε,i(si)( · )− (ϕεγ
δ
i (T i))( · − xi/ε)

∥∥
ε
≤M1δ.

Let s0 = (T 1, . . . , T k) ∈ T , then γδε(s0) ∈ Xε. Moreover, ‖γδε(s) − γδε(s0)‖ε ≤
M0δ, where M0 = kM1. �

In the following, we construct a special PS-sequence of Γε, which is localized

in some neighbourhood Xd
ε of Xε. Define

Γαε := {u ∈ Hε : Γε(u) ≤ α}, α ∈ R,

and, for d > 0,

Xd
ε :=

{
u ∈ Hε : inf

v∈Xε
‖u− v‖ε ≤ d

}
.
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Proposition 2.3. Let {εj}∞j=1 be such that lim
j→∞

εj = 0 and {uεj} ⊂ Xd
εj be

such that

lim
j→∞

Γεj (uεj ) ≤ E and lim
j→∞

Γ
′

εj (uεj ) = 0.

Then, for sufficiently small d > 0, there exists, up to a subsequence, {yij}∞j=1 ⊂
R2, xi ∈Mi, Ui ∈ Smi , 1 ≤ i ≤ k, such that

lim
j→∞

|εjyij − xi| = 0 and lim
j→∞

∥∥∥∥uεj − k∑
i=1

ϕεj ( · − yij)Ui( · − yij)
∥∥∥∥
εj

= 0.

Proof. The proof is similar to [9, Proposition 4] and [11, Proposition 5] but

for the convenience of the reader we sketch it. Let us write for simplicity ε in

place of εi. By the very definition of Xd
ε and the compactness of Smi , there exist

Zi ∈ Smi , xiε ∈ M
β
i such that xiε → xi ∈ Mβ

i and such that for small ε > 0 one

has

(2.10)

∥∥∥∥uε − k∑
i=1

ϕε

(
· −x

i
ε

ε

)
Zi

(
· −x

i
ε

ε

)∥∥∥∥
ε

≤ 2d.

Step 1. We claim that choosing d > 0 small enough one has

lim inf
ε→0

sup
y∈Aε

∫
B(y,1)

|uε|2 = 0,

where Aε =
k⋃
i=1

(B(xiε/ε, 3β/ε)\B(xiε/ε, β/2ε)), which immediately implies from

[11, Lemma 1] that

(2.11) F (uε)→ 0 in L1(Bε),

where Bε =
k⋃
i=1

(B(xiε/ε, 2β/ε) \ B(xiε/ε, β/ε)). Assume by contradiction that

there exists r > 0 such that

lim inf
ε→0

sup
y∈Aε

∫
B(y,1)

|uε|2 = 2r > 0,

then there exists yε ∈ Aε, such that for ε > 0 small enough
∫
B(yε,1)

|uε|2 ≥ r.

Let vε(y) = uε(y + yε), and then

(2.12)

∫
B(0,1)

|vε|2 ≥ r.

Assume vε → v weakly in H1(R2), then v 6≡ 0 and it satisfies

−∆v + V (x0)v = f(v) in R2,

where x0 ∈
k⋃
i=1

(Mi)4β with εyε → x0, as ε→ 0. For sufficiently large R > 0,

lim inf
ε→0

∫
B(yε,R)

|∇uε|2 ≥
1

2

∫
R2

|∇v|2 = LV (x0)(v).
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Clearly, LV (x0)(v) ≥ EV (x0) ≥ min
1≤i≤k

Emi , from which

lim inf
ε→0

∫
B(yε,R)

|∇uε|2 ≥ min
1≤i≤k

Emi > 0,

which contradicts (2.10) provided d is small enough. Therefore, Step 1 is proved.

Step 2. Let

u1
ε(y) =

k∑
i=1

ϕε

(
y − xiε

ε

)
uε(y), u2

ε = uε − u1
ε.

We claim that Γε(uε) ≥ Γε(u
1
ε)+Γε(u

2
ε)+o(1), as ε→ 0, provided d > 0 is small

enough and Γε(u
2
ε) ≥ 0 for small ε > 0. On one hand, a direct computation

shows that

Γε(uε) ≥ Γε(u
1
ε) + Γε(u

2
ε)−

∫
R2

G(εy, uε)−G(εy, u1
ε)−G(εy, u2

ε) + o(1).

Then

lim sup
ε→0

∣∣∣∣ ∫
R2

G(εy, uε)−G(εy, u1
ε)−G(εy, u2

ε)

∣∣∣∣
= lim sup

ε→0

∣∣∣∣ ∫
Bε

F (uε)− F (u1
ε)− F (u2

ε)

∣∣∣∣ = 0,

where we have used (2.11). As a consequence,

Γε(uε) ≥ Γε(u
1
ε) + Γε(u

2
ε) + o(1), as ε→ 0.

On the other hand, since G(y, uε) ≤ F (uε) for any y ∈ R2, we have

(2.13) Γε(u
2
ε) ≥

1

2
‖u2

ε‖2ε −
∫
R2

F (u2
ε).

From uε ∈ Xd
ε , we get ‖u2

ε‖ε ≤ 2d, provided ε > 0 is small enough. Then, as

in [11], by choosing d small enough, we get∫
R2

F (u2
ε) ≤

1

4
‖u2

ε‖2ε.

Thus, it follows from (2.13) that choosing d > 0 sufficiently small,∫
R2

F (u2
ε) ≥

1

4
‖u2

ε‖2ε ≥ 0.

