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MULTI-BUMP SOLUTIONS
FOR SINGULARLY PERTURBED SCHRODINGER EQUATIONS
IN R? WITH GENERAL NONLINEARITIES

DANIELE CASSANI — JOAO MARCOS DO O — JIANJUN ZHANG

ABSTRACT. We are concerned with the following equation:
—2Au+V(z)u= f(u), u(z)>0 inR2

By a variational approach, we construct a solution u. which concentrates,

as € — 0, around arbitrarily given isolated local minima of the confining
potential V: here the nonlinearity f has a quite general Moser’s critical
growth, as in particular we do not require the monotonicity of f(s)/s nor
the Ambrosetti-Rabinowitz condition.

1. Introduction

We are concerned with the existence of positive solutions to the e-perturbed
Schrédinger equation

(1.1) —?Au+V(z)u= f(u), u>0, z€cR?

where e > 0 and V € C(R2,R). In the past decades, a lot of literature has been
devoted to bound states of (1.1) in RY. From the physical point of view, these
solutions represent semi-classical states for small € > 0, living on the interface
between classical and quantum mechanics: for the physics aspects and related
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topics we refer to [4], [7], [14]-[16], [26], [28], [39]-[41], and references therein.
In the pioneering work [33], Floer and Weinstein considered problem (1.1) in
dimension one and f(s) = s® and constructed a single-peak solution around any
given non-degenerate critical point of V. Motivated by [33], Oh [42] obtained
a similar result in the higher dimensional case. A key ingredient of [33] and
[42] is a reduction method and a non-degeneracy condition for ground states
to the limiting problem with constant potential. To overcome non-degeneracy
conditions, Rabinowitz [43] exploited the variational approach which has be-
come an important tool in studying semiclassical states of (1.1). In more recent
years, there have been further developments to cover more general nonlinearities,
see [48], [24]-[27]. In [24], Del Pino and Felmer used a penalization technique
to construct a single-peak solution around a local minimum point of V', with
some restrictions on the nonlinearity such as the monotonicity of f(¢)/¢t which
is required to be nondecreasing in (0, 00) as well as the Ambrosetti-Rabinowitz
condition. More recently, Byeon and Jeanjean [8] introduced a new penalization
approach to show that the Berestycki-—Lions conditions, see [5], are almost opti-
mal to get spike solutions around the local minima of V. Closely related results
can be found in [12], [13], [22], [49]. In [20], with the Berestycki-Lions conditions,
Cingolani, Jeanjean and Tanaka considered the multiplicity of solutions to (1.1)
concentrating around the local minima of V in RY for N > 3. Moreover, the
authors established the number of solutions related to the topology of the set of
minima of V. An interesting class of solutions to (1.1) are semi-classical states
which have a spike shape concentrated around some point in R?, as ¢ — 0. In
this paper, we focus on localized bound states of (1.1), namely solutions which
develop multi bumps around the local minima of V. In the sequel, we assume
that V satisfies the following assumptions:

(V1) inf V(z)=Vh > 0;
z€R2

(V2) there exist k bounded disjoint open sets O%, i = 1,...,k, such that

0<m; = inf V() < min V(z), i=1,...,k.
zeO? €0

In 2008, Byeon, Jeanjean and Tanaka [11] constructed a single-spike solu-
tion of (1.1) exploiting the Berestycki-Lions conditions. Precisely, the authors
assumed k =1 and f € C(RT,R") satisfies:

(61) Yim £(8)/1 = 0;

(f2) for any o > 0, there exists C, > 0 such that |f(t)| < C, exp(at?) for
t>0;

(f3) there exists T > 0 such that T?m < 2F(T), where m = m; and F(s) :=
Jo f(t)dt.
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THEOREM A (Theorem 1 in [11]). Suppose that (V1)—(V2) withk =1, m; =
m, O° = O and (f1)—(f3) hold. Then for sufficiently small ¢ > 0, (1.1) admits
a positive solution u. such that

0,
where M := {x € O : V(x) = m} and (up to a subsequence) U.(z) =
us(ex + x:) converges uniformly to a least energy solution of

(a) there exists a mazimum point . of u. such that lir% dist(z., M)
E—r

(1.2) ~AU +mU = f(U), U>0, Uec H"(R?);
(b) uc(z) < Cexp(—c|lz — x.|/e) for some ¢,C > 0.

Hypotheses (f;)—(f3) are the so-called Berestycki-Lions conditions (see [5],
[6], [8]), which are used to guarantee the existence of ground states to (1.2). In
[9], Byeon and Jeanjean considered problem (1.1) in RY for N > 3 and for any
k € N*, obtained k-bumps solutions provided (V1)-(V2) and the Berestycki-
Lions conditions hold. In the same spirit of [9], [8], it is natural to wonder
whether the results of Theorem A may hold for any k& € N*: the first purpose
of this paper is to give an affirmative answer to this open problem.

Let k € N* and for any i € {1,...,k}, M' := {z € O : V(z) = m;}.
Without loss of generality and for the sake of simplicity we may assume V) = 1.
The first result of this paper is the following

THEOREM 1.1. Suppose that (V1)—(V2) and (f1)—(f3) hold. Then for suffi-
ciently small € > 0, (1.1) admits a positive solution uc, which has the following
properties:

(a) there exist k local mazima zt € O, i =1,...,k, of u. such that

lim max dist(z%, M") =0,
e—=0 1<i<k

and U.(x) = uc(ex + x1) converges (up to a subsequence) uniformly to
a least energy solution of

(1.3) ~AU +m;U = f(U), U>0, Uec H"R?);

(b) ue(z) < Cexp ( —(c/e) 121%11@ |z — xé\) for some ¢,C > 0.

