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RESONANT ROBIN PROBLEMS

WITH INDEFINITE AND UNBOUNDED POTENTIAL

Nikolaos S. Papageorgiou — George Smyrlis

Abstract. We study a semilinear Robin problem with an indefinite and
unbounded potential and a reaction term which asymptotically at ±∞
is resonant with respect to any nonprincipal nonnegative eigenvalue. We

prove two multiplicity theorems producing three and four nontrivial solu-
tions respectively. Our approach uses variational methods based on the

critical point theory, truncation and perturbation techniques, and Morse

theory (critical groups).

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this paper

we study the following Robin problem:

(1.1) −∆u(z) + ξ(z)u(z) = f(z, u(z)) in Ω,
∂u

∂n
+ β(z)u = 0 on ∂Ω.

Here ξ ∈ Ls(Ω) with s > N and in general it is sign-changing (indefinite

potential) and unbounded from below. The aim of this work is to prove mul-

tiplicity theorems for problem (2.1) when the reaction f asymptotically as the

second argument tends to ±∞ interacts with the spectrum of the differential

operator −∆u+ ξ(z)u with Robin boundary conditions (resonant problems). In

particular, we show that if f(z, · ) at ±∞ is resonant with respect to any nonneg-

ative and nonprincipal eigenvalue of the differential operator, then problem (2.1)
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admits at least three nontrivial solutions. Subsequently, by strengthening the

conditions on f(z, · ), we show the existence of at least four nontrivial solutions.

Multiplicity theorems for resonant Dirichlet problems with no potential term

(that is, ξ = 0), were proved by Bartsch and Wang [3], Castro, Cossio and

Velez [4], Hofer [8], Liu and Li [10]. For resonant Neumann problems also with

zero potential term, we mention the works of Gasinski and Papageorgiou [7],

Motreanu, Motreanu and Papageorgiou [12] and Tang and Wu [19]. Recently

there have been some multiplicity theorems for elliptic problems with an in-

defnite and unbounded potential. We mention the works of Kyritsi and Papa-

georgiou [9], Papageorgiou and Papalini [15] (Dirichelt problems) and Papageor-

giou and Smyrlis [17] (Neumann problems). For the Robin problem, there is

only the recent work of Papageorgiou and Radulescu [16], who examine a class

of parametric coercive equations.

Our approach combines variational methods based on the critical point the-

ory together with truncation and perturbation techniques and Morse theory

(critical groups).

2. Mathematical background

Let X be a Banach space and X∗ its topological dual. By 〈 · , · 〉 we denote

the duality brackets for the pair (X∗, X). Given ϕ ∈ C1(X,R), we say that ϕ

satisfies the “Cerami condition” (the “C-condition” for short), if the following is

true:

“Every sequence {un}n≥1 ⊆ X such that {ϕ(un)}n≥1 is bounded and

(1 + ||un||)ϕ′(un)→ 0 in X∗ as n→∞,

admits a strongly convergent subsequence”.

This is a compactness-type condition on the functional ϕ, it is more general

than the usual “Palais–Smale condition” and it suffices to prove a deformation

theorem and from it to derive the minimax theory of the critical values of ϕ.

A basic result in this theory is the well-known “mountain pass theorem”, which

we state below in a slightly more general form (see, for example, Gasinski and

Papageorgiou [6, p. 648]).

Theorem 2.1. If ϕ ∈ C1(X) satisfies the C-condition, u0, u1 ∈ X, r > 0

are such that ||u0 − u1|| > r and

max {ϕ(u0), ϕ(u1)} < inf [ϕ(u) : ||u− u0|| = r] = mr,

c = inf
γ∈Γ

max
0≤t≤1

ϕ(γ(t)), where Γ = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1},

then c ≥ mr and c is a critical value of ϕ.

For problem (2.1) the relevant function spaces are the Sobolev space H1(Ω),

the Banach space C1(Ω) and the boundary Lebesgue spaces Lp(∂Ω) (1 ≤ p ≤ ∞).
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In what follows, by || · || we denote the norm of the Sobolev space H1(Ω) de-

fined by

||u|| =
[
||u||22 + ||Du||22

]1/2
for all u ∈ H1(Ω).

The space C1(Ω) is an ordered Banach space with positive cone

C+ = {u ∈ C1(Ω) : u(z) ≥ 0 for all z ∈ Ω}.

This cone has a nonempty interior

intC+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω}.

On ∂Ω we introduce the (N − 1)-dimensional Hausdorff measure (surface

measure) denoted by σ( · ). Using this measure, we can define the Lebesgue

spaces Lp(∂Ω) (1 ≤ p ≤ ∞). From the theory of Sobolev spaces, we know that

there exists a unique continuous linear map γ0 : H1(Ω)→ L2(∂Ω), known as the

“trace map”, such that γ0(u) = u|∂Ω for all u ∈ H1(Ω)∩C(Ω). The trace map γ0

is compact into Lq(∂Ω) for every q ∈ [1, 2(N − 1)/(N − 2)). Moreover, we know

that

im γ0 = H1/2,2(∂Ω) and ker γ0 = H1
0 (Ω).

In what follows, for the sake of notational simplicity, we drop the use of the trace

map γ0. All Sobolev functions restricted on ∂Ω are understood in the sense of

traces.

Consider a Caratheodory function f0 : Ω × R → R (that is, for all x ∈ R,

z 7→ f0(z, x) is measurable and for almost all z ∈ Ω, x 7→ f0(z, x) is continuous)

with subcritical growth in x ∈ R,

|f0(z, x)| ≤ a0(z)(1 + |x|r−1) for a.a. z ∈ Ω, all x ∈ R,

with a0 ∈ L∞(Ω)+ and

1 < r < 2∗ =


2N/(N − 2) if N ≥ 3,

r ∈ (2,∞) arbitrarily big if N = 2,

+∞ if N = 1.

We set

F0(z, x) =

∫ x

0

f0(z, s) ds, ϑ(u) = ||Du||22 +

∫
Ω

ξ(z)u2 dz +

∫
∂Ω

β(z)u2 dσ

for all u ∈ H1(Ω) and consider the C1-functional ϕ0 : H1(Ω)→ R defined by

ϕ0(u) =
1

2
ϑ(u)−

∫
Ω

F0(z, u(z)) dz for all u ∈ H1(Ω).

As in Papageorgiou and Radulescu [16], using the regularity result of Wang [20],

we have



54 N.S. Papageorgiou — G. Smyrlis

Proposition 2.2. If ξ ∈ Ls(Ω) with s > N , β ∈ W 1,∞(∂Ω), β ≥ 0, f0 is

as above and u0 ∈ H1(Ω) is a local C1(Ω)-minimizer of ϕ0, that is, there exists

ρ0 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ C1(Ω), with ||h||C1(Ω) ≤ ρ0,

then u0 ∈ C1,α(Ω) for some α ∈ (0, 1) and u0 is a local H1(Ω)-local minimizer

of ϕ0, that is, there exists ρ1 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ H1(Ω), with ||h|| ≤ ρ1.

We will use spectral properties of the Robin differential operator of problem

(2.1). For this reason, we consider the following linear eigenvalue problem:

(2.1) −∆u(z) + ξ(z)u(z) = λu(z) in Ω,
∂u

∂n
+ β(z)u = 0 on ∂Ω.

