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EXISTENCE OF SOLUTION FOR A KIRCHHOFF TYPE

SYSTEM WITH WEIGHT AND NONLINEARITY

INVOLVING A (p, q)-SUPERLINEAR TERM

AND CRITICAL CAFFARELLI–KOHN–NIRENBERG GROWTH

Mateus Balbino Guimarães — Rodrigo da Silva Rodrigues

Abstract. We study a (p, q)-Laplacian system of Kirchhoff type equations

with weight and nonlinearity involving a (p, q)-superlinear term, in which p
may be different from q, and with critical Caffarelli–Kohn–Nirenberg expo-

nent. Using the Mountain Pass Theorem, we obtain a nontrivial solution

to the problem.

1. Introduction

This paper deals with existence of a nontrivial weak solution to the (p, q)-

Laplacian system of Kirchhoff type equations

(1.1)


Lp(u) = λ|x|−cFu(x, u, v) + α|x|−β |u|α−2u|v|γ in Ω,

Lq(v) = λ|x|−cFv(x, u, v) + γ|x|−β |u|α|v|γ−2v in Ω,

u = v = 0 on ∂Ω,
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where

Lp(u) = −
[
M1

(∫
Ω

|x|−a1p|∇u|p dx
)]

div(|x|−a1p|∇u|p−2∇u),

Lq(v) = −
[
M2

(∫
Ω

|x|−a2q|∇v|q dx
)]

div(|x|−a2q|∇v|q−2∇v);

Ω ⊂ RN is a bounded smooth domain with N ≥ 3, 1 < p < N , 1 < q < N , a1 <

(N − p)/p, a2 < (N − q)/q, c ∈ R, α/p∗ + γ/q∗ = 1, where p∗ = Np/(N − d1p)

and q∗ = Nq/(N − d2q) are the critical Caffarelli–Kohn–Nirenberg exponents

with di = 1 + ai − bi, ai ≤ bi < ai + 1, i = 1, 2, and β = b1p
∗ = b2q

∗. Let

F : Ω×R×R→ R be a measurable function in Ω, continuously differentiable in

R×R, where Fw is its partial derivative with respect to w, and Mi : R+∪{0} →
R+ be a continuous function, i = 1, 2.

Problem (1.1) is related to the stationary version of the Kirchhoff equation

(1.2)


utt −M

(∫
Ω

|∇u|2 dx
)

∆u = g(x, u) in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x),

where M(s) = a+ bs, a, b > 0. It was proposed by Kirchhoff [14] as an extension

of the classical D’Alembert wave equation for free vibrations of elastic strings

to describe the transversal oscillations of a stretched string, particularly, taking

into account the subsequent change in string length caused by oscillations.

Due to the presence of terms Mi(
∫

Ω
|x|−ai |∇w|r dx), i = 1, 2, the equations

in (1.1) are no longer a pointwise identity, therefore it is often called a nonlocal

problem. This phenomenon causes some mathematical difficulties, what makes

the study of such class of problems particularly interesting.

In the last years many authors have studied the following nonlocal problem:

(1.3) −M
(∫

Ω

|∇u|2 dx
)

∆u = f(x, u) in Ω, u = 0 on ∂Ω.

Problems of type (1.3) may be used to model several physical and biological

problems, see [1] for more references. Many interesting results for problems of

the Kirchhoff type have already been obtained, see for example [1], [5], [11], and

the references therein. The study of Kirchhoff type equations has been extended

to the case involving the p-Laplacian operator, see [7], [9], and [12]. Systems of

Kirchhoff type equations were considered for example in [6] and [8].

To enunciate the main results, we shall pose some hypotheses on the functions

M1,M2, and F . Hypotheses on the continuous functions Mi : R+ ∪ {0} → R+,

i = 1, 2, are the following:

(M1) There exist m1 > 0 and m2 > 0 such that Mi(t) ≥ mi, for all t ≥ 0,

i = 1, 2.
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(M2) The functions Mi, i = 1, 2, are increasing.

Let the function F : Ω× R× R→ R be a measurable function in Ω, contin-

uously differentiable in R× R, and satisfy the following hypotheses:

(F1) Fu(x, s, t) = −Fu(x,−s, t) and Fv(x, s, t) = −Fv(x, s,−t), for all (x, s, t)

in Ω× R× R.

(F2) There exist positive constants C1, C2 with C1 < C2 and θ, δ > 1 with

θ/p+ δ/q > 1 and θ/p∗ + δ/q∗ < 1 such that

C1θ|s|θ−1|t|δ ≤ Fu(x, s, t) ≤ C2θ|s|θ−1|t|δ,

C1δ|s|θ|t|δ−1 ≤ Fv(x, s, t) ≤ C2δ|s|θ|t|δ−1,

for all (x, s, t) ∈ Ω× (R+ ∪ {0})× (R+ ∪ {0}).
(F3) There exist ξ1 ∈ (p, p∗) and ξ2 ∈ (q, q∗) such that

F (x, u, v) ≤ 1

ξ1
Fu(x, u, v) · u+

1

ξ2
Fv(x, u, v) · v,

for all (x, u, v) ∈ Ω× R× R.

We observe that from (F1) we have

(F1’) F (x, s, t) = F (x,−s, t) = F (x, s,−t) = F (x,−s,−t), for all (x, s, t)

in Ω× R× R.

Moreover, from (F1’) and (F2) we also have

(F2’) C1|s|θ|t|δ ≤ F (x, s, t) ≤ C2|s|θ|t|δ, for all (x, s, t) ∈ Ω× R× R.

In this paper we study a (p, q)-Laplacian system of Kirchhoff type equa-

tions with weight and nonlinearity involving a (p, q)-superlinear term, in which p

may be different from q, and with critical Caffarelli–Kohn–Nirenberg exponent.