Condition (f3) casts problem (1.1) in the subcritical setting with respect to
the Moser critical growth, see [17], [29], [1], [44] and more recently [18], [35]. The
understanding of the limit problem (1.3) is important since it plays a crucial role
in the study of semiclassical states of (1.1). In [3], Alves et al. considered the
ground state of (1.3) in the Moser critical case, namely when in addition to (f;)
one has the following growth condition:

0 for all o > 4m,

f lim s)exp(—as?) =
(fa) s—+o0 (s)exp( ) 400 for all a < 4.
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By a constraint minimization variational approach, it was proved in [3] that (1.3)
admits a ground state solution provided (f1), (f4) and the following hold:

(f5) there exist A > 0 and p > 2 such that f(t) > MP~! for t > 0,

provided A is sufficiently large. More recently, by means of a truncation argu-
ment, the second and third named authors extended Theorem A to the Moser
critical case [50]. In [45], Ruf and Sani obtained the result of [3] by replacing
condition (f5) with the following more natural assumption:

(fs)’ | ‘lim tf(t)/ exp (4mt?) > By, where By > 0 is sufficiently large.
t|l—+oo
It is natural to wonder whether Theorem 1.1 holds in the case when the nonlin-
earity is in the Moser critical growth range: our second goal is to give a positive

answer to this question.
The second result of this paper reads as follows

THEOREM 1.2. Suppose that (V1)—-(V2), (f1) and (f1)—(f5)" hold with

e

Then for e > 0 sufficiently small, (1.1) admits a positive solution ve, which
satisfies:

(a) there exist k local mazimum points & € O of v. such that

lim max dist(z%, M") = 0,
e—01<i<k

and we(x) = v-(ex + xt) converges (up to a subsequence) uniformly to
a least energy solution of

(1.5) ~Au+mpu = f(u), u>0, uc H(R?);

(b) ve(z) < Cexp ( —(c/e) 1I§nii£k: |z — 2t ) for some ¢,C > 0.

2. Proof of Theorem 1.1

In this section, in the spirit of Byeon and Jeanjean [9] (see also [8]), we next
prove Theorem 1.1. Since we are interested in the positive solutions of (1.1),
from now on we may assume f(¢) = 0 for ¢ < 0. By denoting u.(z) = u(ex) and
V.(xz) = V(ex), (1.1) is equivalent to

(2.1) —Au. + Ve(z)ue = flu), we >0, u. € H' (R?).

Let H. be the completion of C§°(R?) with respect to the norm

1/2
ulle = </ (|VU|2+V5u2)dx> .
R2

For any set S C R? and ¢,6 > 0, we define
S.={reR*:cxe S} and S°={zcR?:dist(z,S) <4}
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Next we penalize the nonlinearity f of Del Pino and Felmer [24]. Let

k k
M= U.Ml and O = UOi.
i=1 i=1
By (f1) there exists a > 0 such that f(¢) < 1/2t for t € (0,a). For z € R%, ¢t € R,
let
9(z,t) = xo(x) f(t) + (1 = xo(x)) f(?),
where xo(z) =1if x € O, xo(z) =0if z ¢ O and define

- Ft) if t <a,
f)=9"". :
min{f(¢),1/2t} ift> a.
In the following, we consider the modified problem
(2.2) —Au, + Ve(z)ue = glex,u.), u. >0, wu. € H'(R?),

where g(ex,t) = xo.(2)f(t) + (1 — xo.(x))f(t) and we show that (2.2) has
a positive solution u. satisfying u.(z) < a for z € RN \ O..
For uw € H,, let
1
P.(u) = 7/ (|Vul? + Veu?) da 7/ G(ex,u) dz,

2 R2 R2
where G(z,t) = fot g(z,s)ds. The following penalization functions were intro-
duced in [15]. Fix x> 0 and set

0 if z € O,, ) 0 if x € O,
(2.3) xel@)=4q ]EV Xe(@)=¢ _ ]EV ;
e~ ifx e RV \ O, e ifz e RV\OL

and
2 2

Q.(u) = (/R X€u2dac—1)+, Qi (u) = (/R Xgu2dx—1)+.

Let I, T : H. - R,i=1,...,k, be given by
Le(u) = Pe(u) + Qe(u), Ti(u) = Pe(u) + QL(u),

which enjoy T, T% € C(H,).

Let us recall some results about the ground state solutions of (1.3). In [6],
Berestycki, Gallouét and Kavian, under the assumptions on f as in Theorem 1.1,
proved that for any m; > 0, (1.3) admits a positive ground state solution U; such
that

(2.4) Lun,(U;) = En,, / (F(Ui) - % Uf) dz =0,
RZ
where

1
Ly, (u) = 3 /R2(|Vu|2 +m;u?) dx — . F(u)dr, ue H'(R?).
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Moreover, the least energy E,,, turns out to be a mountain pass level, see [36].
Let Sy, be the set of positive ground state solutions U; of (1.3) normalized
as follows:

U;(0) = max Ui(z).
Next we construct a set of approximate solutions to (2.2). Set
1 L
§ = — min {dist(/\/l, 0°), min dist(O", OJ)}.
10 i#]

Let us fix 8 € (0,8) and a cut-off ¢ € C§°(R?) such that 0 < p < 1, p(z) =1
for |x| < B and p(x) = 0 for |z| > 28. Let ¢-(y) = ¢(ey), y € R?, and for some
r; € (MHP,1<i<k, and U; € S,,,, we define

k
T4 T, @ _ T\, [ T
Usl : k(y)_;(ps<y_€>Uz< E>.
From [9], one finds a solution in some neighborhood of the set
X, ={UZ % gy € (MY, U €8,y i=1,... k),

for sufficiently small € > 0 (see Proposition 2.6). From [11] one can construct
a family of mountain pass levels E,,,, 1 <1 < k, as follows.

PROPOSITION 2.1. For each 1 < i < k, there exists T; > 0 such that, for any
§ > 0, there exists a path v° € C([0,T;], H'(R?)) with the following properties:
(8) 92(0) =0, Lin, (0 (1)) < —1 and max Ly, (77 (1)) = Em;
t€[0,T;

i
sLd

(b) there exists T* € (0,T;) such that v (T*) € Sy, , Lin,; (7 (T?)) = By, and
Lin, (4} (8)) < Epm, for |4 (8) =0 (T)I| = &5
(c) there exist C,c > 0 such that for any t € [0,T;] one has
D2 (% ())(2)] < Cexp(—clz]), z€R? |a|=0,1

Without loss of generality, in what follows, we may assume T; = 1 for all
i=1,....,k Forany 1 <i < k and some fixed z; € (M")?, let 72 ,(t)(+) =
(02 (1)) (- — x;/€) for t > 0, then Fs(vg,i(t)) = Ps(’Yg,i(t)) for t € [0,1]. Now,
define a min-max value C? as follows

C! = inf I ,
e = Jof, max Te(p(s))
where @2 = {p € C([0,1], H) : (0) = 0, p(1) = 72,(1)}. As a consequence
of [11], we have
lim C! = E,,, forany 1 <i<k.

e—0

Finally, set

k
’YS(S) :Z’}/g,i(si)? §= (Sla"'vsk) ETv
=1
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where T' = [0, 1] and define

(2.5) D = maxT:(y2(s)).