Concerning the boundary weight β, the following condition will be in effect

throughout the rest of this paper:

H(β) β ∈W 1,∞(∂Ω), β ≥ 0.

Evidently, if β ≡ 0 then we have the Neumann problem. Therefore our ana-

lysis of (2.1) incorporates that in the work of Papageorgiou and Smyrlis [17]. In

fact our arguments follow those of [17] with suitable modifications to incorporate

the presence of the boundary term.

Proposition 2.3. If ξ ∈ LN/2(Ω) when N ≥ 3, ξ ∈ Ls(Ω) with s > 1 when

N = 2, ξ ∈ L1(Ω) when N = 1 and H(β) holds, then

λ̂1 = inf [ϑ(u) : u ∈ H1(Ω), ||u||2 = 1] > −∞.

Proof. We argue indirectly. Suppose that λ̂1 = −∞. Then we can find

{un}n≥1 ⊆ H1(Ω) such that

(2.2) ||un||2 = 1 for all n ≥ 1 and ϑ(un)→ −∞ as n→∞.

So, we can find n0 ∈ N such that

(2.3) ϑ(un) ≤ −1 for all n ≥ n0.

Suppose that ||un|| → ∞ as n → ∞. We set yn = un/||un|| for n ≥ 1. Then

||yn|| = 1 for all n ≥ 1 and so we may assume that

(2.4) yn
w−→ y in H1(Ω) and yn → y in L2(Ω) and L2(∂Ω).

Note that, by the Sobolev embedding theorem, we have that {y2
n}n≥1 ⊆ L2∗/2(Ω)

is bounded. Therefore, we can say that y2
n

w−→ y2 in L2∗/2(Ω) as n → ∞
(see (2.4)). By hypothesis, ξ ∈ LN/2(Ω) and for N ≥ 3, 2/2∗ + 2/N = 1. So, we

have

(2.5)

∫
Ω

ξ(z)y2
n dz →

∫
Ω

ξ(z)y2 dz as n→∞.



Resonant Robin Problems 55

Also, hypothesis H(β) and (2.4) imply that

(2.6)

∫
∂Ω

β(z)y2
n dσ →

∫
∂Ω

β(z)y2 dσ as n→∞.

Note that

(2.7) ||yn||2 =
||un||2
||un||

=
1

||un||
for all n ≥ 1 (see (2.3))

⇒ ||y||2 = 0 (see (2.4)) and so y = 0.

From (2.3) we have

ϑ(yn) ≤ − 1

||un||2
for all n ≥ n0 ⇒ yn → 0 in H1(Ω)

(see (2.4)–(2.7)), which contradicts to the fact that ||yn|| = 1 for all n ≥ 1.

Hence {un}n≥1 ⊆ H1(Ω) is bounded. By passing to a suitable subsequence if

necessary, we have

un
w−→ u in H1(Ω),

∫
Ω

ξ(z)u2
n dz →

∫
Ω

ξ(z)u2 dz,∫
∂Ω

β(z)u2
n dσ →

∫
∂Ω

β(z)u2 dσ.(2.8)

From (2.3) and (2.8), we have ϑ(u) = −∞, a contradiction. Therefore λ̂1 > −∞.�

Remark 2.4. By the Lagrange multiplier rule, λ̂1 is the first eigenvalue

of (2.1).

The next proposition will allow us to use the spectral theory of compact

self-adjoint operators in order to analyze problem (2.1).

Proposition 2.5. If ξ ∈ LN/2(Ω) when N ≥ 3, ξ ∈ Ls(Ω) with s > 1 when

N = 2, ξ ∈ L1(Ω) when N = 1 and H(β) holds, then there exist µ > max{−λ̂1, 0}
and c0 > 0 such that

ϑ(u) + µ||u||22 ≥ c0||u||2 for all u ∈ H1(Ω).

Proof. Suppose that the statement does not hold. Then for every n ∈ N
we can find un ∈ H1(Ω) such that

(2.9) ϑ(un) + n||un||22 <
1

n
||un||2.

Let yn = un/||un||, n ≥ 1. Then ||yn|| = 1 for all n ≥ 1 and so, by passing to

a suitable subsequence if necessary, we may assume that

(2.10) yn
w−→ y in H1(Ω), yn → y in L2(Ω) and L2(∂Ω) as n→∞.

From (2.9) we have

(2.11) ϑ(yn) + n||yn||22 <
1

n
for all n ≥ 1.
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Note that ϑ is sequentially weakly lower semicontinuous. So, from (2.10) we have

(2.12) ϑ(y) ≤ lim inf
n→∞

ϑ(yn).

So, if in (2.11) we pass to the limit as n→∞ and use (2.12), then

lim
n→∞

(n||yn||22) = 0,(2.13)

⇒ y = 0 (see (2.10)),

⇒ yn → 0 in H1(Ω) (see (2.11)–(2.13)).

This contradicts to the fact that ||yn|| = 1 for all n ≥ 1 and thus proves the

proposition. �

Having this proposition, we can introduce an equivalent inner product ( · , · )∗
on H1(Ω), by setting for all u, h ∈ H1(Ω),

(u, y)∗ =

∫
Ω

(Du,Dy)RN dz +

∫
Ω

(ξ(z) + µ)uh dz +

∫
∂Ω

β(z)uh dσ.

Given g ∈ L2(Ω), by the Riesz representation theorem, we can find a unique

u ∈ H1(Ω) such that

(u, h)∗ =

∫
Ω

gh dz for all h ∈ H1(Ω).

This introduces a continuous linear map K∗ : L2(Ω)→ H1(Ω) defined by

K∗(g) = u.

Let i : H1(Ω) → L2(Ω) be the embedding map. By the Sobolev embedding

theorem, we know that i is compact. We have

(2.14) ((K∗ ◦ i)(v), h)∗ =

∫
Ω

vh dz for all v, h ∈ H1(Ω).

Evidently, K∗ ◦ i is compact and self-adjoint. Moreover, we have

((K∗ ◦ i)(v), v)∗ = ||v||22 > 0 for all v ∈ H1(Ω), v 6= 0.

Then, from the spectral theorem for compact self-adjoint positive operators (see,

for example, Gasinski and Papageorgiou [6, p. 296]), we can find a sequence

{τn}n≥1 ⊆ (0,+∞) of eigenvalues of K∗ ◦ i such that τ1 > . . . > τn → 0+.

Let λ̂n = 1/τn − µ for all n ≥ 1. Then −∞ < λ̂1 < . . . < λ̂n → +∞ as

n→∞. Also, there is a corresponding sequence {ûn}n≥1 ⊆ H1(Ω) of eigenfunc-

tions (counting the multiplicity of each eigenvalue), which form an orthogonal

basis of H1(Ω) and an orthonormal basis of L2(Ω). In fact, if ξ ∈ Ls(Ω) with

s > N then, using the regularity result of Wang [20], we can say that ûn ∈ C1(Ω)

for all n ∈ N.