Due to the presence of nonlocal terms in system (1.1), it is necessary to make

a truncation on the Kirchhoff type functions that appear in the operator, cre-

ating an auxiliary problem. Finding solutions of this auxiliary problem, we can

find solutions for problem (1.1). The presence of the term with critical growth

in the system also causes a difficulty in solving the problem due to the lack of

compactness.

We establish two results for problem (1.1). In both results we make use of

the Mountain Pass Theorem to find solutions. The first one covers the case when

p may be different from q. In this case we find a nontrivial solution for problem

(1.1) with λ > λ∗. The “p 6= q-problem” is bypassed using a version of the

concentration-compactness principle due to Lions (cf. [15, Lemma 2.1]) and by

controlling the level of the Palais–Smale sequence obtained with the Mountain

Pass Theorem. In second case, working with extremal functions, it is possible

to find a nontrivial solution for all λ > 0, but under the condition p = q. To

the best of our knowledge, our work is the first in the literature to deal with
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the (p, q)-superlinear system of Kirchhoff type equations with critical growth, in

which p is different from q.

The main results of our paper are the following:

Theorem 1.1. Assume (M1), (M2), (F1)–(F3) hold, and α/p∗ + γ/q∗ = 1.

Then, there exists λ∗ > 0 such that problem (1.1) has a nontrivial solution for

each λ ∈ (λ∗,+∞).

Theorem 1.2. Suppose p = q. Assume (M1), (M2), (F1)–(F3) hold, a1 =

a2, and α+ γ = p∗. Then, for all λ > 0, problem (1.1) has a nontrivial solution.

This paper is organized as follows. In Section 2, we provide some preli-

minary results, the variational framework and a version of the concentration-

compactness principle. In Section 3, we construct an auxiliary problem. Section

4 is devoted to the Palais–Smale condition for the Euler–Lagrange functional

associated to problem (1.1). In Sections 5 and 6, we prove Theorems 1.1 and 1.2,

respectively.

2. Preliminary results and variational framework

Consider Ω ⊂ RN a bounded smooth domain with 0 ∈ Ω, N ≥ 3, 1 < l < N ,

a < (N − l)/l, a ≤ b < a+ 1, and l∗ = Nl/(N − dl), where d = 1 + a− b. From

[4], [17] we have

(2.1)

(∫
Ω

|x|−η|w|r dx
)l/r

≤ C
∫

Ω

|x|−al|∇w|l dx, for all w ∈ D1,l
a ,

where 1 ≤ r ≤ Nl/(N − l), η ≤ (a+ 1)r+N(1− r/l), and D1,l
a is the completion

of C∞0 (Ω) with respect to the norm

‖w‖ =

(∫
Ω

|x|−al|∇w|l dx
)1/l

;

i.e. we have the continuous embedding of D1,l
a in Lr(Ω, |x|−η), where Lr(Ω, |x|−η)

is the weighted Lr(Ω) space with the norm

‖w‖r,η =

(∫
Ω

|x|−η|w|r dx
)1/r

.

Moreover, this embedding is compact if 1 ≤ r < Nl/(N − l) and η < (a+ 1)r +

N(1− r/l). The best constant of the weighted Caffarelli–Kohn–Nirenberg type

(see [4]) inequality will be denoted by C∗a,l, which is characterized by

C∗a,l = inf
w∈D1,l

a \{0}


∫

Ω

|x|−al|∇w|l dx(∫
Ω

|x|−bl
∗
|w|l

∗
dx

)l/l∗
 .
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We will denote the Sobolev space by E = A × B, where A = D1,p
a1 and

B = D1,q
a2 , and endow it with the norm

‖(u, v)‖ = ‖u‖A + ‖v‖B =

(∫
Ω

|x|−a1p|∇u|p dx
)1/p

+

(∫
Ω

|x|−a2q|∇v|q dx
)1/q

.

We will look for solutions of problem (1.1) by finding critical points of the Euler–

Lagrange functional I : E → R, given by

I(u, v) =
1

p
M̂1(‖u‖pA)+

1

q
M̂2(‖v‖qB)−λ

∫
Ω

|x|−cF (x, u, v) dx−
∫

Ω

|x|−β |u|α|v|γdx,

for all (u, v) ∈ E, where M̂i(t) :=
∫ t

0
Mi(s) ds, i = 1, 2. Note that I ∈ C1(E,R)

and, for all (ϕ,ψ) ∈ E,

I ′(u, v)(ϕ,ψ) =M1(‖u‖pA)

∫
Ω

|x|−a1p|∇u|p−2∇u∇ϕdx

+M2(‖v‖qB)

∫
Ω

|x|−a2q|∇v|q−2∇v∇ψ dx

− λ
∫

Ω

|x|−cFu(x, u, v)ϕdx− λ
∫

Ω

|x|−cFv(x, u, v)ψ dx

− α
∫

Ω

|x|−β |u|α−2u|v|γϕdx− γ
∫

Ω

|x|−β |u|α|v|γ−2vψ dx.

The next proposition is a version of the concentration-compactness principle

due to Lions (cf. [15, Lemma 2.1]), it will be useful in showing that the functional

I satisfies a local Palais–Smale condition. This version is a more general version

of the theorem given by Silva and Xavier [16], adapted to our problem.

Let Q ∈ C1(Ω×R×R,R) be a nonnegative function satisfying Q(x, 0, 0) = 0,

for every x ∈ Ω and

(Q0) there is C > 0 such that, for every (x, u, v) ∈ Ω× R× R,

|Qu(x, u, v)| ≤ C(|u|p
∗−1 + |v|q

∗(p∗−1)/p∗ + 1),

|Qv(x, u, v)| ≤ C(|u|p
∗(q∗−1)/q∗ + |v|q

∗−1 + 1).

Proposition 2.1. Let 1 ≤ p < N and 1 ≤ q < N . Let Q ∈ C1(Ω×R×R,R)

be a nonnegative function satisfying (Q0) and Q(x, 0, 0) = 0, for every x ∈ Ω.