PROPOSITION 2.2. The following hold:

(a) hm D! = E E,, = E;

=1

(b) hmsupmaxI‘ (2(s)) < E, where E = max (ZEm),
e—=0 s€edT j<k 1?5] i

(c) there exists My > 0 (independent of 5) such that for any 6 > 0, there
exist ag > 0 and €5 € (0,1) such that for € € (0,¢e5):

[.(72(s)) = D — s implies that 72(s) € XMoo,
PROOF. The proof buys the line of [9]. Since supp(?;) C (M?P)_ for any
1<i<k,

k k

(2.6) Te(y2(s) = D Te(ii(s:)) = Y P-(3:(s:)), s€T.

i=1 i=1
Moreover, by Proposition 2.1, as € — 0, we get

@0 P05 = 5 [ (992 + Vebde) o= [ P2 (s0) de

O,

1
— Lo (o) 45 [ (Vemmbdi(s)Pdot [ POl (s))ds
R2 R2\

= L, (7 (1)) + O(e),
which implies that m[%xl} P-(72 ;(84)) = Epn, + O(¢). Thus, (a) follows.
5;€[0, ’
For s € 0T, there exists 1 < j < k with s; =0 or s; = 1. Then

< 2 (50))-
g Te02(5) < e ) Tel02a(o:)
i#£]

Similarly as above, we have

lim sup max I".( 'ys ) < Z
i£j

e—0 s€0T

and also (b) follows.
By Proposition 2.1, there exists ag > 0 such that for all 1 <14 < k:

(2.8) L, (70(51)) = Em, — 205 implies |77 (s;) — 72 (T7)|| < 6.

From (2.6)—(2.7) we have

k

Le(32)(s) = D L, (79)(5)

i=1

sup = 0(e),

seT
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and hence there exists es € (0,1) such that for all € € (0,e5), we have D° >
E — a5/2 and

k
To(72)(5) = Y Ln, () (s1)

It follows that for £ € (0,e5), Te(72)(s) > D? — a5 implies

sup
seT

k
ZLmi(’Y?)(Si) > D — 3;& > E — 2a5.
i—1

Recalling that for any 1 <14 < k, m[ax] Lo, (79)(81) = Ep,, we get Ly, (72)(s5) >
s;€[0,1

)

E.,, — 2as for all 1 <4 <k, which implies by (2.8):
172 (s5) —A2(TH| <6, foralli=1,... k.

We claim there exists M; > 0 (independent of €, §) such that for all ¢ € (0,1)
and u € H,

(2.9) (peu)(- —aife)lle < Muflull, i=1,... k.

Indeed, for small € > 0, we have

I(peu)(- —@ife)|Z = / (IV(eet)|* + V(2 + @) pZu?) da
B(0,28/¢)

< / 2|V Pu® +2|Vu|® + V(ex + z;)u”) dx
B(0,28/¢)

< / [2Vu|2 + ( sup  V(z)+ 1>u2] dz
B(0,28/¢) z€B(z;,28)

g( sup V(x)+2>||u|2~

z€B(z;,28)
Hence, it is enough to choose
1/2
M = (max sup V(x +2> .
1Sisk 2 B(x:,28) )
Thus
[72,5(s0) () = (A (T))(- —wi/e)|, < M6

Let so = (T',...,T*) € T, then 72(so) € X.. Moreover, [|[72(s) —v2(s0)|: <
Mo(s, where M() = le [l

In the following, we construct a special PS-sequence of I'., which is localized
in some neighbourhood X¢ of X.. Define
I'd:={ue H.:Te(u) <a}, ack,
and, for d > 0,
X4 .= {u € H,: Uien)gg lu —v|le < d}.
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PROPOSITION 2.3. Let {€;}32; be such that lim ; =0 and {uc,;} C ng be
j—o0
such that
lim I';, (ue,) < E and lim F ( ;) =0.

]—) ]—)OO
Then, for sufficiently small d > 0, there exists, up to a subsequence, {y; j21 C
R%, 2t € M, U; € S,,,, 1 <i <k, such that

Z%J —y)Ui(- —y))

PROOF. The proof is similar to [9, Proposition 4] and [11, Proposition 5] but

=0.

- T
lim |e;y; —2'| =0 and
j—o0 €j
J

for the convenience of the reader we sketch it. Let us write for simplicity € in
place of ;. By the very definition of X¢ and the compactness of S,,,, there exist
Zi € S, wg S /\/lf such that xé St e /\/lf and such that for small € > 0 one

has
k xt xt
_ A A
e %)a( %)

?

(2.10) < 2d.

€

Step 1. We claim that choosing d > 0 small enough one has

lim inf sup / luc|* =0,
=0 yeA. JB@y,1)

where A, = U (B(xi/e,38/¢)\ B(xl /¢, B/2¢)), which immediately implies from

[11, Lemma 1] th
(2.11) F(u:) =0 in L'(B.),

k

where B. = |J (B(z./e,28/¢) \ B(z./e,/)). Assume by contradiction that
i=1

there exists r > 0 such that

liminf sup / luc|? = 2r > 0,
=0 yeA. JB(y,1)

then there exists y. € A., such that for € > 0 small enough fB(y 1) luc|? > r.
Let ve(y) = ue(y + ye), and then

(2.12) / [ve|? > .
B(0,1)

Assume v, — v weakly in H!(R?), then v # 0 and it satisfies

—Av+ V(zo)v = f(v) in R?,

k )
where 2o € |J (M*)*? with ey. — x¢, as € — 0. For sufficiently large R > 0,

i=1

1
lim inf \V4 2 > \V4 2 _ L z .
ey /B(ys,m' el 25 /]RZ| v V(a0 (V)
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Clearly, Ly (44)(v) > Ey (54) > 12_1;1]6 E,,,, from which

liminf/ |Vuc[* > min E,,, >0,
=0 Jp(y..R) 1<i<k
which contradicts (2.10) provided d is small enough. Therefore, Step 1 is proved.

Step 2. Let

k xi
~Y e (y - ;)ue@), i = el
i=1

We claim that - (ue) > Te(ul) +To(u2) +0(1), as € — 0, provided d > 0 is small

2
e

enough and T'.(u
shows that

Le(ue) > Fs(u;) + Fs(ug) - /]R2 G(ey,ue) — G(ey,u;) - G(sy,ug) +o(1).