In what follows, by E(λ̂n) we denote the eigenspace corresponding to the

eigenvalue λ̂n. We know that E(λ̂n) is finite dimensional. Also, if ξ ∈ Ls(Ω)

with s > N then E(λ̂n) ⊆ C1(Ω). From de Figueiredo and Gossez [5], we know
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that E(λ̂n) has the so-called “Unique Continuation Property” (UCP for short),

namely, if u ∈ E(λ̂n) and u vanishes on a set of positive measure, then u ≡ 0.

We have the following orthogonal direct sum decomposition:

H1(Ω) =
⊕
n≥1

E(λ̂n).

The eigenvalues {λ̂k}k≥1 have the following variational characterizations:

(2.15) λ̂1 = inf

[
ϑ(u)

||u||22
: u ∈ H1(Ω), u 6= 0

]
and for m ≥ 2 we have

λ̂m = inf

[
ϑ(u)

||u||22
: u ∈

⊕
k≥m

E(λ̂k), u 6= 0

]
(2.16)

= sup

[
ϑ(u)

||u||22
: u ∈

m⊕
k=1

E(λ̂k), u 6= 0

]
.

The infimum in (2.15) is realized on E(λ̂1), while in (2.16) both the infimum and

the supremum are realized on E(λ̂m). From (2.15) it is clear that the elements

of E(λ̂1) do not change sign. In what follows, by û1 ∈ H1(Ω) we denote the

L2-normalized (that is, ||û1||2 = 1) positive eigenfunction corresponding to λ̂1.

If ξ ∈ Ls(Ω) with s > N then û1 ∈ C+ \ {0}. Moreover, if ξ+ ∈ L∞(Ω)+ then

the maximum principle (see, for example, Gasinski and Papageorgiou [6, p. 738])

implies that û1 ∈ intC+. We mention that all the other eigenvalues have nodal

(sign-changing) eigenfunctions (see, for example, Gasinski and Papageorgiou [6,

p. 743]).

As an easy consequence of the variational characterizations (2.15) and (2.16)

and of the UCP of the eigenspaces, we have the following useful inequalities.

Proposition 2.6. (a) If η ∈ L∞(Ω) and η(z) ≤ λ̂k for almost all z ∈ Ω with

strict inequality on a set of positive measure, then

ϑ(u)−
∫

Ω

η(z)u2 dz ≥ c1||u||2 for some c1 > 0, all u ∈
⊕
n≥k

E(λ̂n).

(b) If η ∈ L∞(Ω) and η(z) ≥ λ̂k for almost all z ∈ Ω with strict inequality on

a set of positive measure, then

ϑ(u)−
∫

Ω

η(z)u2dz ≤ −c2||u||2 for some c2 > 0, all u ∈
k⊕

n=1

E(λ̂n).

Let m ∈ L∞(Ω)+, m 6= 0. In addition to the eigenvalue problem (2.1), we

consider also the following weighted version of it:

(2.17) −∆u(z) + ξ(z)u(z) = λm(z)u(z) in Ω,
∂u

∂n
+ β(z)u = 0 on ∂Ω.
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The same analysis and the same results are also valid for problem (2.17). The

eigenvalues of (2.17) are denoted by λ̃k(m), k ∈ N, to emphasize the depen-

dence on the weight and in the variational characterizations (2.15) and (2.16)

the quotient ϑ(u)/||u||22 is replaced by ϑ(u)/
∫

Ω
m(z)u2 dz.

From the general spectral theory (see, for example, Gasinski and Papageor-

giou [6, p. 710]), we have that

(2.18) λ̃k(m) = inf
Y ∈Lk−1

sup
u∈Y ⊥

[
ϑ(u) :

∫
Ω

m(z)u2 dz = 1

]
with Lk−1 being the family of all (k − 1)-dimensional subspaces of H1(Ω).

From (2.18) we are led to the following strict monotonicity property of the

map m→ λ̃k(m).

Proposition 2.7. If m,m′ ∈ L∞(Ω)+, m(z) ≤ m′(z) for almost all z ∈ Ω

and the inequality is strict on a set of positive measure, then λ̃k(m′) < λ̃k(m).

Next we recall some basic definitions and facts from Morse theory (critical

groups) which we will need in the sequel. So, let X be a Banach space, ϕ ∈
C1(X,R) and c ∈ R. We introduce the sets ϕc = {u ∈ X : ϕ(u) ≤ c}, Kϕ =

{u ∈ X : ϕ′(u) = 0} and Kc
ϕ = {u ∈ Kϕ : ϕ(u) = c}.

Let (Y1, Y2) be a topological pair such that Y2 ⊆ Y1 ⊆ X. For every

k ∈ N0, by Hk(Y1, Y2) we denote the kth-relative singular homology group for

the topological pair (Y1, Y2) with integer coefficients. Recall that for k ∈ −N,

Hk(Y1, Y2) = 0. Let u ∈ Kc
ϕ be isolated. The critical groups of ϕ at u ∈ X are

defined by

Ck(ϕ, u) = Hk(ϕc ∩ U,ϕc ∩ U \ {u}) for all k ∈ N0.

Here U is a neighbuorhood of u such that Kϕ ∩ ϕc ∩ U = {u}. The excision

property of singular homology theory implies that this definition of critical groups

is independent of the choice of the neighbourhood U .

Suppose that ϕ satisfies the C-condition and inf ϕ(Kϕ) > −∞. Let c <

inf ϕ(Kϕ). The critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X,ϕc) for all k ∈ N0.

The second deformation theorem (see, for example, Gasinski and Papageor-

giou [6, p. 628]), implies that the above definition of critical groups at infinity, is

independent of the choice of the level c < inf ϕ(Kϕ).

Suppose that Kϕ is finite. We introduce the following quantities:

M(t, u) =
∑
k≥0

rankCk(ϕ, u) tk for all t ∈ R, all u ∈ Kϕ,

P (t,∞) =
∑
k≥0

rankCk(ϕ,∞) tk for all t ∈ R.
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The “Morse relation” says that

(2.19)
∑
u∈Kϕ

M(t, u) = P (t,∞) + (1 + t)Q(t),

where Q(t) =
∑
k≥0

βkt
k is a formal series in t ∈ R with nonnegative integer

coefficients βk.

Recall that a Banach space X has the “Kadec–Klee property”, if the following

is true:

un
w−→ u in X and ||un|| → ||u|| ⇒ un → u in X.

If x ∈ R, we set x± = max{±x, 0}. Then, for u ∈ H1(Ω) we define u±( · ) =

u( · )±. We have u± ∈ H1(Ω), u = u+ − u− and |u| = u+ + u−.

For every measurable function h : Ω× R→ R (for example, a Carathéodory

function), we set

Nh(u)( · ) = h( · , u( · )) for all u ∈ H1(Ω)

(the Nemytskĭı map corresponding to h). By | · |N we denote the Lebesgue

measure on RN . Finally, let m0 = min[m ∈ N : λ̂m ≥ 0].

3. Three nontrivial solutions

In this section we prove a multiplicity theorem producing three nontrivial

smooth solutions for equations which at ±∞ can be resonant with respect to

any nonprincipal, nonnegative eigenvalue λ̂m.