Step 3. For any fixed 1 ≤ i ≤ k, let

u1,i
ε (y) = ϕε

(
y − xiε

ε

)
uε(y),

then u1
ε =

k∑
i=1

u1,i
ε . Moreover, Γε(u

1
ε) =

k∑
i=1

Γε(u
1,i
ε ). Set

wiε(y) := u1,i
ε

(
y +

xiε
ε

)
= ϕε(y)uε

(
y +

xiε
ε

)
,
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up to a subsequence, wiε ⇀ wi weakly in H1(R2), wiε → wi almost everywhere

in R2. Then it was proved in [11] that for d > 0 small enough, for any 1 ≤ i ≤ k,

the following hold:

lim inf
ε→0

sup
z∈R2

∫
B(z,1)

|wiε − wi|2 = 0

and

lim
ε→0

∫
R2

F (wiε) dx =

∫
R2

F (wi) dx,

which in turn gives

lim inf
ε→0

Γε(u
1,i
ε ) ≥ lim inf

ε→0

(
1

2

∫
R2

|∇wiε|2 + Vε

(
y +

xiε
ε

)
|wiε|2 −

∫
R2

F (wiε)

)
≥ 1

2

∫
R2

|∇wi|2 + V (xi)|wi|2 −
∫
R2

F (wi).

We know as well that wi 6≡ 0 (otherwise, if wi ≡ 0, by (2.10) we would get for

any p > 2 that ‖Zi‖p = O(d), however, since Zi ∈ Smi , by choosing d small

enough we get a contradiction). Moreover, it is easy to verify that wi satisfies

−∆w + V (xi)w = f(w), w ∈ H1(R2).

So, lim inf
ε→0

Γε(u
1,i
ε ) ≥ LV (xi)(w

i) ≥ EV (xi). Recalling from [36] that Ea > Eb if

a > b which together with Step 1 yields

lim inf
ε→0

Γε(uε) ≥ lim inf
ε→0

k∑
i=1

Γε(u
1,i
ε ) ≥

k∑
i=1

Emi = E.

Noting that lim sup
ε→0

Γε(uε) ≤ E and lim
ε→0

Γε(u
2
ε) = 0, xi ∈ Mi and Lmi(w

i) =

Emi . Therefore, as in [9, Proposition 4], there exists yiε such that

u1,i
ε → ϕε( · − yiε)Ui( · − yiε) strongly in Hε

and consequently

u1
ε =

k∑
i=1

u1,i
ε →

k∑
i=1

ϕε( · − yiε)Ui( · − yiε),

strongly in Hε. By (2.13), it is easy to see u2
ε → 0 strongly in Hε and thus the

conclusion follows. �

By Proposition 2.3, there exists d0 > 0 small with the following properties:

for any d1 ∈ (0, d0/3), there exist ρ1 > 0, ω1 > 0 and ε1 > 0, such that for

ε ∈ (0, ε1), 0 6∈ Xd0
ε , inf

u∈Xd0ε
Γε(u) ≥ E/2 and

(2.14) |Γ′ε(u)| ≥ ω1 for u ∈ ΓE+ρ1
ε ∩ (Xd0

ε \Xd1
ε ).

Let δ1 = d1/M0, where M0 is given in Proposition 2.2. By (2.14) and a defor-

mation argument, Γε admits a Palais–Smale sequence in Γ
Dδ1ε
ε ∩Xd1

ε , where Dδ1
ε

is given in (2.5). Precisely, as in [9], [11] we prove the following
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Proposition 2.4. For sufficiently small ε ∈ (0, ε1), there exists a sequence

{un,ε}∞n=1 ⊂ Γ
Dδ1ε
ε ∩Xd1

ε such that |Γ′ε(un,ε)| → 0, as n→∞.

Proof. Assume by contradiction that there exists a(ε) > 0 such that |Γ′ε(u)|
≥ a(ε), u ∈ Γ

Dδ1ε
ε ∩ Xd1

ε for small ε > 0. By Proposition 2.2, there exists

αδ1 ∈ (0, E − Ẽ) such that for ε > 0 small enough, one has

(2.15) Γε(γ
δ1
ε (s)) ≥ Dδ1

ε − αδ1 ⇒ γδ1ε (s) ∈ XM0δ1
ε ⊂ Xδ1

ε .

Then as in Byeon and Jeanjean [8], using a deformation argument, there exist

µ̃δ1 ∈ (0, αδ1) and γδ1 ∈ C(T,Hε) such that

γδ1(s) = γδ1ε (s) if γδ1ε (s) ∈ Γ
Dδ1ε −αδ1
ε ,

γδ1(s) ∈ X2d0/3
ε if γδ1ε (s) 6∈ Γ

Dδ1ε −αδ1
ε ,

and Γε(γ
δ1(s)) < Dδ1

ε −µ̃δ1 for s ∈ T . Take a cut-off function ψ ∈ C∞0 (O2δ1 , [0, 1])

with ψ(x) = 1 if x ∈ Oδ1 . For s ∈ T , let γδ11 (s) = ψεγ
δ1(s), γδ12 (s) =

γδ1(s)− γδ11 (s), where ψε(x) = ψ(εx). Then one has

Γε(γ
δ1)(s) ≥Γε(γ

δ1
1 )(s) + Γε(γ

δ1
2 )(s) +O(ε)

+

∫
O

2δ1
ε \Oδ1ε

F̃ (γδ11 (s)) + F̃ (γδ12 (s))− F̃ (γδ1(s)),

where F̃ (t) =
∫ t

0
f̃(τ) dτ . From the construction of γδ1 , we have∫

R2\Oε
|γδ1(s)|2 ≤ Cεµ, s ∈ T,

for some C > 0 (independent of ε). So that by the very definition of f̃ ,

lim
ε→0

∫
O

2δ1
ε \Oδ1ε

F̃ (γδ11 (s)) + F̃ (γδ12 (s))− F̃ (γδ1(s)) = 0,

and

Γε(γ
δ1
2 )(s) ≥ −

∫
R2\Oε

F̃ (γδ12 (s))→ 0, as ε→ 0.

Then

Γε(γ
δ1)(s) ≥ Γε(γ

δ1
1 )(s) +O(ε), s ∈ T.