Then

) > 0 for small € > 0. On one hand, a direct computation

Gley,ue) — Gley, ug) — Gley, ul)

lim sup
e—0 R2

= lim sup ‘ / F(u.) — F(ul) — F(u?)| =0,
e—0 .
where we have used (2.11). As a consequence,
To(ue) > To(ul) +To(u?) +o(1), ase— 0.

On the other hand, since G(y,u.) < F(u.) for any y € R?, we have
1
(213 M) 2 g el - [ PG)
R2

From u. € X2, we get ||u?|. < 2d, provided & > 0 is small enough. Then, as
n [11], by choosing d small enough, we get

1
/ Pa) < L 22
R2

Thus, it follows from (2.13) that choosmg d > 0 sufficiently small,

J RGBT

Step 3. For any fixed 1 <i <k, let
. xt
Wi (y) = pe (y - ;)%(y),

koo k
then ul = Y ul?. Moreover, T'c(ul) = > T, . Set

=1 =1
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up to a subsequence, wi — w' weakly in H'(R?), w! — w’ almost everywhere
in R2. Then it was proved in [11] that for d > 0 small enough, for any 1 <i < k,
the following hold:

lim inf sup / lwi —w*> =0
B(z,1)

€20 ceRre
and
g% . F(w,)dx = . F(w*) dz,

which in turn gives

s Liy > Jim i - 72 € P2 _ %
11£Il}g)1ffs(us ) > hgl,l(glf <2 /R2 |Vwi|* + V5<y+ 5 >|ws| /R‘z F(ws))

> f/ |Vw!|? + V(") |w'|* — F(w").
2 ]R2 R2

We know as well that w? # 0 (otherwise, if w? = 0, by (2.10) we would get for
any p > 2 that ||Z;||, = O(d), however, since Z; € S,,,, by choosing d small
enough we get a contradiction). Moreover, it is easy to verify that w’ satisfies

—Aw+ V(2w = f(w), we H(R?).
So, lim i(r)lf L. (ul?) > Ly i) (w') > Ey(yiy. Recalling from [36] that E, > Ep if
e—

a > b which together with Step 1 yields
k

k
. . > . . 1,1 > = )
hgn_}lglf e (ue) > hgn_%lf Zl Co(u') > Zl E,, =F

Noting that limsupI'c(u.) < E and lir% [o(u?) =0, 2t € M" and L, (w') =
e—0 e—
E,,,. Therefore, as in [9, Proposition 4], there exists y¢ such that
ult — o (- —y)Ui(- —y!) strongly in H.

and consequently
k k

ul =Y ult 5 (- —y)Ui(- —y),
=1

i=1
strongly in H.. By (2.13), it is easy to see u? — 0 strongly in H. and thus the
conclusion follows. O

By Proposition 2.3, there exists dg > 0 small with the following properties:
for any dy € (0,dp/3), there exist p; > 0, w; > 0 and &; > 0, such that for
€ (0,61),0¢ X, inf T.(u) > E/2 and

uexdo

(2.14) IT.(u)| > wy for u e TEF, N (Xdo\ X)),
Let 61 = dy /My, where My is given in Proposition 2.2. By (2.14) and a defor-

s
mation argument, I'. admits a Palais—Smale sequence in I‘?El NnxX gl, where Dgl
is given in (2.5). Precisely, as in [9], [11] we prove the following
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PROPOSITION 2.4. For sufficiently small € € (0,e1), there exists a sequence
{une}5%, C ros N X3 such that |T.(up)| — 0, as n — oco.

PROOF. Assume by contradiction that there exists a(e) > 0 such that T, (u)]
5
> a(e), u € 2 n Xd for small e > 0. By Proposition 2.2, there exists
as, € (0, E — E) such that for € > 0 small enough, one has

(2.15) Lo(721(s)) = D2 — a5, = 22 (s) € XM € X2

Then as in Byeon and Jeanjean [8], using a deformation argument, there exist
fis, € (0,a5,) and 4% € O(T, H.) such that

%1
Voi(s) =Ai(s) if 401 (s) €T T,
o1 _q
77 (s) € X2/ i 40 (s) g TT O,

and T (v (s)) < D2 —Jis, for s € T. Take a cut-off function ¢ € C°°(0251 [0, 1])
w1thw(): lif 2z € O Fors € T, let 10 (s) = ¥y (s), 791 (s) =
401 (s) — 491 (s), where ¢, (z) = (ex). Then one has

T+

1)(s) 2 Te(1)(s) + Te(73")(5) + Ofe)
b [ FORE) + FOR ) - FOO ()
o210l
where F fo 7) dr. From the construction of 41, we have

/ |'y‘Sl (s)|2 <Ce, seT,
R2\O.

for some C' > 0 (independent of €). So that by the very definition of ]?,

lim F('(s)) + F(73'(s)) = F(y™(s)) = 0,
e—0 0551\0(651
and
L3z [ FaRE) 0. a0
R2\O.
Then

To(7°)(s) 2 Te(19*)(s) + O(e), s€T.

Forany 1 <i<kandseT,let
WHs)(x) if z € (012,

NWh(s)(x) =
0 ifx g (Oi)g‘gl7

in order to get

k k
=D i(s)@) and T > Ta(15(9)),
i=1 i=1
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and hence
k
(2.16) Z (175(5)) + O(e), seT.

Due to the fact that a5, € (0, F — E), we have E < D? — a4, for sufficiently
small €. By Proposition 2.2, max L.(791(s)) < D2 — a4, for e small enough,
s€

which implies 7% (s) = 421 (s) for s € 9T. Thus, for any 1 <i < k,

7Ny €d, ={peC(T,He): 0(0;) = 0,0(T;) =2,(1)},

)

where 61' = (sla s asi—laovsi-‘rl; s ask) € Ta T; = (317 <oy Si—1, 175i+17 B Sk)
€ T. By [21, Proposition 3.4], we have that there exists § € T such that,

for any 1 < i < k, T.(7{%(3)) > C., where C. = inf max I'.(¢(s)) and
’ pe®: s€[0,1]

®. = {p € C([0,1], H.) : (0) = 0, T-(¢(1)) < 0}. Tt is easy to see that C. > C?
for any 1 <4 < k. Then by (2.16)

lim inf max . (7% (s)) > E,

e—=0 seT
which is a contradiction and this completes the proof. O
In the following, we prove that the PS-sequence {uy, .}, obtained in Propo-
sition 2.4 has a nontrivial weak limit w., which is actually a solution to the

original problem (2.1). For this purpose, we recall the following inequality due
to Cao [17] and do O [29] (see also [18] for further results):

LEMMA 2.5. If a > 0 and u € H'(R?), then

/ (exp (au?) — 1) dz < oco.
]RZ

Moreover, if a € (0,4m), then for any positive constant M, there exists C =
C(a, M) such that

/ (exp (au?) — 1) dz < C,
R2
for any u € H*(R?) with ||Vullz <1 and |luls < M.
PROPOSITION 2.6. For sufficiently small ¢ € (0,e1), T has a nontrivial
s
critical point u. € Xad1 N I’EDE1 .