Let {(un, vn)} ⊂ E be such that (un, vn) ⇀ (u, v) weakly in E. Suppose that

|x|−a1p|∇un|p dx ⇀ µ, |x|−a2q|∇vn|q dx ⇀ σ, |x|−βQ(x, un, vn)dx ⇀ ν

weakly in the sense of measures, where µ, σ, and ν are nonnegative and bounded

measures on Ω. Then there are an at most countable index set Λ, families

(µj)j∈Λ, (σj)j∈Λ, and (νj)j∈Λ of positive numbers, and a family (xj)j∈Λ of points

on Ω such that

ν = |x|−βQ(x, u, v) dx+
∑
j∈Λ

νjδxj
, µ ≥ |x|−a1p|∇u|p dx+

∑
j∈Λ

µjδxj
,
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and

σ ≥ |x|−a2q|∇v|qdx+
∑
j∈Λ

σjδxj .

Moreover, there exists a constant C > 0 such that µ
p∗/p
j + σ

q∗/q
j ≥ Cνj.

The proof of Proposition 2.1 is an adaptation of [16, Proposition 2.1].

The next lemma will be also useful for us, it was proved by Ghoussoub and

Yuan in [10, Lemma 4.1].

Lemma 2.2 (S+ condition). Suppose that Ω ⊂ RN is a bounded smooth

domain, 0 ∈ Ω, 1 < p < N , −∞ < a < (N − p)/p, and un ∈ D1,p
a is such thatun ⇀ u as n→ +∞,

lim sup
n→∞

∫
Ω

|x|−ap|∇un|p−2∇un∇(un − u) dx ≤ 0,

then there exists a subsequence strongly convergent in D1,p
a .

3. Auxiliary problem

In order to prove Theorems 1.1 and 1.2 , we will make use of a version of the

Mountain Pass Theorem due to Ambrosetti and Rabinowitz [2], but since we are

working with critical growth and a nonlocal operator without information about

the behavior of functions M1 and M2 at infinity, we need to make a truncation on

these functions. So we will prove that the Euler–Lagrange functional associated

to problem (1.1) has the Mountain Pass geometry.

Define m0 = min{m1,m2}. It follows from (M2) that there exist t1, t2 > 0

such that m0 ≤ M1(0) < M1(t1) < ξ1m0/p and m0 ≤ M2(0) < M2(t2) <

ξ2m0/q. We set

Mt1(t) :=

M1(t) if 0 ≤ t ≤ t1,
M1(t1) if t ≥ t1,

and

Mt2(t) :=

M2(t) if 0 ≤ t ≤ t2,
M2(t2) if t ≥ t2.

From (M2) we get

(3.1) m0 ≤Mt1(t) <
ξ1
p
m0 and m0 ≤Mt2(t) <

ξ2
q
m0, for all t ≥ 0.

The proofs of Theorems 1.2 and 1.1 are based on a careful study of solutions

of the following auxiliary problem:

(3.2)


L1
p(u) = λ|x|−cFu(x, u, v) + α|x|−β |u|α−2u|v|γ in Ω,

L2
q(v) = λ|x|−cFv(x, u, v) + γ|x|−β |u|α|v|γ−2v in Ω,

u = v = 0 on ∂Ω,
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where

L1
p(u) := −

[
Mt1

(∫
Ω

|x|−a1p|∇u|p dx
)]

div(|x|−a1p|∇u|p−2∇w),

L2
q(v) := −

[
Mt2

(∫
Ω

|x|−a2q|∇v|q dx
)]

div(|x|−a2q|∇v|q−2∇v).

The Euler–Lagrange functional, J : E → R, associated to problem (3.2), is given

by

J(u, v) =
1

p
M̂t1(‖u‖pA) +

1

q
M̂t2(‖v‖qB)

− λ
∫

Ω

|x|−cF (x, u, v) dx−
∫

Ω

|x|−β |u|α|v|γ dx,

for all (u, v) ∈ E, where M̂ti(t) :=
∫ t

0
Mti(s) ds, i = 1, 2. Note that J ∈ C1(E,R).

4. The Palais–Smale condition

In this section we verify that, under hypotheses (M1), (M2), (F1) and (F2),

the functional J satisfies the Palais–Smale condition below a given level.

Lemma 4.1. Let {(un, vn)} be a bounded sequence in E such that

J(un, vn)→ cλ and J ′(un, vn)→ 0 in E−1 (dual of E), as n→∞.

Suppose that (M1), (M2), (F1) and (F2) hold and

cλ <

(
α

ξ1
+
γ

ξ2
− 1

)
m0

α+ γ
Kp,q,

where

Kp,q = min

{(
m0

2(α+ γ)C

)p/(p∗−p)
,

(
m0

2(α+ γ)C

)q/(q∗−q)}
,

then there exists a subsequence strongly convergent in E.

Proof. Since {(un, vn)} is bounded in E, passing to a subsequence, if ne-

cessary, we have

(un, vn) ⇀ (u, v) in E,

(un, vn) → (u, v) in Lr(Ω, |x|−a)× Ls(Ω, |x|−b),
un(x) → u(x) a.e. in Ω and vn(x) → v(x) a.e. in Ω,

‖un‖A → t0 ≥ 0 and ‖vn‖B → s0 ≥ 0,

as n → ∞, where 1 ≤ r < p∗, 1 ≤ s < q∗, a < (a1 + 1)r + N(1 − r/p), and

b < (a2 + 1)s+N(1− s/q). Moreover, since Q(x, u, v) = |u|α|v|γ satisfies (Q0),

we can apply Proposition 2.1 to obtain an at most countable index set Λ and

sequences {xj} ⊂ RN , {µj}, {σj}, {νj} ⊂ (0,+∞) such that

(4.1) |x|−a1p|∇un|p dx ⇀ µ, |x|−a2q|∇vn|q dx ⇀ σ, |x|−β |un|α|vn|γ dx ⇀ ν,
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as n→ +∞, in weak∗-sense of measures, where

ν = |x|−β |u|α|v|γx+
∑
j∈Λ

νjδxj
, µ ≥ |x|−a1p|∇u|pdx+

∑
j∈Λ

µjδxj
,

σ ≥ |x|−a2q|∇v|qdx+
∑
j∈Λ

σjδxj
,

for all j ∈ Λ, where δxj
is the Dirac mass at xj ∈ Ω, and there exists a constant

C > 0 such that

(4.2) µ
p∗/p
j + σ

q∗/q
j ≥ Cνj , for all j ∈ Λ.