We impose the following conditions on the potential ξ and on the reaction

term f :

H(ξ) ξ ∈ Ls(Ω) with s > N if N ≥ 2 and s ≥ 1 if N = 1 and ξ+ ∈ L∞(Ω).

(H1) f : Ω × R → R is a Carathéodory function such that f(z, 0) = 0 for

almost all z ∈ Ω and

(i) for every ρ > 0, there exists aρ ∈ Ls(Ω), s > N , such that

|f(z, x)| ≤ aρ(z) for a.a. z ∈ Ω, all |x| ≤ ρ;

(ii) there exist m ≥ max{m0, 2} and a function η̂ ∈ L∞(Ω) such that

η̂(z) ≤ λ̂m+1 for a.a. z ∈ Ω, strictly on a set of positive measure,

λ̂m ≤ lim inf
x→±∞

f(z, x)

x
≤ lim sup

x→±∞

f(z, x)

x
≤ η̂(z) uniformly for a.a. z ∈ Ω;

(iii) if F (z, x) =
∫ x

0
f(z, s) ds, then lim

x→±∞
[2F (z, x) − xf(z, x)] = +∞

uniformly for almost all z ∈ Ω;

(iv) there exists ζ0 ∈ L∞(Ω) such that

ζ0(z) ≤ λ̂1 for a.a. z ∈ Ω, strictly on a set of positive measure,
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lim sup
x→0

f(z, x)

x
≤ ζ0(z) uniformly for a.a. z ∈ Ω;

(v) for every ρ > 0, there exists ξ̂ρ > 0 such that

f(z, x)x+ ξ̂ρx
2 ≥ 0 for a.a. z ∈ Ω, all |x| ≤ ρ.

Remarks 3.1. Hypothesis (H1) (ii) says that asymptotically at ±∞, the

quotient f(z, x)/x reaches the spectral interval [λ̂m, λ̂m+1]. Resonance can oc-

cur with respect to λ̂m while with respect to the right endpoint λ̂m+1 we have

nonuniform nonresonance. Hypotheses (H1) (iv), (v) dictate a linear growth near

zero.

Examples 3.2. The following function satisfies hypotheses (H1). For the

sake of simplicity, we drop the z-dependence:

f(x) =


ηx− γ0 if x < −1,

x(γ cos(πx2/2) + c|x|) if − 1 ≤ x ≤ 1,

ηx+ γ0 if x > 1,

with γ < λ̂1, η ∈ [λ̂m, λ̂m+1) and c = η + γ0, γ0 > 0.

We introduce the following truncations-perturbations of the reaction f(z, · ).
Here µ > 0 is as in Proposition 2.5.

(3.1)
f̂+(z, x) =

0 if x ≤ 0,

fµ(z, x) if 0 < x,

f̂−(z, x) = fµ(z, x)− f̂+(z, x),

where fµ(z, x) = f(z, x) + µx. Both are Carathéodory functions. We set

F̂±(z, x) =

∫ x

0

f̂±(z, s) ds

and consider the C1-functional ϕ̂± : H1(Ω)→ R defined by

ϕ̂±(u) =
1

2
ϑ(u) +

µ

2
||u||22 −

∫
Ω

F̂±(z, u) dz for all u ∈ H1(Ω).

Also let ϕ : H1(Ω)→ R be the energy functional for problem (1.1) defined by

ϕ(u) =
1

2
ϑ(u)−

∫
Ω

F (z, u) dz for all u ∈ H1(Ω).

Evidently ϕ ∈ C1(H1(Ω)).

Proposition 3.3. If hypotheses H(β), H(ξ) and (H1) hold, then the func-

tionals ϕ̂± satisfy the C-condition.
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Proof. We do the proof for ϕ̂+, the proof for ϕ̂− being similar. So, let

{un}n≥1 ⊆ H1(Ω) be a sequence such that

|ϕ̂+(un)| ≤M1 for some M1 > 0, all n ∈ N,(3.2)

(1 + ||un||)ϕ̂′+(un)→ 0 in H1(Ω)∗ as n→∞.(3.3)

From (3.3) we have

(3.4)

∣∣∣∣〈A(un), h〉+

∫
Ω

(ξ(z) + µ)unh dz +

∫
∂Ω

β(z)unh dσ

−
∫

Ω

f̂+(z, un)h dz

∣∣∣∣ ≤ εn||h||
1 + ||un||

,

for all h ∈ H1(Ω), with εn ↓ 0. Here A ∈ L(H1(Ω), H1(Ω)∗) is defined by

〈A(u), y〉 =

∫
Ω

(Du,Dy)RN dz for all u, y ∈ H1(Ω).

In (3.4) we choose h = −u−n ∈ H1(Ω) and obtain

ϑ(u−n ) + µ||u−n ||22 ≤ εn for all n ≥ 1 (see (3.1)),

⇒ c0||u−n ||22 ≤ εn for all n ≥ 1 (see Proposition 2.5),

⇒ u−n → 0 in H1(Ω) as n→∞.(3.5)

Claim. {u+
n }n≥1 ⊆ H1(Ω) is bounded.

We argue by contradiction. Suppose that the claim is not true. Then by

passing to a subsequence if necessary, we may assume that ||u+
n || → ∞.

Let yn = u+
n /||u+

n ||, n ≥ 1. Then ||yn|| = 1, yn ≥ 0 for all n ≥ 1 and we may

assume that

(3.6) yn
w−→ y in H1(Ω) and yn → y in L2s/(s−1)(Ω) and L2(∂Ω).

From (3.1), (3.4) and (3.5), we have

(3.7)

∣∣∣∣〈A(yn), h〉+

∫
Ω

ξ(z)ynh dz

+

∫
∂Ω

β(z)ynh dz −
∫

Ω

Nf (u+
n )

||u+
n ||

h dz

∣∣∣∣ ≤ ε′n||h||,
for all h ∈ H1(Ω), with ε′n → 0. Hypotheses (H1) (i), (ii) imply that

|f(z, x)| ≤ â(z)(1 + |x|) for a.a. z ∈ Ω, all x ∈ R, with â ∈ L2(Ω)+,(3.8)

⇒
{
Nf (u+

n )

||u+
n ||

}
n≥1

⊆ L2(Ω) is bounded.(3.9)
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In (3.7) we choose h = yn − y ∈ H1(Ω), pass to the limit as n → ∞ and use

(3.6) and (3.9). Then

lim
n→∞

〈A(yn), yn − y〉 = 0,(3.10)

⇒ ||Dyn||2 → ||Dy||2 (see (3.6)).(3.11)

Hilbert spaces have the Kadec–Klee property (it can be verified using the paral-

lelogram law). So, from (3.6) and (3.10) we infer that

yn → y in H1(Ω),

⇒ ||y|| = 1, y ≥ 0.(3.12)

From (3.9) and hypothesis (H1) (ii), at least for a subsequence, we have

(3.13)
Nf (u+

n )

||u+
n ||

w−→ ηy in L2(Ω) with λ̂m ≤ η(z) ≤ η̂(z) for a.a. z ∈ Ω

(see Aizicovici, Papageorgiou and Staicu [1], proof of Proposition 16). So, if in

(3.7) we pass to the limit as n→∞ and use (3.6) and (3.13), then

〈A(y), h〉+

∫
Ω

ξ(z)yh dz +

∫
∂Ω

β(z)yh dσ =

∫
Ω

η(z)yh dz

for all h ∈ H1(Ω),

(3.14) ⇒ −∆y(z) + ξ(z)y(z) = η(z)y(z),
∂y

∂n
+ β(z)y = 0, on ∂Ω

for almost all z ∈ Ω (see Papageorgiou and Radulescu [16]). From (3.13), (3.14)

and Proposition 2.7, we have

λ̃m(η) ≤ λ̃m(λ̂m) = 1 and 1 = λ̃m+1(λ̂m+1) < λ̃m+1(η).