PrOOF. By Proposition 2.4, I'. admits a PS-sequence {u, }52; C Xdn
F?il. By the very definition of X%, we know that {u, .}, is bounded in H..
Without loss of generality, we may assume u, . — u. weakly in H., as n — oo.
By the definition of g(z,t), as a consequence of [15, Proposition 3] one has

(2.17) lim sup/ (
z|>R

R—o00 p>1

P dz=o.
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This implies that u, . — u. strongly in L?(R?). Thus Q(unc) — Q(uc), as
n — oo. Recalling that u, . € X%, by (f;)—(f2) there exist a > 0 small and
some constant C' > 0 such that

[f(OI < t] + Clexp (at?) 1), teR,

and sup |[Vu,c||3 < a7!/2. By Lemma 2.5, sup || f(unc)|l2 < oo, as a conse-
n>1

n>1
quence
sup l9(ey, un )| dy < co.
n>1JR2
Then, for any ¢ € C§°(R?) we get
(2.18) / 9(ey, Une) (Une — us)pdy — 0, n — oo.
R2

Next we prove that actually u,, . — u. strongly in H, as n — oo, which in turn
5
vields T”(u.) = 0 in H. and u. € X4 nTP<"
First notice that by (2.17), for any o > 0, there exists R > 0 such that for
all n,

@19) [ (VuneP TP+ Vel + Vo)) dy < o
lz|=R

Let ¢ € C§°(R?,[0,1]) with ¢(x) = 1 if |z| < R and (=) = 0 if |z| > 2R. Take
(Un,e — ue) as a test function to get (I'L(un.e), (Une — ue)p) — 0, as n — oo.
Then by (2.17) and (2.18) we obtain

lim sup ’ / | (|Vun78|2 — |Vu|? + Vs(y)|un5|2 _ Vg(y)|u8|2) dy’ < o,
z|<R

n—oo

which implies by (2.19) also the following:

lim sup / (\Vums 2 \Vus|2 + Ve(y)|un e 2_ Vs(y)\us\Q) dy‘ < 3o,
n— oo R2
namely ||tn.e|le = ||uelle as n — oo. O

2.1. Proof for Theorem 1.1 completed. By Proposition 2.6, I'. has
5
a nontrivial critical point u. € X% N 2% for small ¢ € (0,e1) and u. > 0
since f(t) =0 for t <0.

Step 1. We claim that there exists C' > 0 (independent of ¢) such that
(2.20) luelloo < C,

which implies by the Harnark inequality (see [34]) that u. > 0 in R? and
inf ||u > 0.
it
Next we use the Nash—Moser iteration technique (see [47] and also [38]) to

prove (2.20). For any L > 0 and 8 > 1, set
2(8-1)
IR

Ue,, = min{u., L} and v, = U
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Let us fix ¢ > 2, then by Lemma 2.5, we can choose o > 0 sufficiently small such
that

(221) sup ||\I/(u€)||Lt/(t—2)(]R2) < 00.

e€(0,e1)
By I',(u:) = 0 and (f1)—(f2), there exists C' = C(a) > 0 such that u. satisfies
(2.22) —Au, < CU(u)us, ue>0, xR

Then taking v, as a test function in (2.22) we obtain
/ |Vu8|2usz_1) de+2(p—1) / |Vu€,L|2ui(f_l) dx
R? R?

<C \I!(us)ugug(f_l) dx.
R2 ’

Let w1, = ugufll and thus Vw, j = Vuguf,zl + (8- 1)Vu57LVuf,_Ll. Then

/ |Vw€7L|2dx§CB2/ \I/(us)wide,
R? R?

where C' > 0 is independent of ¢, L, 8. By (2.21), ||Vwe ]2 < CB|lwe,|l¢. For
some fixed s > t, by the Gagliardo—Nirenberg inequality (see [34]),

We,L||s > We, L |2 We, L||t) > We L ||t

[we,zlls < CUIVwe L2 + lwe,Lll:) < CBllwe L

where C only depends on s,t, N. Letting L — oo we have
el oo my < CMPBYPluc| Lom (rey-

Let k = s/t > 1, B = K", so that

—n

||UEHLM"+1(R2) <Cc" K’m{HLHUEHLM"(RZ)'

Finally, we obtain

n . n .
—q P—

> K > ik
el prantr gy S C=0 m= luellLeeey,
from which recalling that sup¢ (g ., ) [[ue(|¢ < 0o, (2.20) follows.
Step 2. We now establish the decay of u. at infinity. By Proposition 2.3,
there exist {y'}F_; C R% 2' € M, U; € Sy, such that for any 1 <i <k,
k

lgleyt = =0 and - Jigyllue =3 U —aDlle =0,
=

and hence also lin}) |lwi — Us|l2 = 0, where wi(y) = uc(y + yt). Then, for any
e—

o > 0 there exists R > 0 (independent of €,4) such that

sup / (w)? < o.
c€(0,20) JR2\ B(0,R)

From the uniform boundedness of u,, there exists C' > 0 (independent of i, €) such
that w! satisfies —Aw? < Cw! in R?. Hence from [34, Theorem 8.17], there exists
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C > 0 (independent of i, €) such that w.(y) < Co'/?, ¢ € (0,1),|y| > R+ 2.
Then, as in [31], by a comparison principle, for each 1 < i < k, there exist
C,c > 0 (independent of €,i) and y* € R?, such that

wi(y) < Cexp(—cly|) foryeR? € (0,e).

Therefore,

(2.23) ue(y) < Cexp ( - clr<nii£1k ly — yé) for y € R? ¢ € (0,6).