Now let k ∈ N. Without loss of generality we can suppose B2(0) ⊂ Ω, then for

every % > 0, we set ψ%(x) := ψ((x−xk)/%), where ψ ∈ C∞0 (Ω, [0, 1]) is such that

ψ ≡ 1 on B1(0), ψ ≡ 0 on Ω \ B2(0), and |∇ψ| ≤ 1. Observe that (ψ%un, ψ%vn)

is bounded in E. So we have J ′λ(un, vn)(ψ%un, ψ%vn)→ 0, as n→ +∞, that is,

Mt1(‖un‖pA)

∫
Ω

un|∇un|p−2∇un∇ψ%
|x|a1p

dx

+Mt2(‖vn‖qB)

∫
Ω

vn|∇vn|q−2∇vn∇ψ%
|x|a2q

dx

≤ −m0

∫
Ω

|x|−a1p|∇un|pψ% dx−m0

∫
Ω

|x|−a2q|∇vn|qψ% dx

+ λ

∫
Ω

|x|−cFu(x, un, vn)ψ%un dx+ λ

∫
Ω

|x|−cFv(x, un, vn)ψ%vn dx

+ (α+ γ)

∫
Ω

|x|−β |un|α|vn|γψ% dx+ on(1).

Using (4.1) and Lesbegue’s Dominated Convergence Theorem, we obtain

lim sup
n→+∞

[
Mt1(‖un‖pA)

∫
Ω

un|∇un|p−2∇un∇ψ%
|x|a1p

dx

+Mt2(‖vn‖qB)

∫
Ω

vn|∇vn|q−2∇vn∇ψ%
|x|a2q

dx

]
≤ −m0

∫
Ω

|x|−a1p|∇u|pψ% dx−m0

∑
j∈Λ

µjδj(ψ%)

−m0

∫
Ω

|x|−a2q|∇v|qψ% dx−m0

∑
j∈Λ

σjδj(ψ%)

+ λ

∫
Ω

|x|−cFu(x, u, v)ψ%u dx+ λ

∫
Ω

|x|−cFv(x, u, v)ψ%v dx

+ (α+ γ)

∫
Ω

|x|−β |u|α|v|γψ% dx+ (α+ γ)
∑
j∈Λ

νjδj(ψ%).
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Using Lesbegue’s Dominated Convergence Theorem, again, we have∫
Ω

|x|−a1p|∇u|pψ% dx = o%(1),

∫
Ω

|x|−a2q|∇v|qψ% dx = o%(1),∫
Ω

|x|−δFu(x, u, v)ψ%u dx = o%(1),

∫
Ω

|x|−δFv(x, u, v)ψ%v dx = o%(1),∫
Ω

|x|−β |u|α|v|γψ% dx = o%(1),

where lim
%→0+

o%(1) = 0. Thus, we get

lim
ρ→0+

{
lim sup
n→+∞

[
Mt1(‖un‖pA)

∫
Ω

|x|−a1pun|∇un|p−2∇un∇ψ% dx(4.3)

+Mt2(‖vn‖qB)

∫
Ω

|x|−a2qvn|∇vn|q−2∇vn∇ψ% dx
]}

≤ lim
ρ→0+

[
−m0

∑
j∈Λ

µjδj(ψ%)

−m0

∑
j∈Λ

σjδj(ψ%) + (α+ γ)
∑
j∈Λ

νjδj(ψ%)

]
.

Now we will show that

lim
ρ→0+

{
lim sup
n→+∞

[
Mt1(‖un‖pA)

∫
Ω

|x|−a1pun|∇un|p−2∇un∇ψ% dx(4.4)

+Mt2(‖vn‖qB)

∫
Ω

|x|−a2qvn|∇vn|q−2∇vn∇ψ% dx
]}

= 0.

First, observe that, by Hölder’s inequality,∣∣∣∣ ∫
Ω

|x|−a1pun|∇un|p−2∇un∇ψ% dx
∣∣∣∣ ≤ ‖un‖p−1

A

(∫
Ω

|x|−a1p|un∇ψ%|p dx
)1/p

.

Since {un} is bounded in D1,p
a , Mt1 and Mt2 are continuous, and supp(ψ%) ⊂

B(xk; 2%), there exists L1 > 0 such that

Mt1(‖un‖p)
∫

Ω

|x|−a1pun|∇un|p−2∇un∇ψ% dx

≤ L1

(∫
B(xk;2%)

|un∇ψ%|p

|x|a1p
dx

)1/p

.

Analogously, there exists L2 > 0 such that

Mt2(‖vn‖q)
∫

Ω

|x|−a2qvn|∇vn|q−2∇vn∇ψ% dx ≤ L2

(∫
B(xk;2%)

|vn∇ψ%|q

|x|a2q
dx

)1/q

.
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Therefore, using Hölder’s inequality, we obtain

lim sup
n→+∞

[
Mt1(‖un‖pA)

∫
Ω

|x|−a1pun|∇un|p−2∇un∇ψ% dx

+Mt2(‖vn‖qB)

∫
Ω

|x|−a2qvn|∇vn|q−2∇vn∇ψ% dx
]

≤L1|B(xk; 2%)|1/N
(∫

Ω

χB(xk;2%)(|x|−a1p|u|p)N/(N−p) dx
)(N−p)/(Np)

+ L2|B(xk; 2%)|1/N
(∫

Ω

χB(xk;2%)(|x|−a2q|v|q)N/(N−q) dx
)(N−q)/(Nq)

.

