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ON THE NONLINEAR ANALYSIS OF OPTICAL FLOW

Shengxiang Xia — Yanmin Yin

Abstract. We utilize the methods of computational topology to the data-

base of optical flow created by Roth and Black from range images, and

demonstrate a qualitative topological analysis of spaces of 3× 3, 5× 5 and
7 × 7 optical flow patches. We experimentally prove that there exist sub-

spaces of the spaces of the three sizes high-contrast patches that are topolo-

gically equivalent to a circle and a three circles model, respectively. The
Klein bottle is the quotient space described as the square [0, 1] × [0, 1]

with sides identified by the relations (0, y) ∼ (1, y) for y ∈ [0, 1] and

(x, 0) ∼ (1− x, 1) for x ∈ [0, 1]. For the space of 3× 3 optical flow patches
we found a subspace having the same homology as that of the Klein bottle.

As the size of patches increases, the Klein bottle feature of the spaces of

5× 5 and 7× 7 optical flow patches gradually disappears.

1. Introduction

A pixel of an image taken by a digital camera has a gray scale value. Thus,

each range image can be considered as a vector in a very high-dimensional

space X. What can be said about the set of images M ⊆ X which one gets

when one takes many images by a digital camera? The direct study of M is very

hard, because M is very high-dimensional and very sparse in X. An approxima-

tion is to analyze the space of local patterns of pixel values, modeled by small

patches of images. There are many advantages in analyzing a space of images
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locally. Firstly, this greatly reduces the dimensional problem. Next, it has been

observed by Field ([10]) and van Hateren ([18]) that understanding of the local

statistics provides a lot of information about the global statistical properties of

the image. In the paper [15], Lee, Pedersen, and Mumford study the distribu-

tions of 3×3 patches from optical and range images, they have a number of very

interesting observations about the resulting space of patches, for example, they

find that the majority of the high-contrast 3×3 optical patches are concentrated

near a 2-dimensional annulus. In the paper [7], Carlsson, Ishkanov, de Silva,

and Zomorodian apply computational topological tools to the dataset of optical

patches studied by Lee, Pedersen, and Mumford [15], they find that there exists

one high-density subset called the primary circle, and prove that there exists a

large 2-dimensional subset with the topology of a Klein bottle that contains the

primary circle, which could improve the technique of image compression ([7]).

In the paper [2], Adams and Carlsson found that 5× 5 and 7× 7 range patches

have the primary circle behavior.

The concept of optical flow was introduced by James J. Gibson in the 1940s to

represent the visual stimulus supplied to animals moving through the world [13].

Optical flow is the apparent motion of objects in a visual scene originated by

the relative motion between the viewer and the scene [19]. Optical flow has

many applications such as object segmentation, tracking, motion estimation and

video compression. Optical flow estimation is one of the basic research topics in

computer vision, there are plenty results on the topic achieved in recent years

[4], [5], [14], [17]. Natural image statistics has obtained in-depth study, due to

the difficulty of obtaining ground truth data for modeling optical flow statistics,

while the spatial statistics of optical flow is relatively undeveloped. In the paper

[16], Roth and Black constructed a database of natural scene motions by making

use of range images and camera motions (some other databases of optical flow

are available in [4], [11]), they studied the spatial statistics of optical flow and

gained a rich prior model of optical flow. In the paper [1], Adams, Atanasov,

and Carlsson applied the nudged elastic band technique to analyse data of the

database, they found a new topological feature of an optical flow data set for 3×3

optical flow patches. Since the optical flow database was created from the Brown

range image database by pairing range images with camera motions, spaces of

small patches in optical flow may have same topological structures as that of

small patches of range images (see the papers [2], [20]); moreover the authors

of the paper [1] have found a similar topological structure for 3× 3 optical flow

patches.