For any 1 ≤ i ≤ k and s ∈ T , let

γδ11,i(s)(x) =


γδ11 (s)(x) if x ∈ (Oi)2δ1

ε ,

0 if x 6∈ (Oi)2δ1
ε ,

in order to get

γδ11 (s)(x) =

k∑
i=1

γδ11,i(s)(x) and Γε(γ
δ1
1 )(s) ≥

k∑
i=1

Γε(γ
δ1
1,i(s)),
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and hence

(2.16) Γε(γ
δ1)(s) ≥

k∑
i=1

Γε(γ
δ1
1,i(s)) +O(ε), s ∈ T.

Due to the fact that αδ1 ∈ (0, E − Ẽ), we have Ẽ < Dδ1
ε − αδ1 for sufficiently

small ε. By Proposition 2.2, max
s∈∂T

Γε(γ
δ1
ε (s)) < Dδ1

ε − αδ1 for ε small enough,

which implies γδ1(s) = γδ1ε (s) for s ∈ ∂T . Thus, for any 1 ≤ i ≤ k,

γδ11,i ∈ Φiε,1 =
{
ϕ ∈ C(T,Hε) : ϕ(0̃i) = 0, ϕ(T̃i) = γδε,i(1)

}
,

where 0̃i = (s1, . . . , si−1, 0, si+1, . . . , sk) ∈ T , T̃i = (s1, . . . , si−1, 1, si+1, . . . , sk)

∈ T . By [21, Proposition 3.4], we have that there exists s̃ ∈ T such that,

for any 1 ≤ i ≤ k, Γε(γ
δ1
1,i(s̃)) ≥ Cε, where Cε = inf

ϕ∈Φε
max
s∈[0,1]

Γε(ϕ(s)) and

Φε = {ϕ ∈ C([0, 1], Hε) : ϕ(0) = 0, Γε(ϕ(1)) < 0}. It is easy to see that Cε ≥ Ciε
for any 1 ≤ i ≤ k. Then by (2.16)

lim inf
ε→0

max
s∈T

Γε(γ
δ1(s)) ≥ E,

which is a contradiction and this completes the proof. �

In the following, we prove that the PS-sequence {un,ε}n obtained in Propo-

sition 2.4 has a nontrivial weak limit uε, which is actually a solution to the

original problem (2.1). For this purpose, we recall the following inequality due

to Cao [17] and do Ó [29] (see also [18] for further results):

Lemma 2.5. If α > 0 and u ∈ H1(R2), then∫
R2

(exp (αu2)− 1) dx <∞.

Moreover, if α ∈ (0, 4π), then for any positive constant M , there exists C =

C(α,M) such that ∫
R2

(exp (αu2)− 1) dx ≤ C,

for any u ∈ H1(R2) with ‖∇u‖2 ≤ 1 and ‖u‖2 ≤M .

Proposition 2.6. For sufficiently small ε ∈ (0, ε1), Γε has a nontrivial

critical point uε ∈ Xd1
ε ∩ Γ

Dδ1ε
ε .

Proof. By Proposition 2.4, Γε admits a PS-sequence {un,ε}∞n=1 ⊂ Xd1
ε ∩

Γ
Dδ1ε
ε . By the very definition of Xd1

ε , we know that {un,ε}∞n=1 is bounded in Hε.

Without loss of generality, we may assume un,ε ⇀ uε weakly in Hε, as n→∞.

By the definition of g(x, t), as a consequence of [15, Proposition 3] one has

(2.17) lim
R→∞

sup
n≥1

∫
|x|≥R

(|∇un,ε|2 + Vε|un,ε|2) dx = 0.
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This implies that un,ε → uε strongly in L2(R2). Thus Qε(un,ε) → Qε(uε), as

n → ∞. Recalling that un,ε ∈ Xd1
ε , by (f1)–(f2) there exist α > 0 small and

some constant C > 0 such that

|f(t)| ≤ |t|+ C(exp (αt2)− 1), t ∈ R,

and sup
n≥1
‖∇un,ε‖22 ≤ α−1/2. By Lemma 2.5, sup

n≥1
‖f(un,ε)‖2 < ∞, as a conse-

quence

sup
n≥1

∫
R2

|g(εy, un,ε)|2 dy <∞.

Then, for any ϕ ∈ C∞0 (R2) we get

(2.18)

∫
R2

g(εy, un,ε)(un,ε − uε)ϕdy → 0, n→∞.

Next we prove that actually un,ε → uε strongly in Hε, as n→∞, which in turn

yields Γ′ε(uε) = 0 in Hε and uε ∈ Xd1
ε ∩ Γ

Dδ1ε
ε .

First notice that by (2.17), for any σ > 0, there exists R > 0 such that for

all n,

(2.19)

∫
|x|≥R

(
|∇un,ε|2 + |∇uε|2 + Vε(y)|un,ε|2 + Vε(y)|uε|2

)
dy < σ.

Let ψ ∈ C∞0 (R2, [0, 1]) with ψ(x) = 1 if |x| ≤ R and ψ(x) = 0 if |x| ≥ 2R. Take

(un,ε − uε)ψ as a test function to get 〈Γ′ε(un,ε), (un,ε − uε)ψ〉 → 0, as n → ∞.

Then by (2.17) and (2.18) we obtain

lim sup
n→∞

∣∣∣∣ ∫
|x|≤R

(
|∇un,ε|2 − |∇uε|2 + Vε(y)|un,ε|2 − Vε(y)|uε|2

)
dy

∣∣∣∣ < σ,

which implies by (2.19) also the following:

lim sup
n→∞

∣∣∣∣ ∫
R2

(
|∇un,ε|2 − |∇uε|2 + Vε(y)|un,ε|2 − Vε(y)|uε|2

)
dy

∣∣∣∣ ≤ 3σ,

namely ‖un,ε‖ε → ‖uε‖ε as n→∞. �

2.1. Proof for Theorem 1.1 completed. By Proposition 2.6, Γε has

a nontrivial critical point uε ∈ Xd1
ε ∩ Γ

Dδ1ε
ε for small ε ∈ (0, ε1) and uε ≥ 0

since f(t) = 0 for t ≤ 0.