Letting %→ 0+ in the above expression, it follows from the Dominated Conver-

gence Theorem that (4.4) occurs. Thus, we conclude from (4.3) that

0 ≤ lim
ρ→0+

[
−m0

∑
j∈Λ

µjδj(ψ%)−m0

∑
j∈Λ

σjδj(ψ%) + (α+ γ)
∑
j∈Λ

νjδj(ψ%)

]
.

That is, 0 ≤ −m0(µk + σk) + (α+ γ)νk. So, from (4.2) we obtain

(4.5) m0(µk + σk) ≤ (α+ γ)νk ≤ (α+ γ)C
(
µ
p∗/p
k + σ

q∗/q
k

)
.

Setting τ = µk + σk, we have 0 < m0τ ≤ (α+ γ)C(τp
∗/p + τ q

∗/q), which implies

m0/[(α+ γ)C] ≤ τp∗/p−1 + τ q
∗/q−1. We define r1 = p∗/p− 1 and r2 = q∗/q− 1.

Therefore, if τ < 1, we have τ r1 + τ r2 ≤ 2τmin{r1,r2}. If τ ≥ 1, we have

τ r1 + τ r2 ≤ 2τmax{r1,r2}. Therefore,

(4.6) τ ≥ min

{(
m0

2(α+ γ)C

)1/r1

,

(
m0

2(α+ γ)C

)1/r2}
= Kp,q.

Thus from (4.5) and (4.6) we obtain

(4.7) νk ≥
m0

α+ γ
τ ≥ m0

α+ γ
Kp,q.

Now we shall prove that the above expression cannot occur, and therefore the

set Λ is empty. Indeed, arguing by contradiction, let us suppose that (4.7) holds

for some k ∈ Λ. Thus, once that m0 ≤ Mt1(t) ≤ ξ1m0/p and m0 ≤ Mt2(t) ≤
ξ2m0/q, for all t ∈ R, from (F3) we obtain

cλ = J(un, vn)− J ′(un, vn) ·
(
un
ξ1
,
vn
ξ2

)
+ on(1)

≥
(
α

ξ1
+
γ

ξ2
− 1

)∫
Ω

|x|−β |un|α|vn|γψ% dx+ on(1).

Letting n→ +∞, we get

cλ ≥
(
α

ξ1
+
γ

ξ2
− 1

)
νk ≥

(
α

ξ1
+
γ

ξ2
− 1

)
m0

α+ γ
Kp,q.
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But this is a contradiction. Thus Λ is empty and it follows that

(4.8)

∫
Ω

|x|−β |un|α|vn|γ dx→
∫

Ω

|x|−β |u|α|v|γ dx.

Now we will prove that (un, vn) → (u, v) in E. Since (un, vn) → (u, v) in

Lθ(Ω, |x|−c)×Lδ(Ω, |x|−c), it follows from the Lesbegue Dominated Convergence

Theorem that

−λ
∫

Ω

|x|−cFu(x, u, v)(un − u) dx→ 0,

as n → +∞. Also, from (4.8), the Lesbegue Dominated Convergence Theorem

and Brezis–Lieb Lemma [3] we have∫
Ω

|x|−β |un|α−2un|vn|γ(un − u) dx→ 0,

as n→ +∞. Therefore, as {(un, vn)} is bounded in E, J ′(un, vn)(un−u, 0)→ 0

in R, as n → +∞. Thus, as ‖un‖A → t0 ≥ 0, as n → +∞, and as Mt1 is

continuous and positive, we obtain

lim
n→∞

∫
Ω

|x|−a1p|∇un|p−2∇un∇(un − u) dx = 0.

It follows from Lemma 2.2 that un → u in D1,p
a1 as n → +∞. Using the same

arguments, we obtain vn → v in D1,q
a2 , as n → +∞. Thus we conclude that

(un, vn)→ (u, v) in E as n→ +∞. �

5. Proof of Theorem 1.1

In this section we prove Theorem 1.1. Here p may be different from q, so

that the price to pay is that we cannot get a result for all λ > 0.

The next two lemmas show that the functional J has the Mountain Pass

geometry. Before we prove them, note that since θ/p+δ/q > 1 and θ/p∗+δ/q∗ <

1, there exist p0 ∈ (p, p∗) and q0 ∈ (q, q∗) such that θ/p0 + δ/q0 = 1. Thus, from

Young’s inequality, we have

(5.1) |u|θ|v|δ ≤ θ

p0
|u|p0 +

δ

q0
|v|q0 and |u|α|v|γ ≤ α

p∗
|u|p

∗
+

γ

q∗
|v|q

∗
.

Lemma 5.1. Assume that conditions (M1), (M2), (F1) and (F2) hold. Then

there exist positive numbers ρ and ζ such that

J(u, v) ≥ ζ > 0, for all (u, v) ∈ E with ‖(u, v)‖ = ρ.

Proof. Let (u, v) ∈ E be such that ‖(u, v)‖ ≤ 1. From (M1), (F1), (F2),

(5.1) and the Caffarelli–Kohn–Nirenberg inequality, we obtain

J(u, v) ≥
(
m0

p
‖u‖pA −

(
λC̃2 +

α

p∗

)
‖u‖p0A

)
+

(
m0

q
‖v‖qB −

(
λĈ2 +

γ

q∗

)
‖v‖q0B

)
.

Since p < p0 and q < q0, taking ρ ∈ (0, 1) small enough, there exists ζ > 0 such

that J(u, v) ≥ ζ > 0, for all (u, v) ∈ E with ‖(u, v)‖ = ρ. �
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Lemma 5.2. Assume that conditions (M1), (M2) and (F2) hold. Then, for

all λ > 0, there exists e ∈ E with J(e) < 0 and ‖e‖ > ρ.