In this paper, we analyze the structure of high-contrast regions of optical

flow instead of looking at an optical flow as a whole, we are interested in the

topology of the space of n × n high-contrast patches with sufficiently small n.
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We use the methods of the paper [7] to high-contrast optical flow patches, we

study the topological features of spaces of 3 × 3, 5 × 5, and 7 × 7 patches of

optical flow. In particular, we detect that there exist density subsets of 5×5 and

7×7 optical flow patches which are topologically equivalent to a circle (called the

primary circle) and a three circles model, respectively. Adams, Atanasov, and

Carlsson [1] have shown that 3× 3 optical flow patches have the primary circle

behavior. Furthermore, we show that there exists a two-dimensional subspace of

3× 3 optical flow patches whose topology is that of the Klein bottle. As sizes of

patches increase, the Klein bottle feature of the spaces gradually weakens. The

results of this paper indicate that some results of topological analysis of natural

images and range images can be extended to the field of image motion.

In Section 2 we survey persistent homology, and in Section 3 we describe

our data sets selected from the optical flow database. We give results on core

subsets in Section 4. We establish the relation between the spaces of optical flow

patches and the space of two-variable polynomials in Section 5, present results

on our data sets in Section 6, and summarize in Section 7.

2. Persistent homology

Given a point-cloud dataset P sampled from an underlying space X, one

wants to build a simplicial complex K to approximate the topological structure

of X. A natural approach is to express the data by a simplicial complex K, with

the data points as vertices, and adding edges, triangles and high-dimensional cells

according to proper rules. If K is an accurate reliable topological representation

of X, then one can obtain Betti numbers βk = βk(X), by computing the numbers

βk(K) ([8]), the k-th Betti number βk is the rank of the k-th homology group

of K. A number of simplicial complexes can be built from a sampled point set

of X. Due to the dimensional issue, in practice we usually apply lazy witness

complexes defined in [8].

For a larger dataset P , we choose a subset L ⊂ P , called landmark points, as

the only vertices. All points in P help to serve as witnesses for the inclusion of

high-dimensional simplices. The most common method for choosing landmark

points is a greedy inductive selection process called the sequential maxmin. In the

sequential maxmin, the first landmark is chosen randomly from P . Inductively,

if s1, . . . , si−1 have been chosen, let si ∈ P \ {s1, . . . , si−1} be the data point

which maximizes the function t 7→ min{d(t, s1), . . . , d(t, si−1)}, where d(t, sj) is

the distance between two points t, sj , j = 1, . . . , i−1. Continue until the required

number of landmark points have been chosen.

Fix a point cloud P , a landmark subset L, and a parameter n ∈ N. If

n = 0, let m(p) = 0 for all p ∈ P . If n > 0, let m(p) be the distance from

p to the n-th closest landmark point. The lazy witness complex LWn(P,L, ε)
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is defined as follows: (i) the vertex set is L; (ii) for vertices a and b, the

edge [ab] is in LWn(P,L, ε) if there exists a witness point p ∈ P such that

max{d(a, p), d(b, p)} ≤ ε+m(p); (iii) a high-dimensional simplex is in LWn(P,L, ε)

if all of its edges are in it.

The lazy witness complex depends on a parameter n ∈ {0, 1, 2} which we

choose to be n = 1: De Silva and Carlsson in [8] find n = 0 to be generally less

effective, while n = 2 has the disadvantage of connecting every landmark point

to at least one another at ε = 0. For more information and examples about lazy

witness complexes we refer to the papers [8], [3].
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Figure 1. A sequence of lazy witness complexes for a point cloud data set
sampled from the figure “8”. As ε increases, holes appear and disappear.

Converting a point cloud data set into a lazy witness complex one selects a

parameter ε. If ε is small enough, then the complex will be a discrete set. If ε

is large enough, the complex will be a single high-dimensional simplex. Is there

an optimal selection for ε which best describes the topology of the data set? We

consider the set of 40 points sampled from the figure “8” and a sequence of lazy

witness complexes illustrated in Figure 1 (a)–(d), here we take seven landmark

points, n = 1 and ε = 0.2, 0.5, 0.8, 1.1, respectively. The point set has Betti

numbers β0 = 1 and β1 = 2. Can this be deduced? We observe that there is an

inclusion of the current complex into the next complex (from (a) to (d)), since
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the current one corresponds to a smaller parameter value than the next one. In

Figure 1, we note that there is no hole in Figure 1 (a), two new holes appear in

Figure 1 (b). As ε increases, one hole vanishes, see Figure 1 (c), and the other

hole disappears, see Figure 1 (d). We note that the figure “8” consists exactly of

two holes, therefore Figure 1 (b) is the correct answer.