Step 1. We claim that there exists C > 0 (independent of ε) such that

(2.20) ‖uε‖∞ < C,

which implies by the Harnark inequality (see [34]) that uε > 0 in R2 and

inf
ε∈(0,ε1)

‖uε‖∞ > 0.

Next we use the Nash–Moser iteration technique (see [47] and also [38]) to

prove (2.20). For any L > 0 and β ≥ 1, set

uε,L = min {uε, L} and vε = uεu
2(β−1)
ε,L .
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Let us fix t > 2, then by Lemma 2.5, we can choose α > 0 sufficiently small such

that

(2.21) sup
ε∈(0,ε1)

‖Ψ(uε)‖Lt/(t−2)(R2) <∞.

By Γ′ε(uε) = 0 and (f1)–(f2), there exists C = C(α) > 0 such that uε satisfies

(2.22) −∆uε ≤ CΨ(uε)uε, uε ≥ 0, x ∈ R2.

Then taking vε as a test function in (2.22) we obtain∫
R2

|∇uε|2u2(β−1)
ε,L dx+ 2(β − 1)

∫
R2

|∇uε,L|2u2(β−1)
ε,L dx

≤ C
∫
R2

Ψ(uε)u
2
εu

2(β−1)
ε,L dx.

Let wε,L = uεu
β−1
ε,L and thus ∇wε,L = ∇uεuβ−1

ε,L + (β − 1)∇uε,L∇uβ−1
ε,L . Then∫

R2

|∇wε,L|2 dx ≤ Cβ2

∫
R2

Ψ(uε)w
2
ε,L dx,

where C > 0 is independent of ε, L, β. By (2.21), ‖∇wε,L‖2 ≤ Cβ‖wε,L‖t. For

some fixed s > t, by the Gagliardo–Nirenberg inequality (see [34]),

‖wε,L‖s ≤ C(‖∇wε,L‖2 + ‖wε,L‖t) ≤ Cβ‖wε,L‖t,

where C only depends on s, t,N . Letting L→∞ we have

‖uε‖Lsβ(R2) ≤ C1/ββ1/β‖uε‖Ltβ(R2).

Let κ = s/t > 1, β = κn, so that

‖uε‖Ltκn+1 (R2) ≤ C
κ−nκnκ

−n
‖uε‖Ltκn (R2).

Finally, we obtain

‖uε‖Ltκn+1 (R2) ≤ C
n∑
i=0

κ−i

κ

n∑
i=1

iκ−i

‖uε‖Lt(R2),

from which recalling that supε∈(0,ε1) ‖uε‖t <∞, (2.20) follows.

Step 2. We now establish the decay of uε at infinity. By Proposition 2.3,

there exist {yiε}ki=1 ⊂ R2, xi ∈Mi, Ui ∈ Smi such that for any 1 ≤ i ≤ k,

lim
ε→0
|εyiε − xi| = 0 and lim

ε→0
‖uε −

k∑
i=1

Ui( · − yiε)‖ε = 0,

and hence also lim
ε→0
‖wiε − Ui‖2 = 0, where wiε(y) = uε(y + yiε). Then, for any

σ > 0 there exists R > 0 (independent of ε, i) such that

sup
ε∈(0,ε0)

∫
R2\B(0,R)

(wiε)
2 ≤ σ.

From the uniform boundedness of uε, there exists C > 0 (independent of i, ε) such

that wiε satisfies −∆wiε ≤ Cwiε in R2. Hence from [34, Theorem 8.17], there exists
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C > 0 (independent of i, ε) such that wε(y) ≤ Cσ1/2, ε ∈ (0, ε1), |y| ≥ R + 2.

Then, as in [31], by a comparison principle, for each 1 ≤ i ≤ k, there exist

C, c > 0 (independent of ε, i) and yiε ∈ R2, such that

wiε(y) ≤ C exp(−c|y|) for y ∈ R2, ε ∈ (0, ε1).

Therefore,

(2.23) uε(y) ≤ C exp

(
− c min

1≤i≤k
|y − yiε|

)
for y ∈ R2, ε ∈ (0, ε1).

Step 3. It remains to show that uε is a solution of (2.1). By the decay

estimate (2.23), Qε(uε) = 0 and uε(x)→ 0, as ε→ 0 uniformly for x ∈ R2 \Oε.
Thus, uε is a solution of the original problem (2.1). By elliptic regularity es-

timates, wiε ∈ C1,α(R2) for some α ∈ (0, 1) and each 1 ≤ i ≤ k. Then there

exists ziε ∈ R2 such that ‖wiε‖∞ = wiε(z
i
ε) = uε(z

i
ε + yiε). By Steps 1 and 2,

{ziε}ki=1 ⊂ R2 is uniformly bounded with respect to ε. Let xiε = εyiε + εziε, then

setting vε(x) = uε(x/ε), we know max
x∈R2

vε(x) = vε(x
i
ε). Since εyiε → xi ∈ Mi as

ε → 0, we get lim
ε→0

dist(xiε,Mi) = 0. Finally assuming ziε → zi, as ε → 0, by

Proposition 2.3, for each 1 ≤ i ≤ k, vε(ε · +xiε)→ Ui( · +zi) strongly in Hε(R2),

as ε→ 0.