Proof. Fix (u0, v0) ∈ E with u0, v0 > 0 in Ω and ‖(u0, v0)‖ = 1. Using

(3.1) and (F2), we obtain

J(t1/pu0, t
1/qv0) ≤ ξ1

p
m0t‖u0‖pA +

ξ2
q
m0t‖v0‖qB − λC1t

θ/p+δ/q

∫
Ω

|x|−cuθ0vδ0 dx.

Since θ/p + δ/q > 1, we have lim
t→∞

J(t1/pu0, t
1/qv0) = −∞. Thus, there exists

t0 > max{ρp, ρq} large enough, such that J(t
1/p
0 u0, t

1/q
0 v0) < 0. The result

follows by considering e = (t
1/p
0 u0, t

1/q
0 v0). �

Using a version of the Mountain Pass Theorem due to Ambrosetti and Rabi-

nowitz [2], without the Palais–Smale condition (see [18]), there exists a sequence

{(un, vn)} ⊂ E, satisfying

J(un, vn)→ cλ and J ′(un, vn)→ 0, in E−1 (dual of E),

as n → +∞, where cλ = inf
γ∈Γ

max
t∈[0,1]

J(γ(t)) and Γ := {γ ∈ C([0, 1], E) : γ(0) = 0,

γ(1) = e}.

Lemma 5.3. If (M1), (M2) and (F2) hold, then lim
λ→+∞

cλ = 0.

Proof. Define u0 = t
1/p
0 u0 and v0 = t

1/q
0 v0, where (u0, v0) is given by

Lemma 5.2. Since from Lemmas 5.1 and 5.2 the functional J has the Moun-

tain Pass geometry, it follows that there exists tλ verifying J(t
1/p
λ u0, t

1/q
λ v0) =

max
t≥0

J(t1/pu0, t
1/qv0). Using (3.1) and (F2), we obtain

0 = J ′
(
t
1/p
λ u0, t

1/q
λ v0

)(1

p
t
1/p
λ u0,

1

q
t
1/q
λ v0

)
≤ ξ1
p2
m0tλ‖u0‖pA +

ξ2
q2
m0tλ‖v0‖qB

− λCtθ/p+δ/qλ

∫
Ω

|x|−cuθ0vδ0 dx− (α+ γ)t
α/p+γ/q
λ

∫
Ω

|x|−βuα0 v
γ
0 dx.

Consider C0 = max{t1/p0 , t
1/q
0 }. Since ‖(u0, v0)‖ = 1, we have ‖u0‖pA, ‖v0‖qB ≤ 1,

and so(
ξ1
p2

+
ξ2
q2

)
C0m0tλ ≥ λCtθ/p+δ/qλ

∫
Ω

|x|−cuθ0vδ0 dx

+ (α+ γ)t
α/p+γ/q
λ

∫
Ω

|x|−βuα0 v
γ
0 dx ≥ (α+ γ)t

α/p+γ/q
λ

∫
Ω

|x|−βuα0 v
γ
0 dx.

Since α/p + γ/q > α/p∗ + γ/q∗ = 1, we have that {tλ} is a bounded sequence.

Thus there exist a sequence {λn} and β0 ≥ 0 such that λn → +∞ and tλn
→ β0,

as n→∞. Consequently, there exists D > 0 such that(
ξ1
p2

+
ξ2
q2

)
C0m0tλn

≤ D, for all n ∈ N,
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and so

(5.2) λnCt
θ/p+δ/q
λn

∫
Ω

|x|−cu θ0 v δ0 dx+ (α+ γ)t
α/p+γ/q
λn

∫
Ω

|x|−βuα0 v
γ
0 dx ≤ D,

for all n ∈ N. If β0 > 0, we obtain

lim
n→∞

[
λnCt

θ/p+δ/q
λn

∫
Ω

|x|−cu θ0 v δ0 dx+ (α+ γ)t
α/p+γ/q
λn

∫
Ω

|x|−βuα0 v
γ
0 dx

]
= +∞,

which contradicts with (5.2). Thus we conclude that β0 = 0. Now, let us consider

the path γ∗(t) = (t1/pu0, t
1/qv0), for t ∈ [0, 1], which belongs to Γ, to get the

following estimate:

0 < cλ ≤ max
t∈[0,1]

J(γ∗(t)) = J
(
t
1/p
λ u0, t

1/q
λ v0

)
≤
(
ξ1
p2

+
ξ2
q2

)
C0m0tλ.

In this way, observing that {cλ} is a monotonous sequence, we conclude that

lim
λ→+∞

cλ = 0. �

Remark 5.4. Due to Lemma 5.3, there exist λ1 > 0 and λ2 > 0 such that

cλ <

(
1

p
m0 −

1

ξ1
M1(t1)

)
t1, for all λ > λ1,

cλ <

(
1

q
m0 −

1

ξ2
M2(t2)

)
t2, for all λ > λ2.

Lemma 5.5. Suppose that λ > λ3 = max{λ1, λ2} and (M1), (M2), (F2) and

(F3) hold. Let {(un, vn)} ⊂ E be a sequence such that

(5.3) J(un, vn)→ cλ and J ′(un, vn)→ 0,

as n→ +∞. Then, for all n ∈ N, we have

‖un‖pA ≤ t1 and ‖vn‖qB ≤ t2.