In spite of being computable and insightful, the homology of a complex as-

sociated to a point cloud at a specific ε is not sufficient: there is no optimal

value of ε. One needs means of declaring which holes are essential and which

can be safely ignored. The standard topological constructions of homology and

homotopy offer no such slack in their strident rigidity: a hole is a hole no matter

how fragile or fine ([12]).

If we have only finite sampled points from an underlying space X, and no a

priori information about the space X, it is very hard to measure a value of ε that

creates a simplicial complex whose homology group is isomorphic to that of X. In

order to solve the problem, Edelsbrunner, Letscher, and Zomorodian introduced

persistence in [9], which was refined by Zomorodian and Carlsson in [21]. For

ε ≤ ε′, there exists a natural inclusion of simplicial complexes LWn(P,L, ε) ↪→
LWn(P,L, ε′), and because of the functoriality described above, there is a linear

transformation Hk(LWn(P,L, ε)) → Hk(LWn(P,L, ε′)) for each k ≥ 0, where

Hk(LWn(P,L, ε)) is the k-th homology group of LWn(P,L, ε). A directed system

Hk(LWn(P,L, ε)) is called a persistence vector space [9], for each persistence

vector space there exists an invariant called a barcode, which is a finite collection

of intervals. It is proved that barcodes are in bijective correspondence with

isomorphism classes of directed systems of vector spaces ([21]). The barcodes

are computable from sampled points using the PLEX software package developed

by Adams and Tausz ([3]).

Intuitively, the intervals of a barcode mean the lifetimes of the topological

properties. The left endpoint of an interval corresponds to the birth of a topo-

logical property, and the right endpoint corresponds to its death. Recall that the

k-th Betti number of a complex, βk = rankHk, is roughly equal to the number

of k-dimensional holes, and βk may be calculated by the barcodes, that is, it is

the number of intervals in the dimension k plot that intersect the vertical line

through ε (ε-values are on the horizontal axis). Long intervals mean holes per-

sisting through a large range of values of the parameter ε while short intervals

correspond to holes filled in quickly. The interpretation by intuition is that long

intervals correspond to real topological properties of the underlying space while

short ones are topological noise coming from the point sampling. Figure 2 shows

an example of barcode representations of the homology of the 40 points from

the figure “8” (see the shape of red points in Figure 1 (a)): for the case ε = 0.2,

the barcodes give β0 = 4, β1 = 0, which are Betti numbers of the lazy witness
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complex in Figure 1 (a); for the range of ε ∈ [0.3, 0.78], in particular, ε = 0.5, the

barcodes give β0 = 1, β1 = 2 and β2 = 0, which are Betti numbers of the lazy

witness complex in Figure 1 (b); for the case ε = 0.8, the barcodes show β0 = 1,

β1 = 1, which are Betti numbers of the lazy witness complex in Figure 1 (c). In

Figure 2 there are one long line in dimension 0, two long lines in dimension 1

(from ε0 = 0.3 to ε1 = 0.78) and no line in dimension 2, which responds to the

fact that “8” has one connected component and two holes in dimension one.
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Figure 2. The barcodes for the sequence of lazy witness complexes

LW1(P,L, ε), 0 ≤ ε ≤ 1.4, built in Figure 1.

3. Spaces of optical flow patches

Our spaces are constructed from the Roth and Black optical flow data-

base [16], which is available at http://www.visinf.tu-darmstadt.de/vi research/

vi datasets/vi flowstats.en.jsp. Figure 3 has two samples.

We randomly select data sets of high-contrast 3× 3, 5× 5, and 7× 7 patches

from the optical flow database. Our main spaces X3, X5, and X7 are sets of

3×3, 5×5, and 7×7 patches of high-contrast created by the following six steps,

the steps here are analogous to [15], [7], [2]. The spaces X3 and X5 have about

220000 points, but X7 has only about 114500 points.