3. Proof of Theorem 1.2

We consider first the limiting problem (1.3) in the critical case. Assuming

(f1), (f4), (f5)’ and

(f6) 0 < 2F (t) ≤ tf(t) for t ∈ R \ {0},
Ruf and Sani [45, Theorem 5] proved that (1.3) admits a positive ground state

solution U and that the least energy Emi is given by a mountain pass level. Here

we remark that hypothesis (f6) can be removed and β0 in (f5)’ should be large

enough. It was shown in [45] that (1.3) possesses a ground state solution by

means of the following constraint minimization problem:

(3.1) Ai := inf{T (u) : Gi(u) = 0, u ∈ H1(R2) \ {0}},

where

T (u) =
1

2

∫
R2

|∇u|2 dx and Gi(u) =

∫
R2

(
F (u)− mi

2
u2

)
dx.

If problem (3.1) admits a minimizer ui, then there exists θi > 0 such that

ui( · /
√
θi) is indeed the ground state solution of (1.3). Following [3], [45], to

prove the existence of the minimizer to (1.3), it is enough to prove that Ai < 1/2.

For this goal, for 1 ≤ i ≤ k, let

ci := inf
u∈H1(R2)\{0}

max
t≥0

Lmi(tu),
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then it can be seen in [3] that Ai ≤ ci. It follows from Lemma 3.2 (see below)

that Ai < 1/2 for each 1 ≤ i ≤ k, then from [3], [45] one has the following

Lemma 3.1. Assume (f1), (f4) and (f5)’ with

(3.2) β0 >
e

2π
max

1≤i≤k
mi,

then for each 1 ≤ i ≤ k, (1.3) admits a positive ground state solution. Moreover,

the least energy Emi is obtained by a mountain pass value.

Lemma 3.2. There exists w ∈ H1(R2) \ {0} such that max
t≥0

Lmi(tw) < 1/2

where

Lmi(u) =
1

2

∫
R2

(|∇u|2 +mi |u|2) dx−
∫
R2

F (u) dx.

Proof. Let us first remark a few facts: by (3.2) we can choose r > 0 such

that

(3.3) β0 > max
1≤i≤k

er
2mi/2

πr2
,

and considering the Moser sequence of functions

w̃n(x) :=
1√
2π


√

log n if |x| ≤ r

n
,

log r/|x|√
log n

if
r

n
≤ |x| ≤ r,

0 if |x| ≥ r,

it is readily seen that ‖∇w̃n‖2 = 1 and ‖w̃n‖22 = r2/(4 log n) + o(r2/ log n). For

any 1 ≤ i ≤ k, let

|||w̃n|||2i := ‖∇w̃n‖22 +mi‖w̃n‖22 = 1 +
dn(r)

log n
mi,

where dn(r) := r2/4 + on(1) and on(1)→ 0, as n→ +∞. Set win := w̃n/|||w̃n|||i,
then for n large enough,

(3.4) (win)2(x) ≥ 1

2π
(log n− dn(r)mi), |x| ≤ r

n
.

Following the argument of Adimurthi [2] (see also [23], [45], [30]), one can estab-

lish the following

Claim. There exists n ∈ N such that

max
t≥0

Lmi(tw
i
n) <

1

2
, 1 ≤ i ≤ k.

Indeed, assume by contradiction that for some i,

max
t≥0

Lmi(tw
i
n) ≥ 1

2
, n ∈ N.

As a consequence of (f5)′, for any ε > 0 there exists Rε > 0 such that

(3.5) sf(s) ≥ (β0 − ε)e4πs2 , for all s ≥ Rε,
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which implies that there exist C1, C2 > 0 such that

(3.6) F (s) ≥ C1s
4 − C2, s ≥ 0,

which yields Lmi(tw
i
n)→ −∞, as t→∞. Thus there exists tn > 0 such that

(3.7) Lmi(tnw
i
n) = max

t≥0
Lmi(tw

i
n) ≥ 1

2
,

which in turn gives
1

2
≤ t2n

2
−
∫
R2

F (tnw
i
n) ≤ t2n

2
,

thus tn ≥ 1.

Next we show that actually lim
n→∞

tn = 1. Observe that

(3.8) t2n =

∫
R2

f(tnw
i
n)tnw

i
n dx,

and

tnw
i
n =

tn
|||w̃n|||i

√
log n√
2π
→ +∞, as n→∞, x ∈ Br/n,

for n large enough, and using (3.4)–(3.6) we have

t2n ≥ (β0 − ε)
∫
Br/n

e4π(tnw
i
n)2 dx− πC2r

2

≥ πr2(β0 − ε) e2t2n[logn−dn(r)mi]−2 logn − πC2r
2,

which implies that {tn} is bounded and also lim sup
n→∞

tn ≤ 1. Thus, the claim is

proved.

Noting that win → 0 almost everywhere in R2, by the Lebesgue dominated

convergence theorem, as n→∞ one has∫
{tnwin<Rε}

f(tnw
i
n)tnw

i
n dx→ 0 and

∫
{tnwin<Rε}

e4π(tnw
i
n)2 dx→ πr2.

Then it follows from (3.8) and (3.5) that

t2n =

∫
Br

f(tnw
i
n)tnw

i
n dx

≥ (β0 − ε)
∫
Br

e4π(tnw
i
n)2 dx+

∫
{tnwin<Rε}

f(tnw
i
n)tnw

i
n dx

− (β0 − ε)
∫
{tnwin<Rε}

e4π(tnw
i
n)2 dx

= (β0 − ε)
(∫

Br

e4π(tnw
i
n)2 dx− πr2

)
.

Let us estimate the term
∫
Br
e4π(tnw

i
n)2 dx. On one hand, it follows from (3.4)

that ∫
Br/n

e4π(tnw
i
n)2 dx ≥ πr2e2t2n[logn−dn(r)mi]−2 logn.
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Noting also that tn ≥ 1, we have

lim inf
n→∞

∫
Br/n

e4π(tnw
i
n)2 dx ≥ πr2e−mir

2/2.