Step 8. It remains to show that wu. is a solution of (2.1). By the decay
estimate (2.23), Q-(u:) = 0 and u.(x) — 0, as € — 0 uniformly for z € R? \ O,.
Thus, u. is a solution of the original problem (2.1). By elliptic regularity es-
timates, w! € C1*(R?) for some a € (0,1) and each 1 < i < k. Then there
exists 22 € R? such that ||wl]e = wi(z!) = uc(zt + yi). By Steps 1 and 2,
{zi}k_| C R? is uniformly bounded with respect to . Let xi = ey’ + 2!, then
setting v.(x) = uc(x/e), we know max ve(x) = ve(zl). Since eyl — 2* € M as
e — 0, we get gii%dist(xé,./\/li) = 0. Finally assuming z! — 2%, as ¢ — 0, by
Proposition 2.3, for each 1 < i < k, v (e - +at) — U;(- +2%) strongly in H.(R?),
as € — 0.

3. Proof of Theorem 1.2

We consider first the limiting problem (1.3) in the critical case. Assuming
(f1), (f1), (f5)” and

(fs) 0 < 2F(t) <tf(¢) for t € R\ {0},
Ruf and Sani [45, Theorem 5] proved that (1.3) admits a positive ground state
solution U and that the least energy E,,, is given by a mountain pass level. Here
we remark that hypothesis (f) can be removed and Sy in (f5)’ should be large
enough. It was shown in [45] that (1.3) possesses a ground state solution by

means of the following constraint minimization problem:
(3.1) A =1inf{T(u) : Gi(v) =0, u € H'(R*)\ {0}},

where

1 2 mi o

T(u)= - |[Vu|*dz and Gj(u) = F(u) — —u” | dz.

2 R2 R2 2
If problem (3.1) admits a minimizer w;, then there exists §; > 0 such that
ui( - /+/0;) is indeed the ground state solution of (1.3). Following [3], [45], to
prove the existence of the minimizer to (1.3), it is enough to prove that A; < 1/2.
For this goal, for 1 < i <k, let

= ueHll(%g)\{O} =0 Lon (tu),
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then it can be seen in [3] that A; < ¢;. It follows from Lemma 3.2 (see below)
that A; < 1/2 for each 1 < ¢ < k, then from [3], [45] one has the following

LEMMA 3.1. Assume (f1), (f1) and (f5)" with
e
(32) bo > om 148k
then for each 1 <i <k, (1.3) admits a positive ground state solution. Moreover,
the least energy E,,, is obtained by a mountain pass value.

LEMMA 3.2. There exists w € H'(R?) \ {0} such that Ig&g(Lm (tw) < 1/2

7
where

Lo, (u) = }/RQOVUF + my |ul?) da f/ F(u)dx.

2 -
PROOF. Let us first remark a few facts: by (3.2) we can choose r > 0 such
that
er2mi/2

(3.3) Bo > 1?%}% wr2

and considering the Moser sequence of functions
r
Viegn if jz| < —,
n

. 1 logr/|x| r
w(r) = — < oL G < g <
@)= e 2 gy <y
0 if || >,
it is readily seen that ||Vw,|l2 = 1 and ||w,||3 = r?/(4logn) + o(r?/logn). For
any 1 <i <k, let
d
n(r) mi,
logn
where d,, (1) :=r%/4 + 0,(1) and 0, (1) — 0, as n — +o00. Set w’, := W, /|||wn ]|,
then for n large enough,

@nllF = [V @nll3 + mallwnlls =1+

(3.4) (w,)2() > o (logn — du(r)my), Ja] < _.

n

Following the argument of Adimurthi [2] (see also [23], [45], [30]), one can estab-
lish the following

CLAIM. There exists n € N such that

max L,,, (tw),) < 1<i<k.

t>0 2’

Indeed, assume by contradiction that for some ¢,

1
Lo, (tw?) > =, N.
max L, (twy) > 5, 1€

As a consequence of (f5)’, for any & > 0 there exists R. > 0 such that
(3.5) sf(s) > (Bo — 5)64”82, for all s > R,
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which implies that there exist C7,Cs > 0 such that

(3.6) F(s) > Cys* — Cqy, 5>0,
which yields Ly, (tw!) — —o00o, as t — co. Thus there exists ¢,, > 0 such that
i i 1
which in turn gives
L _ fn F(tawh) < ut
5 - nWy) > o7
22 Ju 2
thus ¢, > 1.
Next we show that actually lim ¢, = 1. Observe that
n—oo
(3.8) 2 = ftpw)t,w! de,
RQ
and

o t, +logn
Wy, = 7=

ll@nllli - v27x
for n large enough, and using (3.4)—(3.6) we have

— 400, asn — 00, T € By,

i\2
ti > (Bo — 5)/ et wn)” oy — wCyr?
B/n

2 S| —
> 7”,2(50 _ 5) e2tn[logn—dn(7‘)m1] 2logn _ 7TCQ’I’2,

which implies that {¢,} is bounded and also limsupt, < 1. Thus, the claim is

n—oo
proved.

Noting that w! — 0 almost everywhere in R?, by the Lebesgue dominated
convergence theorem, as n — oo one has

/ fltaw) ) tpw) dz — 0 and / At wn)® g s 2,
{trnw}, <R} {tpwi <R.}
Then it follows from (3.8) and (3.5) that

ti :/ f(tnw;)tnw; dx
B,

> -e) [ e e [l ds
B {thw? <R:}

.

-9 | A’ g
{tnwi <R:}

=(Bo —¢€) (/ eAmtnwi)® gy 7rr2).

Let us estimate the term [, et wi)* gz On one hand, it follows from (3.4)
that
/ e47r(tnw;)2 dr > ,nr2e2ti[log n—dn(r)m,i]—2logn.

B

r/n
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Noting also that ¢, > 1, we have

. . i\2 _ 2
hmmf/ eAm(tnwi)® g > pp2e—mir®/2,
n—oo B

r/n

On the other hand, using the change of variable s = re~ll@nllivicgnt

/ A ()’ gy = 2772 || @ |||s4/log n
BT\Br/n

/\/log n/llwn |l
0

Viegn/|lwn s
/ 2 =@l viognt) gy
0

> 20|, /log 1

Then,

672|H@7L|Hi\/log nt di = 7T7‘2(1 o 67210gn)7

n— oo

lim lnf/ 647"(%“};)2 dr > 777“2(@_7””2/2 + 1)7
B’V‘

which implies 1 = hrf t2 > (By — &)mr2e=™"* /2. Since ¢ is arbitrary, we have
n—-—+0oo

Bo < er2mi/27rr2, which contradicts (3.3) and the proof is complete. O

Let S,,, be the set of positive ground state solutions U of (1.3) with U(0) =

max U(x).