Step 1. For each flow field sequence in the database, we use the second optical

flow frame of a sequence, and randomly select 1500 m ×m (m = 3, 5) patches,

and 800 7× 7 patches respectively from it. One 3× 3 patch is arranged as (u1, v1) (u4, v4) (u7, v7)

(u2, v2) (u5, v5) (u8, v8)

(u3, v3) (u6, v6) (u9, v9)

 ,

where u indicates the optical flow in the horizontal direction and v indicates the

vertical direction. We treat each 3×3 patch as a vector x = (u1, . . . , u9, v1, . . . , v9)

in R18.
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(a) (b)

(c) (d)

Figure 3. Two samples from the optical flow database. Horizontal motions

are on the top and vertical motions are on the bottom.

Step 2. We calculate the D-norm: ‖x‖D for each vector x, which is a measure

of contrast of an optical flow patch. Two pairs of coordinates (ui, vi), (uj , vj) of

x are adjacent, denoted by i ∼ j, if the corresponding pixels in the m×m patch

are neighbors. We calculate the D-norm for a vector x by the formula:

‖x‖D =

√∑
i∼j
‖(ui, vi)− (uj , vj)‖2.

Step 3. We pick the patches that have a D-norm in the top T percent of each

sequence. We set T = 20%, as done in [15], [7], [2].

Step 4. For u components, subtract an average of u coordinates, and for

v components, subtract an average of v coordinates, this produces a new 2m2-

dimensional vector.

Step 5. We transfer the spaces into a unit sphere by dividing each vector with

its Euclidean norm, which is not zero because the patches are high-contrast. We

do not transform to the DCT basis for convenience.

Step 6. For the convenience of calculations, we randomly take 50000 of the

above patches in the top 20%, and these sets are subspaces of X3, X5, and X7,

denoted by XS3, XS5, and XS7 respectively.
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4. Results for XSm(k, p)

The facts about 3×3, 5×5, and 7×7 range image patches having core subsets

with topological feature of a circle were established by Xia in [20] and Adams

and Carlsson in [2]. We use core subsets to explore a circular feature in spaces

XS3, XS5, and XS7. We introduce the concept of core subsets of a space Y . For

y ∈ Y and k > 0, set ρk(y) = |y − yk|, where yk is the k-th nearest neighbour

of y. For a fixed k, we order points of Y by descending density, we choose the

points indicated by Y (k, p) whose densities are in the top p percents. The core

subset Y (k, p) may have more important topological information than that of all

the points of Y .

Persistent homology is a method for computing topological characteristics of

a space by using only finite samples of the space. We use lazy witness complexes

and the software package PLEX to compute persistent homology, for more de-

tails, we refer to [7], [8], [3], [21], [6]. The result of a sequence of complexes (or

a point set) computed by the software package PLEX is represented by a figure

and often known as a PLEX result.

We consider the core subsets XS3(100, 30), XS5(100, 30), and XS7(100, 30),

and compute their barcodes, sample Betti barcode plots for these core subsets are

displayed in Figures 4, 5 and 6, respectively. There exist a long Betti0 interval

and a long Betti1 interval in the plots, which means β0 = 1, β1 = 1, that is, with

the topology of a circle. Choosing different landmark points (from 30 to 60),

we do three hundred trials on XS3(100, 30), XS5(100, 30), and XS7(100, 30), in

each trial result, the circular feature β0 = β1 = 1 is found in a long interval, and

other Betti plot intervals are very small, so the results are stable. For various

sizes of optical flow patches, there exist different core subsets of XS3, XS5, and

XS7 with appropriate values of parameters k and p, which have the topology of

a circle. We ran about five hundred experiments and discovered that the core

subsets with the following parameter values have the homology of a circle and

the results are sturdy: m = 3, k = 200, 300, p = 30; m = 5, k = 200, 300, p = 30;

m = 7, k = 200, 300, p = 30.