On the other hand, using the change of variable s = re−|||w̃n|||i
√

lognt,∫
Br\Br/n

e4π(win)2 dx = 2πr2|||w̃n|||i
√

log n

∫ √logn/|||w̃n|||i

0

e2(t2−|||w̃n|||i
√

lognt) dt

≥ 2πr2|||w̃n|||i
√

log n

∫ √logn/|||w̃n|||i

0

e−2|||w̃n|||i
√

lognt dt = πr2(1− e−2 logn),

Then,

lim inf
n→∞

∫
Br

e4π(tnw
i
n)2 dx ≥ πr2(e−mir

2/2 + 1),

which implies 1 = lim
n→+∞

t2n ≥ (β0 − ε)πr2e−mir
2/2. Since ε is arbitrary, we have

β0 ≤ er
2mi/2πr2, which contradicts (3.3) and the proof is complete. �

Let Smi be the set of positive ground state solutions U of (1.3) with U(0) =

max
x∈R2

U(x).

Proposition 3.3. Assume (f1) and (f4) hold, then one has

(a) Smi is compact in H1(R2);

(b) there exists κi > 0 such that

0 < inf{‖U‖∞ : U ∈ Smi} ≤ sup{‖U‖∞ : U ∈ Smi} < κi;

(c) there exist C, c > 0, independent of U ∈ Smi , such that

|DαU(x)| ≤ C exp(−c|x|), x ∈ R2, for |α| = 0, 1.

We will use the following lemma from [3].

Lemma 3.4. Assume that f satisfies the same assumptions in Theorem 1.2

and let {vn} be a sequence in H1
rad(R2) such that

sup
n
‖∇vn‖2L2(R2) = ρ < 1 and sup

n
‖vn‖2L2(R2) <∞.

Then, if vn → v weakly in H1
rad(R2) as n→∞, we have

lim
n→∞

∫
R2

F (vn) =

∫
R2

F (v).

Proof of Proposition 3.3. Let us set m = mi and proceed by steps. The

proof is similar to [50, Proposition 2.1] but for the convenience of the reader we

give the details.

Step 1. We first show that any U ∈ Sm is such that U ∈ L∞(R2). Indeed,

for any r > 0, U is a weak solution of the following problem:

(3.9) −∆u+mu = f(u) in Br, u− U ∈ H1
0 (Br),
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where Br(0) := {x ∈ R2 : |x| < r}. By the Trudinger–Moser inequality of

Lemma 2.5, one has f(U) ∈ L2(Br). It follows from the standard Elliptic Theory

that U ∈ H2
loc(Br). Moreover, for each open Ω ⊂⊂ Br with ∂Ω ∈ C1 one has

(3.10) ‖U‖H2(Ω) ≤ C(‖f(U)‖L2(Br) + ‖U‖L2(Br)),

where C depends only on Ω, r. Furthermore, by the Sobolev embedding theorem,

actually U ∈ C0,γ(Ω) for some γ ∈ (0, 1) and there exists c (independent of U)

such that

(3.11) ‖U‖C0,γ(Ω) ≤ c‖U‖H2(Ω).

Now, we prove that U will vanish at infinity. It suffices to prove that for any

δ > 0, there exists R > 0 such that U(x) ≤ δ, for all |x| ≥ R. If not, there

exists {xj} ⊂ R2 with |xj | → ∞, as j → ∞ and lim inf
j→∞

U(xj) > 0. Let vj(x) =

U(x+ xj), then ‖vj‖ ≡ ‖U‖ and

(3.12) −∆vj +mvj = f(vj), vj ∈ H1(R2).

Assume that vj → v weakly in H1(R2), we claim that v 6≡ 0. In fact, noting

that vj is a weak solution of (3.9), it follows from (3.10) and (3.11) that, up to

a subsequence, vj → v uniformly in Ω. Hence,

v(0) = lim inf
j→∞

vj(0) = lim inf
j→∞

U(xj) > 0,

which implies that v 6≡ 0.

On the other hand, for any fixed R > 0 and j large enough, we have∫
R2

U2 ≥
∫
BR(0)

U2 +

∫
BR(xj)

U2

=

∫
BR(0)

U2 +

∫
BR(0)

v2
j =

∫
BR(0)

U2 +

∫
BR(0)

v2 + oj(1),

where oj(1) → 0, as j → ∞. Since R is arbitrary, we get v ≡ 0 which is

a contradiction. Thus U(x) → 0, as |x| → ∞. Moreover, since U ∈ C(Br) for

any r > 0, we have U ∈ L∞(R2).

Step 2. Here we borrow some results of [10] to prove that any U ∈ Sm is

radially symmetric, which in turn implies that U ∈ C2(R2). Let

T (u) =
1

2

∫
R2

|∇u|2 dx, G(u) =

∫
RN

(
F (u)− m

2
u2

)
dx,

and consider the constraint minimization problem

(3.13) T0 := inf
{
T (u) : G(u) = 0, u ∈ H1(R2) \ {0}

}
.
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It follows from Lemma 3.2 that T0 < 1/2. Moreover, from [3] T0 is achieved. On

the other hand, for any minimizer u of (3.13) there exists θ > 0 such that∫
R2

∇u∇ϕ = θ

∫
R2

(
f(u)− m

2
u

)
ϕ, for all ϕ ∈ H1(R2),

i.e. u is a weak solution of the following problem:

(3.14) −∆u+ θmu = θf(u), u ∈ H1(R2),

see [6]. Similarly as above, we know that u ∈ C(R2) ∩ L∞(R2) and u(x) → 0,

as |x| → ∞. It follows from the Cα-regularity theory (see [37, Theorem 10.1.2])

that u ∈ C1,α(R2) for some α ∈ (0, 1). Moreover, for any solution u of (3.14),

u ∈ C1,α(R2) and u(x) → 0, as |x| → ∞. By a classical comparison argument,

u decays exponentially at infinity, which implies that u satisfies G(u) = 0. By

(f1), F (s)−m/2s2 < 0 for small |s| > 0. Therefore, it follows from Proposition 4

in [10] that U is radially symmetric.