Returning to (3.14) and recalling that m ≥ 2, we see that y is either nodal or

zero. Both contradict (3.12). This proves Claim.

Then (3.5) and Claim imply that {un}n≥1 ⊆ H1(Ω) is bounded. So, as

before, we may assume that

(3.15) un
w−→ u in H1(Ω) and un → u in L2s/(s−1)(Ω) and L2(∂Ω).

In (3.4) we choose h = un − u ∈ H1(Ω), pass to the limit as n → ∞ and use

(3.15). Then

lim
n→∞

〈A(un), un − u〉 = 0,

⇒ un → u in H1(Ω) (as before via the Kadec–Klee property),

⇒ ϕ̂+ satisfies the C-condition.

Similarly we show that ϕ̂− satisfies the C-condition. �
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Proposition 3.4. If hypotheses H(β), H(ξ) and (H1) hold, then the energy

functional ϕ satisfies the C-condition.

Proof. Let {un}n≥1 ⊆ H1(Ω) be a sequence such that

|ϕ(un)| ≤M2 for some M2 > 0 and all n ≥ 1,(3.16)

(1 + ||un||)ϕ′(un)→ 0 in H1(Ω)∗ as n→∞.(3.17)

From (3.17) we have

(3.18)

∣∣∣∣〈A(un), h〉+

∫
Ω

ξ(z)unh dz +

∫
∂Ω

β(z)unh dσ

−
∫

Ω

f(z, un)h dz

∣∣∣∣ ≤ εn||h||
1 + ||un||

,

for all h ∈ H1(Ω), with εn → 0+. In (3.18) we choose h = un ∈ H1(Ω). Then

(3.19) ϑ(un)−
∫

Ω

f(z, un)un dz ≤ εn for all n ≥ 1.

On the other hand, from (3.16) we have

(3.20) −ϑ(un) +

∫
Ω

2F (z, un) dz ≤ 2M2 for all n ≥ 1.

We add (3.19) and (3.20) and obtain

(3.21)

∫
Ω

[2F (z, un)− f(z, un)un] dz ≤M3 for some M3 > 0 and all n ≥ 1.

Claim. {un}n≥1 ⊆ H1(Ω) is bounded.

We argue indirectly. Suppose that the claim is not true. Passing to a suitable

subsequence if necessary, we may assume that ||un|| → ∞. We introduce yn =

un/||un||, n ≥ 1. Then ||yn|| = 1 for all n ≥ 1 and so we may assume that

(3.22) yn
w−→ y in H1(Ω) and yn → y in L2s/(s−1)(Ω) and L2(∂Ω).

From (3.18) we have

(3.23)

∣∣∣∣〈A(yn), h〉+

∫
Ω

ξ(z)ynh dz +

∫
∂Ω

β(z)ynh dσ

−
∫

Ω

Nf (un)

||un||
h dz

∣∣∣∣ ≤ εn||h||
||un||(1 + ||un||)

,

for all n ≥ 1. Using (3.8), we see that{
Nf (un)

||un||

}
n≥1

⊆ L2(Ω) is bounded.
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From this and hypothesis (H1) (ii), for at least a subsequence, we may assume

that

(3.24)
Nf (un)

||un||
w−→ ηy in L2(Ω) with λ̂m ≤ η(z) ≤ η̂(z) for a.a. z ∈ Ω

(see Aizicovici, Papageorgiou and Staicu [1]). In (3.23) we choose h = yn − y ∈
H1(Ω), pass to the limit as n→∞ and use (3.22) and (3.24). Then

lim
n→∞

〈A(yn), yn − y〉 = 0

⇒ yn → y in H1(Ω) (via the Kadec–Klee property), hence ||y|| = 1.(3.25)

In (3.23) we pass to the limit as n→∞ and use (3.24), (3.25). Then

〈A(y), h〉+

∫
Ω

ξ(z)yh dz +

∫
∂Ω

β(z)yh dσ =

∫
Ω

η(z)yh dz for all h ∈ H1(Ω)

⇒ −∆y(z) + ξ(z)y(z) = η(z)y(z),
∂y

∂n
+ β(z)y = 0, on ∂Ω(3.26)

for almost all z ∈ Ω (see Papageorgiou and Radulescu [16]).

From (3.24), we have λ̂m ≤ η(z) ≤ η̂(z) ≤ λ̂m+1 for almost all z ∈ Ω and the

last inequality is strict on a set of positive measure. First assume that the first

inequality is also strict on a set of positive measure. Using Proposition 2.7, we

have

(3.27) λ̃m(η) < λ̃m(λ̂m) = 1 and 1 = λ̃m+1(λ̂m+1) < λ̃m+1(η).

From (3.26) and (3.27) it follows that y = 0, which contradicts (3.25).

Next, assume that λ̂m = η(z) for almost all z ∈ Ω. From (3.25) and (3.26),

we have

y ∈ E(λ̂m) \ {0},

⇒ y(z) 6= 0 for a.a. z ∈ Ω (by the UCP)

⇒ |un(z)| → ∞ for a.a. z ∈ Ω,

⇒ 2F (z, un(z))− f(z, un(z))un(z)→ +∞ for a.a. z ∈ Ω(3.28)

(see hypothesis (H1) (iii)).

From (3.28) and Fatou’s lemma (note that hypotheses (H1) (i), (iii) permit

its use), we obtain

(3.29)

∫
Ω

[2F (z, un(z))− f(z, un(z))un(z)] dz → +∞ as n→ +∞.

Comparing (3.29) and (3.21), we have a contradiction. This proves Claim.

Due to Claim, we may assume that

(3.30) un
w−→ u in H1(Ω) and un → u in L2s/(s−1)(Ω) and L2(∂Ω).
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We return to (3.18) and choose h = un − u ∈ H1(Ω). Passing to the limit as

n→∞ and using (3.30), we have

lim
n→∞

〈A(un), un − u〉 = 0

⇒ un → u in H1(Ω) (by the Kadec–Klee property)

⇒ ϕ satisfies the C-condition. �

Proposition 3.5. If hypotheses H(β), H(ξ) and (H1) hold, then u = 0 is

a local minimizer for the functionals ϕ̂± and ϕ.

Proof. We do the proof for the functional ϕ̂+, the proofs for the functionals

ϕ̂− and ϕ being similar. By virtue of hypothesis (H1) (iv), given ε > 0, we can

find δ = δ(ε) > 0 such that

(3.31) F (z, x) ≤ 1

2
(ζ0(s) + ε)x2 for a.a. z ∈ Ω, all |x| ≤ δ0.