Proof. We claim that {(un, vn)} is a bounded sequence. Indeed, by (5.3),

(F3) and (3.1), we obtain

cλ + on(1)‖(un, vn)‖ ≥ J(un, vn)− J ′(un, vn) ·
(

1

ξ1
un,

1

ξ2
vn

)
≥
[
m0

p
− 1

ξ1
Mt1(t1)

]
‖un‖pA +

[
m0

q
− 1

ξ2
Mt2(t2)

]
‖vn‖qB ,

which implies that {(un, vn)} is a bounded sequence. Thus, from (5.3) we obtain

|J ′(un, vn) · (un, vn)| ≤ |J ′(un, vn)| · ‖(un, vn)‖ → 0,

as n→ +∞. Which implies that

cλ = J(un, vn)− J ′(un, vn) ·
(

1

ξ1
un,

1

ξ2
vn

)
+ on(1)

≥
[
m0

p
− 1

ξ1
Mt1(‖un‖pA)

]
‖un‖pA +

[
m0

q
− 1

ξ2
Mt2(‖vn‖qB)

]
‖vn‖qB + on(1).
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Now, suppose that either ‖un‖pA > t1 or ‖vn‖qB > t2. Without loss of generality,

suppose ‖un‖pA > t1. Since Mt2 is increasing, from (3.1), we have

Mt2(‖vn‖qB) ≤Mt2(t2) <
ξ2
q
m0,

which implies
1

q
m0 −

1

ξ2
Mt2(‖vn‖qB) > 0.

Moreover, since ‖un‖p > t1, we have Mt1(‖un‖pA) = Mt1(t1). Thus, we obtain

cλ >

[
m0

p
− 1

ξ1
Mt1(t1)

]
t1 + on(1).

Passing to the limit as n→ +∞, we obtain

cλ ≥
[
m0

p
− 1

ξ1
Mt1(t1)

]
t1, for all λ > λ3,

which contradicts with Remark 5.4. The same occurs if we suppose ‖vn‖qB > t2.

This concludes the proof. �

Proof of Theorem 1.1. It follows from Lemma 5.3 that there exists λ4 > 0

such that

(5.4) cλ <

(
α

ξ1
+
γ

ξ2
− 1

)
m0

α+ γ
Kr1,r2 , for all λ > λ4.

Set λ∗ = max{λ3, λ4}. Fix λ ≥ λ∗. From Lemmas 5.1 and 5.2, there exists

a bounded sequence {(un, vn)} ⊂ E such that J(un, vn)→cλ and J ′(un, vn)→0

in E−1, as n → ∞. Since (5.4) holds, it follows from Lemma 4.1 that, up to

a subsequece, (un, vn) → (u, v) strongly in E. Thus (u, v) is a weak solution

to problem (3.2). Moreover, by Lemma 5.5 we conclude that (u, v) is a weak

solution to problem (1.1). �

6. Proof of Theorem 1.2

In this section we prove Theorem 1.2. We remind that we suppose that p = q

to get a result for all λ > 0. Moreover, we are considering a1 = a2, what implies

that A = B.

We observe that if p = q, we also can apply Lemmas 5.1 and 5.2 to show

that the functional J has the Mountain Pass geometry. So, using a version

of the Mountain Pass Theorem due to Ambrosetti and Rabinowitz [2] without

the Palais-Smale condition (see [18]), one can find a sequence {(un, vn)} ⊂ E

satisfying

J(un, vn)→ cλ and J ′(un, vn)→ 0, in E−1 (dual of E),

as n → +∞, where cλ = inf
γ∈Γ

max
t∈[0,1]

J(γ(t)), Γ := {γ ∈ C([0, 1], E) : γ(0) = 0,

γ(1) = (t0u0, t0v0)}, and (u0, v0) ∈ E is such that u0 > 0 and v0 > 0.
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In order to obtain the level cλ below the level given by Lemma 4.1, we will

give some estimates. We define the Sobolev space

W 1,p
a1,b1

(Ω) = {u ∈ Lp
∗
(Ω, |x|−b1p

∗
) : |∇u| ∈ Lp(Ω, |x|−a1p)},

and endow it with the norm

‖u‖W 1,p
a1,b1

(Ω) = ‖u‖p∗,b1p∗ + ‖∇u‖p,a1p.

We consider the best constant of the weighted Caffarelli–Kohn–Nirenberg type

given by

S̃a1,p = inf
u∈W 1,p

a1,b1
(RN )\{0}


∫
RN

|x|−a1p|∇u|p dx(∫
RN

|x|−b1p
∗
|u|p

∗
dx

)p/p∗
 .

We also set R1,p
a1,b1

(Ω) as the subspace of W 1,p
a1,b1

(Ω) of the radial functions, more

precisely,

R1,p
a1,b1

(Ω) =
{
u ∈W 1,p

a1,b1
(Ω) : u(x) = u(|x|)

}
,

endowed with the induced norm

‖u‖R1,p
a1,b1

(Ω) = ‖u‖W 1,p
a1,b1

(Ω).

Horiuchi [13] has proved that

S̃a1,p,R = inf
u∈R1,p

a1,b1
(RN )\{0}


∫
RN

|x|−a1p|∇u|p dx(∫
RN

|x|−b1p
∗
|u|p

∗
dx

)p/p∗


is achieved by the functions of the form uε(x) = ka1,p(ε)vε(x) for all ε > 0, where

ka1,p(ε) = cε(N−d1p)/d1p2

and

vε(x) =
(
ε+ |x|(d1p(N−p−a1p))/((p−1)(N−d1p))

)−(N−d1p)/(d1p)
.

Moreover, uε satisfies

(6.1)

∫
RN

|x|−a1p|∇uε|p dx =

∫
RN

|x|−b1p
∗
|uε|p

∗
dx = (S̃a1,p,R)p

∗/(p∗−p).

From (6.1) we obtain

(6.2)

∫
RN

|x|−a1p|∇vε|p dx = [ka1,p(ε)]
−p(S̃a1,p,R)p

∗/(p∗−p)

and

(6.3)

∫
RN

|x|−b1p
∗
|vε|p

∗
dx = [ka1,p(ε)]

−p∗(S̃a1,p,R)p
∗/(p∗−p).
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Let R0 be a positive constant and set Ψ∈C∞0 (RN ) be such that 0 ≤ Ψ(x)≤1,

Ψ(x) = 1, for all |x| ≤ R0, and Ψ(x) = 0, for all |x| ≥ 2R0. Set

(6.4) ṽε(x) = Ψ(x)vε(x),

for all x∈RN and ε>0. Without loss of generality we can consider B(0; 2R0)⊂Ω.