Step 3. Let us prove the compactness of Sm. First, we prove that Sm stays

bounded in H1(R2). By (2.4), {‖∇U‖2L2(R2) : U ∈ Sm} is bounded. In the

following, we claim that {‖U‖2L2 : U ∈ Sm} is also bounded. Otherwise, there

exists {Uj} ⊂ Sm such that λj = ‖Uj‖L2 →∞, as j →∞. Let Ũj(x) = Uj(λjx),

then Ũj satisfies ‖Ũj‖L2 = 1, ‖∇Ũj‖2L2 = 2Em and

(3.15) − 1

λ2
j

∆Ũj +mŨj = f(Ũj) in R2.

Assume Ũj → U0 ∈ H1
rad(R2) weakly in H1(R2), then it follows from (3.15) that

mU0(x) = f(U0(x)), x ∈ R2. By (f1), as we can see in [11], U0 ≡ 0. Thus,

Ũj → 0 weakly in H1
rad(R2), as j →∞. Noting that Em < 1/2, as a consequence

of Lemma 3.4 one has
∫
R2 Ũjf(Ũj) → 0, as j → ∞. By (3.15), ‖Ũj‖2 → 0,

as j → ∞ which is a contradiction. Therefore, the claim is proved and Sm is

bounded in H1(R2).

Next, to prove the compactness of Sm, it is enough to prove that if {un} ⊂ Sm
and un → u weakly in H1(R2), then u ∈ Sm and up to a subsequence, un → u

strongly in H1(R2). Obviously, each un ∈ H1
rad(R2) and satisfies (2.4). By

Lemma 3.4, it is easy to see that
∫
R2 F (un)→

∫
R2 F (u) and u 6≡ 0, which implies

that Lm(u) ≤ Em. Noting that u is a nontrival solution of (1.3), we get that

u ∈ Sm and

‖∇un‖22 +m‖un‖22 → ‖∇u‖22 +m‖u‖22, as n→∞.

Thus, un → u strongly in H1(R2) and Sm is compact in H1(R2).

Step 4. The fact inf{‖u‖∞ : u ∈ Sm} > 0 follows directly from lim
t→0

f(t)/t = 0.

Noting that Sm is compact in H1(R2), to prove sup{‖u‖∞ : u ∈ Sm} <∞, it is
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enough to prove that for any {un} ⊂ Sm with un → u ∈ Sm strongly in H1(R2),

one has sup
n
‖un‖∞ <∞.

By (f1)–(f2), there exist C > 0 and β > 4π such that 0 < f(t) ≤ mt/2,

t ∈ (0, 1) and 0 < f(t) ≤ C(exp(βt2)− 1) for t ≥ 1. Let us now prove that

(3.16) lim
n→∞

∫
R2

| exp(2βu2
n)− exp(2βu2)|2 = 0.

In fact, due to u ∈ L∞(R2) and un → u strongly in H1(R2), there exists c > 0

such that∫
R2

| exp(2βu2
n)− exp(2βu2)|2 ≤ c

∫
R2

exp(8β|un − u|2)|u2
n − u2|2

= c

∫
R2

[
exp(8β|un − u|2)− 1

]
|u2
n − u2|2 + on(1)

≤ c
(∫

R2

[
exp(16β|un − u|2)− 1

])1/2(∫
R2

|u2
n − u2|4

)1/2

+ on(1),

where on(1)→ 0 as n→∞. Since ‖un − u‖ → 0, as n→∞, it follows from the

Trudinger–Moser inequality that there exists C such that∫
R2

[
exp(16β|un − u|2)− 1

]
≤ C

for n large enough. Thus, (3.16) holds.

Finally, as un is a weak solution to (3.9) for r = 2, we claim that

(3.17) sup
n
‖f(un)‖2 <∞.

Let An := {x ∈ R2 : un(x) ≤ 1} and Bn := {x ∈ R2 : un(x) > 1}, then∫
R2

|f(un)|2 =

∫
An

|f(un)|2 +

∫
Bn

|f(un)|2

≤
∫
R2

m2

4
|un|2 + C

∫
R2

(exp(2βu2
n)− 1)2.

Then, by the Trudinger–Moser inequality (see [31]) and (3.16), it is easy to know

that the claim (3.17) is true. Similarly to Step 1, it follows from the interior

H2-regularity (see [32]) that

(3.18) ‖un‖H2(B1) ≤ C
(
‖f(un)‖L2(B2) + ‖un‖L2(B2)

)
,

where C is independent of n. Meanwhile, by the Sobolev embedding theorem,

(3.19) ‖un‖C0,γ(B1) ≤ c‖un‖H2(B1),

for some γ ∈ (0, 1), where c is independent of n. Hence, it follows from (3.17)–

(3.19) that sup
n
‖un‖C0,γ(B1) < ∞, which implies that, up to a subsequence,
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un → u uniformly in B1. Thus, due to u ∈ L∞(R2), we get sup
n
‖un‖L∞(B1) <∞.

Therefore, by the radial lemma, sup
n
‖un‖L∞(R2) <∞.

Step 5. We finally prove the decay estimate of Sm at infinity. By the Strauss

radial lemma [46], we know that un(x) → 0, as |x| → ∞ uniformly in n. By

a classical comparison principle, it follows from sup
n
‖un‖L∞(R2) <∞ that there

exist c, C > 0 such that

U(x) + |∇U(x)| ≤ C exp(−c|x|), x ∈ R2,

for any U ∈ Sm and the proof is complete. �

Proof of Theorem 1.2 completed. For any l > max
t∈[0,κ]

f(t), where κ =

max
1≤i≤k

κi, we modify the nonlinearity f as follows:

fl(t) = min{f(t), l}, t ∈ R,

and consider the following truncated approximating equation:

(3.20) −∆u+ Vε(x)u = fl(u), u ∈ Hε.