Let u ∈ C1(Ω) with ||u||C1(Ω ≤ δ. We have

ϕ̂+(u) =
1

2
ϑ(u) +

µ

2
||u−||22 −

∫
Ω

F (z, u+) dz

≥ 1

2

[
ϑ(u+)−

∫
Ω

ζ0(s)(u+)2 dz − ε||u+||2
]

+
1

2
ϑ(u−) +

µ

2
||u−||22

(see (3.31))

≥ 1

2
(c1 − ε)||u+||2 +

1

2
c0||u−||2(3.32)

(see Propositions 2.5 and 2.6). Choosing ε ∈ (0, c1) from (3.29) we infer that

u = 0 is a local C1(Ω), local minimizer of ϕ̂+. Using Proposition 2.2, we conclude

that u = 0 is a local H1(Ω), local minimizer of ϕ̂+. Similarly for the functionals

ϕ̂− and ϕ. �

Now we can produce two nontrivial constant sign solutions.

Proposition 3.6. If hypotheses H(β), H(ξ) and (H1) hold, then problem

(1.1) has two nontrivial constant sign solutions

u0 ∈ intC+ and v0 ∈ −intC+.

Proof. It is straightforward to check that

u ∈ Kϕ̂+
⇒ u ≥ 0 and u ∈ Kϕ̂− ⇒ u ≤ 0.

So, we assume that both sets are finite or otherwise we already have two se-

quences of distinct positive and negative solutions, which as we will see in the

sequel belong in intC+ and in −intC+, respectively.



66 N.S. Papageorgiou — G. Smyrlis

First we produce the positive solution. From Proposition 3.5 and since Kϕ̂+

is finite, we can find ρ ∈ (0, 1) small such that

(3.33) 0 = ϕ̂+(0) < inf [ϕ̂+(u) : ||u|| = ρ] = m̂+

(see Aizicovici, Papageorgiou and Staicu [1], proof of Proposition 29).

Hypothesis (H1) (ii), and since m ≥ 2, implies that

(3.34) ϕ̂+(tû1)→ −∞ as t→ +∞ (recall that û1 ∈ intC+).

Also, from Proposition 3.3 we know that the functional ϕ̂+ satisfies the C-

condition. This fact and (3.33), (3.34) permit the use of the mountain pass

theorem (see Theorem 2.1). So, we can find u0 ∈ H1(Ω) such that u0 ∈ Kϕ̂+

and m̂+ ≤ ϕ̂+(u0). Therefore u0 ≥ 0, u0 6= 0 (see (3.33)) and, if

〈A(u0), h〉+

∫
Ω

ξ(z)u0h dz +

∫
∂Ω

β(z)u0h dσ =

∫
Ω

f(z, u0)h dz

for all h ∈ H1(Ω), then

−∆u0(z) + ξ(z)u0(z) = f(z, u0(z)) for a.a. z ∈ Ω,

∂u0

∂n
+ β(z)u0 = 0 on ∂Ω

(see Papageorgiou and Radulescu [16]).

From hypotheses (H1) (i), (ii), (iv), (v) we see that

|f(z, x)| ≤ â(z)|x| for a.a. z ∈ Ω, x ∈ R, with â ∈ Ls(Ω), s > N.

We set

λ(z) =


f(z, u0(z))

u0(z)
if u0(z) 6= 0,

0 if u0(z) = 0.

Evidently λ ∈ Ls(Ω) and we have

−∆u0(z) = (λ− ξ)(z)u0(z) for a.a. z ∈ Ω,
∂u0

∂n
+ β(z)u0 = 0 on ∂Ω.

Since λ−ξ ∈ Ls(Ω) (see hypothesis H(ξ)), from Lemma 5.1 of Wang [20] we have

u0 ∈ L∞(Ω) and so ∆u0 ∈ Ls(Ω). Then Lemma 5.2 of Wang [20] (the Calderon–

Zygmund estimates), implies that u0 ∈W 2,s(Ω). Since s > N, from the Sobolev

embedding theorem we have W 2,s(Ω) ↪→ C1+α(Ω) with α = 1−N/s > 0. Hence

u0 ∈ C+ \ {0}.
Let ρ = ||u0||∞ and let ξ̂ρ > 0 be as postulated by hypothesis (H1) (v). Then

f(z, u0(z)) + ξ̂ρu0(z) ≥ 0 for a.a. z ∈ Ω.
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So, we have

−∆u0(z) + (ξ(z) + ξ̂ρ)u0(z) ≥ 0 for a.a. z ∈ Ω,

⇒ ∆u0(z) ≤ (||ξ+||∞ + ξ̂ρ)u0(z) for a.a. z ∈ Ω (see hypothesis H(ξ))

⇒ u0 ∈ intC+

(by the maximum principle, see Gasinski and Papageorgiou [6, p. 738]). Similarly,

working with ϕ̂− we produce a negative solution v0 ∈ −intC+. �

To produce additional solutions, we need to strengthen the conditions on the

reaction term f(z, · ). More precisely, we assume the following conditions on the

function f :

(H2) f : Ω × R → R is a measurable function such that for almost all z ∈
Ω, f(z, 0) = 0, f(z, · ) ∈ C1(R \ {0}) and

(i) |f ′x(z, x)| ≤ a(z)(1 + |x|r−1) for almost all z ∈ Ω, all x 6= 0, with

a ∈ L∞(Ω)+, c > 0, 1 < r < 2∗;

(ii) there exist an integer m ≥ max{m0, 2} and a function η̂ ∈ L∞(Ω)

such that

• η̂(z) ≤ λ̂m+1 for almost all z ∈ Ω, strictly on a set of positive

measure,

• λ̂m ≤ lim inf
x→±∞

f(z, x)

x
≤ lim sup

x→±∞

f(z, x)

x
≤ η̂(z) uniformly for

almost all z ∈ Ω;

(iii) if F (z, x) =

∫ x

0

f(z, s) ds, then

lim
x→±∞

[2F (z, x)− f(z, x)x] = +∞ uniformly for a.a. z ∈ Ω;

(iv) (f ′x)+(z, 0) = lim
x→0+

f(z, x)

x
and (f ′x)−(z, 0) = lim

x→0−

f(z, x)

x
exist

uniformly for almost all z ∈ Ω, belong to L∞(Ω) and

(f ′x)+(z, 0), (f ′x)−(z, 0) ≤ λ̂1 for a.a. z ∈ Ω

and the inequalities are strict on a set of positive measure.

Remark 3.7. The stronger regularity condition on f(z, · ) and hypothesis

(H2) (iv) imply that for every ρ > 0, we can find ξ̂ρ > 0 such that f(z, x)x +

ξ̂ρx
2 ≥ 0 for almost all z ∈ Ω, all |x| ≤ ρ. So, in this case hypothesis (H1) (iv) is

automatically satisfied.

