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RESONANT ROBIN PROBLEMS
WITH INDEFINITE AND UNBOUNDED POTENTIAL

NIKOLAOS S. PAPAGEORGIOU — GEORGE SMYRLIS

ABSTRACT. We study a semilinear Robin problem with an indefinite and
unbounded potential and a reaction term which asymptotically at +oo
is resonant with respect to any nonprincipal nonnegative eigenvalue. We
prove two multiplicity theorems producing three and four nontrivial solu-
tions respectively. Our approach uses variational methods based on the
critical point theory, truncation and perturbation techniques, and Morse
theory (critical groups).

1. Introduction

Let © C RY be a bounded domain with a C2-boundary 0. In this paper
we study the following Robin problem:
(1.1)  —Au(z)+&(2)u(z) = f(z,u(z)) inQ, % + B(z)u=0 on Q.

Here £ € L*(Q)) with s > N and in general it is sign-changing (indefinite
potential) and unbounded from below. The aim of this work is to prove mul-
tiplicity theorems for problem (2.1) when the reaction f asymptotically as the
second argument tends to +oo interacts with the spectrum of the differential
operator —Au + &(z)u with Robin boundary conditions (resonant problems). In
particular, we show that if f(z, -) at 00 is resonant with respect to any nonneg-
ative and nonprincipal eigenvalue of the differential operator, then problem (2.1)
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admits at least three nontrivial solutions. Subsequently, by strengthening the
conditions on f(z, - ), we show the existence of at least four nontrivial solutions.

Multiplicity theorems for resonant Dirichlet problems with no potential term
(that is, £ = 0), were proved by Bartsch and Wang [3], Castro, Cossio and
Velez [4], Hofer [8], Liu and Li [10]. For resonant Neumann problems also with
zero potential term, we mention the works of Gasinski and Papageorgiou [7],
Motreanu, Motreanu and Papageorgiou [12] and Tang and Wu [19]. Recently
there have been some multiplicity theorems for elliptic problems with an in-
defnite and unbounded potential. We mention the works of Kyritsi and Papa-
georgiou [9], Papageorgiou and Papalini [15] (Dirichelt problems) and Papageor-
giou and Smyrlis [17] (Neumann problems). For the Robin problem, there is
only the recent work of Papageorgiou and Radulescu [16], who examine a class
of parametric coercive equations.

Our approach combines variational methods based on the critical point the-
ory together with truncation and perturbation techniques and Morse theory
(critical groups).

2. Mathematical background

Let X be a Banach space and X* its topological dual. By (-, -) we denote
the duality brackets for the pair (X*, X). Given ¢ € C'(X,R), we say that ¢
satisfies the “Cerami condition” (the “C-condition” for short), if the following is
true:

“Every sequence {uy,},>1 C X such that {¢(u,)}n>1 is bounded and

(14 [|Jun )¢’ (un) = 0 in X* as n — oo,

admits a strongly convergent subsequence”.

This is a compactness-type condition on the functional ¢, it is more general
than the usual “Palais—Smale condition” and it suffices to prove a deformation
theorem and from it to derive the minimax theory of the critical values of .
A basic result in this theory is the well-known “mountain pass theorem”, which
we state below in a slightly more general form (see, for example, Gasinski and
Papageorgiou [6, p. 648]).

THEOREM 2.1. If ¢ € CY(X) satisfies the C-condition, ug,u; € X, r > 0
are such that ||ug — u1|| > r and

max {¢(uo), p(ur)} < inf [p(u) : [Ju —uol| = r] = m,,

c= ng Olggglw(v(t)), where I' = {y € C([0,1], X) : v(0) = uo, v(1) = u1 },

then ¢ > m,. and c is a critical value of .

For problem (2.1) the relevant function spaces are the Sobolev space H'(€2),
the Banach space C'!(Q) and the boundary Lebesgue spaces L?(99) (1 < p < c0).