Next we construct a multi-peak solution uε of (3.20) concentrating around

O1, . . . , Ok. Clearly, uε is a solution of the original problem provided ‖uε‖∞ ≤ κ.

For each 1 ≤ i ≤ k, consider the following limiting problem:

(3.21) −∆u+miu = fl(u), u ∈ H1(R2).

Denote by Elmi the least energy of (3.21) and by Slmi the set of positive ground

state solutions U of (3.21) with U(0) = max
x∈R2

U(x). With the assumptions in

Theorem 1.2, it is easy to verify that fl satisfies (f1)–(f3). Moreover, Slmi 6= ∅.
By Proposition 3.3, we have

Lemma 3.5. For l > max
t∈[0,κ]

f(t), we have Elmi = Emi and Slmi = Smi , for

i = 1, . . . , k.

Proof. Assume for simplicity k = 1 and m = mi. It follows from fl(s) ≤
f(s) for any s > 0 that Elm ≥ Em. Due to Sm ⊂ Slm for l > max

t∈[0,κ]
f(t) we get

Elm ≤ Em and hence Elm = Em.

Next, to prove Sm = Slm for l > max
t∈[0,κ]

f(t), it is sufficient to show that

Slm ⊂ Sm for l > max
t∈[0,κ]

f(t). Let

Gl(u) =

∫
R2

(
Fl(u)− m

2
|u|2
)
dx,

then it is readily seen that

(3.22) Elm = inf
{
T (u) : Gl(u) = 0, u ∈ H1(R2) \ {0}

}
.
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For any ul ∈ Slm, ul is a minimizer of (3.22). By the definition of fl and the fact

Elm = Em, ul satisfies

T (ul) = Em and G(ul) ≥ 0, where G(u) =

∫
R2

(
F (u)− m

2
|u|2
)
dx.

At the same time we have

(3.23) Em = inf
{
T (u) : G(u) = 0, u ∈ H1(R2) \ {0}

}
.

Now, we claim G(ul) = 0. Indeed, if not namely G(ul) > 0, there exists θ ∈ (0, 1)

such that G(θul) = 0. However, T (θul) = θ2Em < Em, which is a contradiction.

Thus, G(ul) = 0, which implies that ul is a minimizer of (3.23). Therefore, ul is

a ground state solution of (1.3), that is ul ∈ Sm. �

By Lemma 3.5, let us fix l > max
t∈[0,κ]

f(t) with Slmi = Smi , i = 1, . . . , k.

Consider the approximating problem

(3.24) −ε2∆v + V (x)v = fl(v), v > 0, x ∈ R2.

By Theorem 1.1, for sufficiently small ε > 0, there exists a positive solution vε
of (3.24), such that there exist Ui ∈ Smi , 1 ≤ i ≤ k, and k local maximum points

xiε ∈ Oi of vε, such that

lim
ε→0

max
1≤i≤k

dist(xiε,Mi) = 0,

and vε(ε · +xiε) → Ui( · + zi), as ε → 0 in H1(R2) for some zi ∈ R2. Let

wiε( · ) := vε(ε · +xiε), then wiε satisfies

−∆wiε + Vε

(
x+

xiε
ε

)
wiε = fl(w

i
ε), wiε ∈ Hε.

Since 0 ≤ fl(t) ≤ k, t ∈ R, by elliptic estimates we obtain wiε( · ) → Ui( · + zi)

uniformly in B1(0). Hence ‖vε‖∞ ≤ κ holds as well provided ε > 0 is small

enough. �
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tions, Mem. Amer. Math. Soc. 229 (2014).

[14] J. Byeon and Z.-Q. Wang, Standing waves with a critical frequency for nonlinear

Schrödinger equations, Arch. Ration. Mech. Anal. 165 (2002), 295–316.

[15] , Standing waves with a critical frequency for nonlinear Schrödinger equations II,

Calc. Var. Partial Differential Equations 18 (2003), 207–219.

[16] J. Byeon, J.J. Zhang and W.M. Zou, Singularly perturbed nonlinear Dirichlet problems

involving critical growth, Calc. Var. Partial Differential Equations 47 (2013), 65–85.

[17] D.M. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in R2,

Comm. Partial Differential Equations 17 (1992), 407–435.

[18] D. Cassani, F. Sani and C. Tarsi, Equivalent Moser type inequalities in R2 and the zero

mass case, J. Funct. Anal. 267 (2014), 4236–4263.

[19] D. Cassani and C. Tarsi, Existence of solitary waves for supercritical Schrödinger sys-

tems in dimension two, Calc. Var. Partial Differential Equations 54 (2015), 1673–1704.

[20] S. Cingolani, L. Jeanjean and K. Tanaka, Multiplicity of positive solutions of nonlinear

Schrödinger equations concentrating at a potential well, Calc. Var. Partial Differential

Equations, 53 (2015), 413–439.

[21] V. Coti Zelati and P.H. Rabinowitz, Homoclinic orbits for second order Hamiltonian

systems possessing superquadratic potentials, J. Amer. Math. Soc. 4 (1991), 693–727.

[22] P. D’Avenia, A. Pomponio and D. Ruiz, Semi-classical states for the nonlinear Schrö-
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58051-900, João Pessoa-PB, BRAZIL

E-mail address: jmbo@pq.cnpq.br

Jianjun Zhang

College of Mathematics and Statistics
Chongqing Jiaotong University

Chongqing 400074, P.R. CHINA

and
Chern Institute of Mathematics

Nankai University

Tianjin 300071, P.R. CHINA

E-mail address: zhangjianjun09@tsinghua.org.cn

TMNA : Volume 49 – 2017 – No 1