PROPOSITION 3.3. Assume (f1) and (f4) hold, then one has
(a) Sy, is compact in H*(R?);
(b) there exists k; > 0 such that
0 <inf{||U||oc : U € S, } <sup{||U]|cc : U € S, } < Ki;
(c) there exist C,c > 0, independent of U € S,,,, such that
|DU(z)| < Cexp(—clz|), x€R? for|al=0,1.
We will use the following lemma from [3].

LEMMA 3.4. Assume that f satisfies the same assumptions in Theorem 1.2

and let {v,} be a sequence in H} (R?) such that

rad

sup |\an|\%2(R2) =p<1l and sup ||Un||%2(R2) < 0.
n n
Then, if v, — v weakly in H} ;(R?) as n — oo, we have

lim F(v,) = /R2 F(v).

n—oo R2

PROOF OF PROPOSITION 3.3. Let us set m = m; and proceed by steps. The
proof is similar to [50, Proposition 2.1] but for the convenience of the reader we
give the details.

Step 1. We first show that any U € S,, is such that U € L*°(R?). Indeed,
for any r > 0, U is a weak solution of the following problem:

(3.9) ~Au+mu = f(u) inB,, u-U&H)B,),
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where B,.(0) := {z € R? : |z| < r}. By the Trudinger-Moser inequality of
Lemma 2.5, one has f(U) € L?(B,). It follows from the standard Elliptic Theory
that U € HZ_.(B,). Moreover, for each open Q CC B, with 9Q € C* one has

(3.10) U2 < CUSO)lz2s,) + Ul L2(8,)),

where C' depends only on 2, r. Furthermore, by the Sobolev embedding theorem,
actually U € C%7(Q) for some v € (0,1) and there exists ¢ (independent of U)
such that

(3.11) 1Ullcon @) < cllUlla2@)-

Now, we prove that U will vanish at infinity. It suffices to prove that for any

d > 0, there exists R > 0 such that U(z) < 4, for all || > R. If not, there

exists {z;} C R? with |z;] — oo, as j — oo and liminf U(z;) > 0. Let v;(z) =
j—oo

U(x + z;), then ||v;|| = ||U|| and
(3.12) —Avj +mv; = f(v;), v; € H'(R?).

Assume that v; — v weakly in H'(R?), we claim that v # 0. In fact, noting
that v; is a weak solution of (3.9), it follows from (3.10) and (3.11) that, up to
a subsequence, v; — v uniformly in Q. Hence,

v(0) = liminf v;(0) = lim inf U(z;) > 0,

j—o0 j—o0

which implies that v Z 0.
On the other hand, for any fixed R > 0 and j large enough, we have

/ U? 2/ U2+/ U?
R2 Br(0) Br(z;)
:/ U2+/ v?:/ U2+/ v? +0(1),
Br(0) Br(0) Br(0) Br(0)

where 0;(1) — 0, as j — oco. Since R is arbitrary, we get v = 0 which is
a contradiction. Thus U(z) — 0, as || — oco. Moreover, since U € C(B,) for
any r > 0, we have U € L™ (R?).

Step 2. Here we borrow some results of [10] to prove that any U € S,, is
radially symmetric, which in turn implies that U € C?(R?). Let

T(u) :% 8 Vul?de,  G(u) = /R (F(u) - ’;%2) dz,

and consider the constraint minimization problem

(3.13) Tp == inf{T(u) : G(u) = 0, u € H'(R?) \ {0}}.
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It follows from Lemma 3.2 that Ty < 1/2. Moreover, from [3] T is achieved. On
the other hand, for any minimizer u of (3.13) there exists # > 0 such that

m

/ VuVy =60 (f(u)—Zu)go7 for all o € H'(R?),
R2 R2

i.e. u is a weak solution of the following problem:

(3.14) —Au+Omu = 0f(u), uec H'(R?),

see [6]. Similarly as above, we know that u € C(R?) N L>(R?) and u(x) — 0,
as |z| = oo. It follows from the C'*-regularity theory (see [37, Theorem 10.1.2])
that u € C1*(R?) for some o € (0,1). Moreover, for any solution u of (3.14),
u € OH*(R?) and u(z) — 0, as |x| — oo. By a classical comparison argument,
u decays exponentially at infinity, which implies that u satisfies G(u) = 0. By
(f1), F(s) —m/2s*> < 0 for small |s| > 0. Therefore, it follows from Proposition 4
in [10] that U is radially symmetric.

Step 3. Let us prove the compactness of S,,. First, we prove that S, stays
bounded in H'(R?). By (24), {|[VU|[72(gz) : U € Sp} is bounded. In the
following, we claim that {||U||2, : U € S,,} is also bounded. Otherwise, there
exists {U;} C Sy, such that A; = ||U;||2 — o0, as j — co. Let ﬁj(x) =U;(\jz),
then ﬁj satisfies ||(7j||L2 =1, ||V[73H2L2 =2FE,, and

1

2
)‘j

(3.15) AU; +mU; = f(U;) in R

Assume T}j — U € H! 4(R?) weakly in H'(R?), then it follows from (3.15) that
mUy(z) = f(Uo(x)), € R%. By (f1), as we can see in [11], Uy = 0. Thus,
ﬁj — 0 weakly in H! ;(R?), as j — co. Noting that E,, < 1/2, as a consequence
of Lemma 3.4 one has [g, ﬁ]f(ﬁj) — 0, as j — oo. By (3.15), ||[7J||2 — 0,
as j — oo which is a contradiction. Therefore, the claim is proved and S, is
bounded in H*(R?).

Next, to prove the compactness of S, it is enough to prove that if {u,} C Sy,
and u,, — u weakly in H*(R?), then u € S,,, and up to a subsequence, u, — u
strongly in H'(R?). Obviously, each u,, € H! ;(R?) and satisfies (2.4). By
Lemma 3.4, it is easy to see that [5, F(un) = [z. F(u) and u # 0, which implies
that L,,(u) < E,,. Noting that u is a nontrival solution of (1.3), we get that
u € S, and

[Vunll3 +mllunll3 = [Vul3 +mlull3, asn— cc.
Thus, u, — u strongly in H*(R?) and S,, is compact in H!(R?).