Lemma 6.1.

lim
ε→0+

‖ṽε‖pA(∫
Ω

|x|−b1p
∗
|ṽε|p

∗
dx

)p/p∗ = 0.

Proof. By a straightforward computation we obtain

(6.5) ‖ṽε‖pA ≤ [ka1,p(ε)]
−p(S̃a1,p,R)p

∗/p∗−p +O(1)

and

(6.6)

∫
Ω

|x|−b1p
∗
|ṽε|p

∗
dx = ε−(N−d1p/(d1p)p∗ ·O(1), for all ε ∈ (0, 1),

where O(1) denotes a positive constant. Therefore, for all ε ∈ (0, 1), from (6.5)

and (6.6) we obtain

‖ṽε‖pA(∫
Ω

|x|−b1p
∗
|ṽε|p

∗
dx

)p/p∗ ≤ [ka1,p(ε)]
−p(S̃a1,p,R)p

∗/(p∗−p) +O(1)(
ε−(N−d1p)/(d1p)p∗ ·O(1)

)p/p∗
=
c−p(S̃a1,p,R)p

∗/(p∗−p)ε(N−d1p)/(d1p)(p−1) +O(1)ε(N−d1p)/(d1pp)

O(1)
.

Since p > 1, we have

lim
ε→0+

‖ṽε‖pA(∫
Ω

|x|−b1p
∗
|ṽε|p

∗
dx

)p/p∗ = 0. �

Lemma 6.2. Suppose p = q. Assume (M1), (M2), (F1) and (F2) hold. Set

l∗ = min

{(
1

p
m0 −

1

ξ1
M1(t1)

)
t1,

(
1

p
m0 −

1

ξ1
M2(t2)

)
t2,(

α

ξ1
+
γ

ξ2
− 1

)
m0

p∗

(
m0

2p∗C

)p/(p∗−p)}
.

Then, there exists ε1 ∈ (0, 1) such that sup
t≥0

J(t(ṽε, ṽε)) < l∗, for all ε ≤ ε1.

Proof. Let 0 < ε < 1 and ṽε be as in (6.4). Since from Lemmas 5.1 and 5.2

the functional J satisfies the Mountain Pass geometry, there exists tε > 0 such

that

sup
t≥0

J(t(ṽε, ṽε)) = J(tε(ṽε, ṽε)).
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Since p = q, we have

sup
t≥0

J(t(ṽε, ṽε)) =
1

p
M̂t1(‖tεṽε‖pA) +

1

p
M̂t2(‖tεṽε‖pA)

− λ
∫

Ω

|x|−cF (x, tεṽε, tεṽε) dx−
∫

Ω

|x|−βtp
∗

ε |ṽε|p
∗
dx

≤ ξ1 + ξ2
p2

m0t
p
ε‖ṽε‖

p
A − t

p∗

ε

∫
Ω

|x|−β |ṽε|p
∗
dx.

Now we consider the function g : R+ ∪ {0} → R+ ∪ {0}, given by

g(s) =

(
ξ1 + ξ2
p2

m0‖ṽε‖pA
)
sp −

(∫
Ω

|x|−β |ṽε|p
∗
dx

)
sp

∗
.

It is easy to see that

s =


ξ1 + ξ2
p

m0‖ṽε‖pA

p∗
∫

Ω

|x|−β |ṽε|p
∗
dx


1/(p∗−p)

is a maximum of g and we have

g(s) =

(
1

p
− 1

p∗

)(ξ1 + ξ2
p

m0

)p∗/(p∗−p)
(p∗)p/(p∗−p)

 ‖ṽε‖pA(∫
Ω

|x|−β |ṽε|p
∗
dx

)p/p∗

p∗/(p∗−p)

.

So we have

sup
t≥0

J(t(ṽε, ṽε)) ≤
(

1

p
− 1

p∗

)(ξ1 + ξ2
p

m0

)p∗/(p∗−p)
(p∗)p/(p∗−p)

·
 ‖ṽε‖pA(∫

Ω

|x|−β |ṽε|p
∗
dx

)p/p∗

p∗/(p∗−p)

.

It follows from Lemma 6.1 that there exists 0 < ε1 < 1 such that

sup
t≥0

J(t(ṽε, ṽε)) < l∗, for all ε ≤ ε1. �

Remark 6.3. Let us consider the path γ∗(t) = t(t0ṽε1 , t0ṽε1), for t ∈ [0, 1],

which belongs to Γ. It follows from Lemma 6.2 that we get the following estimate:

0 < cλ = inf
γ∈Γ

max
t∈[0,1]

J(γ(t)) ≤ sup
s≥0

J(s(ṽε1 , ṽε1)) < l∗.

Lemma 6.4. Suppose that p = q and (M1), (M2), (F2) and (F3) hold. Let

{(un, vn)} ⊂ E be a sequence such that

(6.7) J(un, vn)→ cλ and J ′(un, vn)→ 0,
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as n→ +∞. Then, for all n ∈ N, we have

‖un‖pA ≤ t1 and ‖vn‖pA ≤ t2.

Proof. Due to Remark 6.3 the proof is essentially the same as in Lem-

ma 5.5. �

Proof of Theorem 1.2. It follows from Remark 6.3 that

(6.8) cλ <

(
α

ξ1
+
γ

ξ2
− 1

)
m0

p∗

(
m0

2p∗C

)p/(p∗−p)
.

From Lemmas 5.1 and 5.2, there exists a bounded sequence {(un, vn)} ⊂ E such

that J(un, vn)→ cλ and J ′(un, vn)→ 0 in E−1, as n→∞. Since (6.8) holds and

p = q, it follows from Lemma 4.1 that, up to a subsequence, (un, vn) → (u, v)

strongly in E. Thus (u, v) is a weak solution to problem (3.2). Moreover, by

Lemma 6.4, we conclude that (u, v) is a weak solution to problem (1.1). �
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