5. A space of two-variable polynomials and the Klein bottle

The Klein bottle can be represented by an identification space of a square,

see Figure 7. In the process of pasting a square, three circles are formed, one is

the primary circle (corresponding to Slin) formed by horizontal segments (black

lines), the other two circles (corresponding to Sv and Sh) come from the vertical

segments (red and blue lines) respectively, which is called the three circles model

(Figure 8), denoted as C3.

In order to identify the topological characteristics of subspaces of X3, X5,

and X7, we construct another theoretical model of the Klein bottle. We consider
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Figure 4. Barcodes for XS3(100, 30).
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Figure 5. Barcodes for XS5(100, 30).
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Figure 6. Barcodes for XS7(100, 30). Figure 7. Denotation of

the Klein bottle as an iden-

tification space.

m×m optical flow patches as gained by sampling a smooth real-valued function

on the xy-plane at m ×m grid points. We now study the space F , consisting

of all functions of the form a2(a1x + b1y)2 + b2(a1x + b1y), where a1, b1, a2, b2
are real numbers, and (a1, b1) ∈ S1, (a2, b2) ∈ S1, where S1 stands for the unit

circle in the plane.

We define the mapping g : S1×S1 → F by (a1, b1, a2, b2) 7→ a2(a1x+b1y)2 +

b2(a1x+ b1y) ([7]). It is easy to see that the map g is onto, but not one-to-one,

since the points (a1, b1, a2, b2) and (−a1,−b1, a2,−b2) are mapped to the same

function, that is, (a1, b1, a2, b2) ∼ (−a1,−b1, a2,−b2) is an equivalence relation.

When (a1, b1, a2, b2) is represented by (cosα, sinα, cosβ, sinβ), both α and β

vary in [0, 2π], then the relation can be rewritten as (α, β) ∼ (π + α, 2π − β).

The space F= im(g) is homeomorphic to S1×S1/(α, β) ∼ (π+α, 2π−β), since

no other identifications are formed by g.

The torus has a similar representation to that of the Klein bottle as a square

with pasted opposite edges, but pasting them with reverse orientation. The result



670 S. Xia — Y. Yin

S
lin

S
v

S
h

Figure 8. The three cir-

cles model.

    L R

α

β

2π

2π

Figure 9. The Klein bot-

tle, the image of the map g.

of the map g on the torus is displayed in Figure 9. Each half is an indication of

the Klein bottle, thus the image of g is homeomorphic to the Klein bottle and

so is F (see [7]).

The model C3 is involved in the space F . The primary circle of C3 is the

subspace obtained by setting (a2, b2) = (0, 1) and (a1, b1) running on S1, while

the other circles are obtained by setting a1 = 1, b1 = 0 and a1 = 0, b1 = 1, re-

spectively.

Define a mapping h3 : F → S17 evaluating the function at each point of the

plane grid G3 = {−2,−1, 0, 1, 2, 3} × {−1, 0, 1}, subtracting the mean and nor-

malizing. Define a mapping h5 : F → S49 evaluating the function at each point of

the plane grid G5 = {−4,−3,−2,−1, 0, 1, 2, 3, 4, 5} × {−2,−1, 0, 1, 2}, subtract-

ing the mean and normalizing. Define a mapping h7 : F → S97 evaluating the

polynomial at each point of the plane grid G7 = {−6,−5,−4,−3,−2,−1, 0, 1, 2,

3, 4, 5, 6, 7} × {−3,−2,−1, 0, 1, 2, 3}, subtracting the mean and normalizing.

Proposition 5.1. Each hm, m = 3, 5, 7, is one-to-one.

The proof is similar to the proof in [7].

As a continuous one-to-one map on a compact space is a homeomorphism

onto its image, the image im(hm | F), m = 3, 5, 7, is homeomorphic to the Klein

bottle, by Proposition 5.1.