Step 4. The fact inf{||u)|oo : u € S} > 0 follows directly from tlir% f&)/t=0.
—
Noting that S,, is compact in H'(R?), to prove sup{||ulle : u € S;n} < o0, it is
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enough to prove that for any {u,} C S,, with u, — u € S, strongly in H'(R?),
one has sup [|uy, || < 0.
n

By (f1)—(f2), there exist C > 0 and 8 > 4m such that 0 < f(t) < mt/2,
t € (0,1) and 0 < f(t) < C(exp(Bt?) — 1) for t > 1. Let us now prove that

(3.16) lim |exp(28u2) — exp(2Bu?)|? = 0.
R2

n—oo

In fact, due to u € L°°(R?) and u,, — u strongly in H*(R?), there exists ¢ > 0
such that

/ |exp(28u2) — exp(2Bu?)|? < c/ exp(88|un — ul?)|u? — u?|?
R? R?

= c/ [exp(88Jun, — ul?) — 1]|ui — u?[* + 0, (1)
R2

<cl [ [exp(16Blun —ul?) — 1] v |upy — u?[* 1/2+on(1),
(/. ) (L)

where 0,(1) — 0 as n — oo. Since ||u,, — u| — 0, as n — oo, it follows from the
Trudinger—Moser inequality that there exists C such that

/R2 [exp(16/|uy, — ul?) — 1] <cC
for n large enough. Thus, (3.16) holds.
Finally, as u,, is a weak solution to (3.9) for r = 2, we claim that
(3.17) sup | f (un)]l2 < oo.

Let A, = {z € R? : u,(z) <1} and B,, := {z € R? : u,(z) > 1}, then

LB = [ )P+ [ )

m? 2 2\ 132
< lun|* +C | (exp(2Buz) —1)°.
R2 4 ]R2

Then, by the Trudinger—Moser inequality (see [31]) and (3.16), it is easy to know
that the claim (3.17) is true. Similarly to Step 1, it follows from the interior
H?-regularity (see [32]) that

(3.18) lunllz2cmyy < C(f (un)llL2(m) + lunllzzcs,)),
where C' is independent of n. Meanwhile, by the Sobolev embedding theorem,
(3.19) [tnllcon @) < cllunllmzs,),

for some v € (0, 1), where ¢ is independent of n. Hence, it follows from (3.17)—
(3.19) that sup ”u"”CUW(E) < 00, which implies that, up to a subsequence,
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uy, — w uniformly in By. Thus, due to u € L>(R?), we get sup [[un|| ;) < oc.
n

Therefore, by the radial lemma, sup ||y ||z ®2) < 00.
n

Step 5. We finally prove the decay estimate of S,,, at infinity. By the Strauss
radial lemma [46], we know that w,(z) — 0, as |z| — oo uniformly in n. By
a classical comparison principle, it follows from sup ||u, || ®2) < oo that there

n

exist ¢, C' > 0 such that
U(z) +|VU(z)| < Cexp(—c|z|), z=€R?,
for any U € S,,, and the proof is complete. O

PROOF OF THEOREM 1.2 COMPLETED. For any [ > m[ax] f(t), where k =
t€l0,k

max K, we modify the nonlinearity f as follows:

() = min{f(1),1}, teR,
and consider the following truncated approximating equation:
(3.20) —Au+ V. (x)u = fi(u), wueH,.

Next we construct a multi-peak solution u. of (3.20) concentrating around
01, ...,0y. Clearly, u. is a solution of the original problem provided ||uc || < &.
For each 1 < i < k, consider the following limiting problem:

(3.21) —Au+miu = fi(u), ue H' (R?).
Denote by Eﬁn the least energy of (3.21) and by Sﬁni the set of positive ground
state solutions U of (3.21) with U(0) = max U(z). With the assumptions in
Tre

Theorem 1.2, it is easy to verify that f; satisfies (f;)—(fs). Moreover, S}, # 0.
By Proposition 3.3, we have

LEMMA 3.5. Forl > rrh&)mx]f(t), we have El, = E,,, and S, = Sy, for

te|0,x

i=1,... k.

PROOF. Assume for simplicity £k = 1 and m = m;. It follows from f;(s) <
f(s) for any s > 0 that E!, > E,,. Due to S,, C S!, for [ > H%gx] f(t) we get

te|0,x

E! < E,, and hence Efn = F,.

m

Next, to prove S, = S! for | > m[ax]f(t), it is sufficient to show that
te[0,k

St c S, for I > max f(t). Let
tel0,x]

Gitw = [ (Fitw) - 5 uP) do

then it is readily seen that

(3.22) El, =inf{T(u): Gi(u) =0, u € H'(R?)\ {0}}.
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For any u; € S, u; is a minimizer of (3.22). By the definition of f; and the fact
Eﬁn = E,,, u; satisfies

T(w)=FE, and G(u) >0, whereG(u)= /
]RZ

(F(u) - % |u|2) dz.

At the same time we have
(3.23) By, = inf{T(u) : G(u) =0, u € H(R?)\ {0}}.

Now, we claim G(u;) = 0. Indeed, if not namely G(u;) > 0, there exists § € (0,1)
such that G(0u;) = 0. However, T'(0u;) = 0*E,, < E,,, which is a contradiction.
Thus, G(u;) = 0, which implies that «; is a minimizer of (3.23). Therefore, v, is

a ground state solution of (1.3), that is u; € S,,. O
By Lemma 3.5, let us fix [ > tg&)é]f(t) with Sim = Sm;, t = 1,... k.

Consider the approximating problem

(3.24) —?Av+V(z)v = fi(v), v>0, z€R%

By Theorem 1.1, for sufficiently small € > 0, there exists a positive solution v,
of (3.24), such that there exist U; € Sy,,, 1 <i < k, and k local maximum points
zl € O" of v, such that

lim max dist(z%, M) =0,
e—01<i<k

and v.(e - +2t) — U;(- + 2;), as ¢ — 0 in H'(R?) for some z; € R%2 Let
wé( ) = ve(e - +x§), then w; satisfies

—Aw! + Vs(z + ?) wh = fi(wl), wl e H..

Since 0 < fi(t) < k,t € R, by elliptic estimates we obtain wi(-) — U;(- + 2;)
uniformly in B;(0). Hence ||ve]loc < k holds as well provided e > 0 is small
enough. O
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