Example 3.8. The example given after hypotheses (H1), satisfies the new

hypotheses (H2) provided that in addition we assume that γ0 = (πγ − η)/2 > 0.
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Another example is provided by the function f below. Again for the sake of

simplicity we drop the z-dependence:

f(x) =


η̂x+ λ̂ if x < −1,

γ̂x+ ĉ|x| sin(πx/2)− λ̂x2 if − 1 ≤ x ≤ 0,

γx+ cx sin(πx/2)− λx2 if 0 ≤ x ≤ 1,

ηx+ λ if x > 1,

with γ, γ̂ < λ̂1, η, η̂ ∈ [λ̂m, λ̂m+1), λ, λ̂ > 0 and c = η − γ + 2λ, ĉ = η̂ − γ̂ − 2λ̂.

We can prove the following three nontrivial solutions theorem.

Theorem 3.9. If hypotheses H(β), H(ξ) and (H2) hold, then problem (1.1)

admits at least three nontrivial solutions

u0 ∈ intC+, v0 ∈ −intC+ and y0 ∈ C1(Ω).

Proof. From Proposition 3.6, we already have two nontrivial solutions

u0 ∈ intC+, v0 ∈ −intC+.

We consider the following orthogonal direct sum decomposition:

H1(Ω) = Hm ⊕ Ĥm+1,

where

Hm =

m⊕
k=1

E(λ̂k) and Ĥm+1 = H
⊥
m =

⊕
k≥m+1

E(λ̂k).

From hypotheses (H2) (i), (ii), given ε > 0, we can find c3 = c3(ε) > 0 such that

(3.35) F (z, x) ≤ 1

2
(η̂(z) + ε)x2 + c3 for a.a. z ∈ Ω, all x ∈ R.

Then, for u ∈ Ĥm+1, we have

ϕ(u) =
1

2
ϑ(u)−

∫
Ω

F (z, u) dz(3.36)

≥ 1

2

[
ϑ(u)−

∫
Ω

η̂(z)u2 dz − ε||u||2
]
− c3|Ω|N (see (3.35))

≥ 1

2
(c1 − ε)||u||2 − c3|Ω|N (see Proposition 2.6).

Choosing ε ∈ (0, c1), from (3.36) we infer that if ϕ|Ĥm+1
is coercive then

(3.37) inf
Ĥm+1

ϕ > −∞.

Claim 1. λ̂mx
2 − 2F (z, x) → −∞ as x → ±∞ uniformly for almost all

z ∈ Ω.
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From hypothesis (H2) (iii) we see that, given any γ > 0, we can find M =

M(γ) > 0 such that

(3.38) f(z, x)x− 2F (z, x) ≤ −γ for a.a. z ∈ Ω, all x ≥M.

Then, from

d

dx

F (z, x)

x2
=
f(z, x)x2 − 2xF (z, x)

x4
=
f(z, x)x− 2F (z, x)

x3
≤ − γ

x3

for almost all z ∈ Ω and all x ≥M (see (3.38)), we have

(3.39)
F (z, x)

x2
− F (z, y)

y2
≤ ξ
(

1

x2
− 1

y2

)
for a.a. z ∈ Ω, all x ≥ y ≥M.

Hypothesis (H2) (ii) implies that

(3.40) lim inf
x→±∞

F (z, x)

x2
≥ λ̂m

2
uniformly for a.a. z ∈ Ω.

So, if in (3.39) we pass to the limit as x→ +∞ and use (3.40), then

λ̂m
2
− F (z, y)

y2
≤ − γ

y2
for a.a. z ∈ Ω, all y ≥M,

⇒ λ̂my
2 − 2F (z, y) ≤ −2γ for a.a. z ∈ Ω, all y ≥M.(3.41)

Since γ > 0 is arbitrary, from (3.41) we infer that

lim
x→+∞

[λ̂mx
2 − 2F (z, x)] = −∞ uniformly for a.a. z ∈ Ω.

In a similar fashion we show that

lim
x→−∞

[λ̂mx
2 − 2F (z, x)] = −∞ uniformly for a.a. z ∈ Ω.

This proves Claim 1.

Claim 2. ϕ|Hm
is anticoercive (that is, if ||u|| → ∞ for u ∈ Hm, then

ϕ(u)→ −∞).

Arguing by contradiction, suppose we could find {un}n≥1 ⊆ Hm and γ > 0

such that

(3.42) −γ ≤ ϕ(un) for all n ≥ 1, ||un|| → ∞.

Let yn = un/||un||. Then yn ∈ Hm and ||yn|| = 1 for all n ≥ 1. Since Hm is

finite dimensional, we may assume that

(3.43) yn → y in H1(Ω), ||y|| = 1.

From (3.42) we have

(3.44) − γ

||un||2
≤ 1

2
ϑ(yn)−

∫
Ω

F (z, un)

||un||2
dz for all n ≥ 1.

From hypotheses (H2) (i), (ii), (iv), it follows that

|F (z, x)| ≤ c4(1 + |x|2) for a.a. z ∈ Ω, all x ∈ R, some c4 > 0.



70 N.S. Papageorgiou — G. Smyrlis

Therefore we see that {F ( · , un( · ))/||un||2}n≥1 ⊆ L1(Ω) is uniformly integrable.

So, by the Dunford–Pettis theorem, passing to a subsequence if necessary and

taking into account hypothesis (H2) (ii), we have

(3.45)
F ( · , un( · ))
||un||2

w−→ 1

2
ηy2 in L1(Ω),

with λ̂m ≤ η(z) ≤ η̂(z) for almost all z ∈ Ω (see Aizicovici, Papageorgiou and

Staicu [1]). Hence, if in (3.44) we pass to the limit as n → ∞ and use (3.43),

(3.45), then

(3.46) 0 ≤ 1

2
ϑ(y)− 1

2

∫
Ω

η(z)y2 dz.

First suppose that the inequality λ̂m ≤ η(z) for almost all z ∈ Ω (see (3.45))

is strict on a set of positive measure. Since y ∈ Hm (see (3.43)) and using

Proposition 2.6, we have

c2||y||2 ≤ 0 ⇒ y = 0,

which contradicts (3.43). So, we assume that η(z) = λ̂m for almost all z ∈ Ω.

From (2.16) and (3.43) we have

ϑ(y) = λ̂m||y||22 ⇒ y ∈ E(λ̂m) \ {0} (recall that y ∈ Hm)

⇒ y(z) 6= 0 for a.a. z ∈ Ω (by the UCP)

⇒ |un(z)| → +∞ for a.a. z ∈ Ω.

Using Claim 1 and Fatou’s lemma, we have

(3.47)

∫
Ω

[λ̂mu
2 − 2F (z, un)] dz → −∞ as n→∞.

On the other hand, from (3.42) we have

−2γ ≤ ϑ(un)−
∫

Ω

2F (z, un) dz ≤ λ̂m||un||2 −
∫

Ω

2F (z, un) dz

(recall that un ∈ Hm and see (2.16))

=

∫
Ω

[λ̂mu
2
n − 2F (z, un)] dz for all n ≥ 1.(3.48)

Comparing (3.47) and (3.48), we have a contradiction. This proves Claim 2.

Due to (3.37) and Claim 2, we can use Proposition 6.63 of Motreanu, Motre-

anu and Papageorgiou [13, p. 160] and infer that

Cdm(ϕ,∞) 6= 0 with dm = dimHm ≥ 2.

This implies that there exists y0 ∈ Kϕ such that

(3.49) Cdm(ϕ, y0) 6= 0 with dm = dimHm ≥ 2.
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From Proposition 3.5 we have that u = 0 is a local minimizer of ϕ. Hence

(3.50) Ck(ϕ, 0) = δk,0Z for all k ≥ 0.

From (3.49) and (3.50) it follows that y0 6= 0. From the proof of Proposition 3.6,

we know that u0 ∈ intC+ is a critical point of ϕ̂+ of mountain pass type. So,

we have

(3.51) C1(ϕ̂+, u0) 6= 0

(see Motreanu, Motreanu and Papageorgiou [13, Proposition 6.100, p. 176]).

From (3.1) it is clear that ϕ̂+|C+
= ϕ|C+

. Since u0 ∈ intC+, we have

Ck(ϕ̂+|C1(Ω), u0) = Ck(ϕ|C1(Ω), u0) for all k ≥ 0,

⇒ Ck(ϕ̂+, u0) = Ck(ϕ, u0) for all k ≥ 0 (see Palais [14])

⇒ C1(ϕ, u0) 6= 0 (see (3.51)).(3.52)

Since u0 ∈ intC+ and ϕ ∈ C2−0(H1(Ω)), from (3.52) and Theorem 2.7 of Li, Li

and Lu [11], we have

(3.53) Ck(ϕ, u0) = δk,1Z for all k ≥ 0.

Similarly, using the functional ϕ̂− we show that

(3.54) Ck(ϕ, v0) = δk,1Z for all k ≥ 0.

From (3.49), (3.50), (3.53), (3.54) it follows that

y0 6∈ {0, u0, v0} ⇒ y0 is a third nontrivial solution of (1.1).

As before (see the proof of Proposition 3.6), using the regularity result of Wang [20],

we have y0 ∈ C1(Ω). �

4. Four nontrivial solutions

In this section, we strengthen the conditions on the reaction term f and

prove a new multiplicity theorem producing four nontrivial solutions. The new

hypotheses on the function f are the following:

(H3) f : Ω × R → R is a measurable function such that for almost all z ∈
Ω, f(z, 0) = 0, f(z, · ) ∈ C1(R \ {0}), hypotheses (H3) (i), (iii), (iv) are

the same as the corresponding hypotheses (H2) (i), (iii), (iv) and

(ii) there exists an integer m ≥ max{m0, 2} such that

lim
x→±∞

f(z, x)

x
= λ̂m uniformly for a.a. z ∈ Ω;

and

(f(z, x)− λ̂mx)x ≥ 0, ĉ1|x|q−1 ≤ |f(z, x)− λ̂mx| ≤ ĉ2|x|q−1

for almost all z ∈ Ω, all |x| ≥M, with M, ĉ1, ĉ2 > 0 and q ∈ (1, 2);
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(v) f ′x(z, x) ≤ η̂(z) for almost all z ∈ Ω, all x 6= 0 with η̂ ∈ L∞(Ω)+ as

in (H3) (ii) = (H2) (ii).

Remark 4.1. The new extra hypothesis (H3) (v) is satisfied if for example

(4.1) (f(z, x)− f(z, y))(x− y) ≤ η̂(z)(x− y)2

for almost all z ∈ Ω and all x, y ∈ R \ {0}.

The example given after hypotheses (H2) satisfies (H3) provided 2γ+3c ≤ η.

Theorem 4.2. If hypotheses H(β), H(ξ) and (H3) hold, then problem (1.1)

admits at least four nontrivial solutions

u0 ∈ intC+, v0 ∈ −intC+ and y0, ŷ ∈ C1(Ω).

Proof. From Theorem 3.9 we already have three nontrivial solutions

u0 ∈ intC+, v0 ∈ −intC+ and y0 ∈ C1(Ω).

From the proof of Theorem 3.9, we know that

Cdm(ϕ, y0) 6= 0 with dm = dimHm ≥ 2.

For every h ∈ Ĥm+1 =
⊕

k≥m+1

E(λ̂k), we have

〈ϕ′′(y0)h, h〉 = ϑ(h)−
∫

Ω

f ′x(z, y0)h2 dz

≥ ϑ(y)−
∫

Ω

η̂h2 dz (see hypothesis(H3) (v))

≥ c1||h||2 (see Proposition 2.6).

Then from the shifting theorem for C2−0-functions (see Li, Li and Liu [11, The-

orem 2.2]), we have

(4.2) Ck(ϕ, y0) = δk,dmZ for all k ≥ 0.

Let f(z, x) = λ̂mx+f0(z, x) with f0(z, x) a Carathéodory function such that

lim
x→±∞

f0(z, x)

x
= 0 uniformly for a.a. z ∈ Ω

(see hypothesis (H3) (ii)). Let Â ∈ L(H1(Ω), H1(Ω)∗) be defined by

〈Â(u), h〉 =

∫
Ω

(Du,Dh)RN dz +

∫
Ω

(ξ(z)− λ̂m)uh dz +

∫
∂Ω

β(z)uh dσ

for all u, h ∈ H1(Ω). This is a self-adjoint operator with 0 isolated in its spec-

trum. Moreover, we have Â|Hm−1
< 0 and Â|Hm+1

> 0. So dm−1 = dimHm−1

is the Morse index of Â at infinity and dm−1 + dimE(λ̂m) = dm = dimHm is

the extended Morse index of Â at infinity (that is, dimE(λ̂m) is the nullity of Â

at infinity).
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Let F0(z, x) =
∫ x

0
f0(z, u) du and let ψ : H1(Ω) → R be the C1-functional

defined by

ψ(u) =

∫
Ω

F0(z, u(z)) dz for all u ∈ H1(Ω).

Evidently ψ(u)/||u||2 → 0 as ||u|| → ∞ and we have

ϕ(u) =
1

2
〈A(u), u〉+ ψ(u) for all u ∈ H1(Ω).

Since ψ is bounded and as usual we assume that Kϕ is finite (otherwise we

already have an infinity of solutions), we see that condition (A∞) in Motreanu,

Motreanu and Papageorgiou [13, p. 164] and Bartsch and Li [2] is satisfied (see

also the Remark on p. 178 of [13]). Moreover, hypothesis (H3) (ii) and Lemma 2.1

of Su and Tang [18] imply that the angle condition (A−∞) in Motreanu, Motreanu

and Papageorgiou [13, p. 165] is satisfied. So Theorem 6.73 (b) of [13] implies

that

(4.3) Ck(ϕ,∞) = δk,dmZ for all k ∈ N0.

From the proof of Theorem 3.9 we know that

Ck(ϕ, 0) = δk,0Z for all k ∈ N0,(4.4)

Ck(ϕ, u0) = Ck(ϕ, v0) = δk,1Z for all k ∈ N0.(4.5)

Suppose that Kϕ = {0, u0, v0, y0}. Then from (4.2)–(4.5) and the Morse relation

with t = −1, we have

(−1)0 + 2(−1)1 + (−1)dm = (−1)dm ⇒ (−1) = 0,

a contradiction. So, there exists ŷ ∈ Kϕ, ŷ 6∈ {0, u0, v0, y0} and ŷ ∈ C1(Ω) (see

Wang [20]). This is the fourth nontrivial solution. �
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