In order to insert the space C3 into the unit sphere S17, we randomly select

400 points {(x1, y1), . . . , (x400, y400)} from S1, then set a2 = 0, b2 = 1; a1 = 1,

b1 = 0; a1 = 0, b1 = 1, respectively, for each of the 400 points, we compute

its image under the map h3 ◦ g, denoting the set of all images as C3
3 (400). If

we compute the images of the 400 points under the mappings h5 ◦ g and h7 ◦ g,

respectively, we get C5
3 (400) and C7

3 (400), respectively. Figure 10 displays the

PLEX result for the spaces C3
3 (400), it gives the topology of C3, i.e. β0 = 1,
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β1 = 5, hence we obtain an appropriate approach of C3 in S17. We have the

same results for the spaces C5
3 (400) and C7

3 (400) (see Figures 11 and 12).
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Figure 10. Barcodes for C3
3 (400).
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Figure 11. Barcodes for C5
3 (400).
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Figure 12. Barcodes for C7
3 (400).
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Figure 13. Barcodes for K3(200).
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Figure 14. Barcodes for K5(200).
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Figure 15. Barcodes for K7(200).

In order to insert the Klein bottle into a unit sphere, firstly, we uniformly

pick 200 points ({x1, . . . , x200}) on the unite circle, all possible tuples (xi, xj)

form a point set on the torus S1×S1. Second, we map each of the 40000 points
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into S17, S49 and S97 by mappings h3◦g, h5◦g, and h7◦g, respectively, the image

of each mapping is represented by K3(200),K5(200), and K7(200), respectively.

Figure 13 shows the PLEX result for the spaces K3(200), that gives β0 = 1,

β1 = 2 and β2 = 1, which are the mod 2 Betti numbers of the Klein bottle.

Hence, K3(200) is an appropriate approach of the Klein bottle in S17. We have

similar results for the spaces K5(200) and K7(200) (see Figures 14 and 15).

6. Results for X3, X5 and X7

In order to detect subspaces of X3 whose topology is that of C3, for any

point p ∈ C3
3 (400), we collect the points of X3 that are closest points to p (in

Euclidean distance), the subspace of X3 is written as CC3
3 (400). One sample

PLEX Betti barcode plot for CC3
3 (400) is given in Figure 16, which indicates

that CC3
3 (400) has Betti numbers β0 = 1 and β1 = 5, that is, it has the topology

of C3. Similarly, we get the same results for the spaces CC5
3 (400) and CC7

3 (400)

(Figures 17 and 18).

Remark 6.1. The Betti barcode result for the space CC5
3 (400) is not very

stable, sometimes it does not have the homology of C3. We ran 200 experiments

on CC5
3 (400), there are only 118 experiments whose PLEX barcodes have β0 =1,

β1 = 5.
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Figure 16. Barcodes for CC3
3 (400).
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Figure 17. Barcodes for CC5
3 (400).

We have shown in the previous section that S17, S49 and S97 have subspaces

K3(200),K5(200) andK7(200), respectively, whose homology is that of the Klein

bottle, subspaces of X3, X5, and X7 can be constructed by using them. Next we

describe the method how to get the subspaces of X3, X5, and X7.

For each point p of K3(200) we compute the Euclidean distance from p to

every point of X3, then pick up t closest points to the point p. The subspace of

X3 is constructed by selecting all t closest points to any p ∈ K3(200), denoted

by Kopt3(200, t). The subspaces Kopt5(200, t) and Kopt7(200, t) of X5 and X7,

respectively, are obtained by the same way.
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Figure 18. Barcodes for CC7
3 (400).
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Figure 19. Barcodes for Kopt3(200, 10).
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Figure 20. Barcodes for Kopt5(200, 10).
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Figure 21. Barcodes for Kopt5(200, 10).

In order to find a subspace of X3 with the homology of the Klein bottle, we

utilize the subspace Kopt3(200, 10). Figure 19 shows that Kopt3(200, 10) has

the homology of the Klein bottle with the parameter values from 0.18 to 0.26.

In experimental results, some ranges of parameter values with the homology of

the Klein bottle are very small.

Figures 20–22 display three PLEX results for Kopt5(200, 10). In Figure 20,

the PLEX barcodes indicate β0 = 1, β1 = 2, and β2 = 1 from 0.116 to 0.175.

In Figure 21, the PLEX barcodes give β0 = 1, β1 = 2, and β2 = 1 in a very

small range from 0.16 to 0.168. But in Figure 22, the PLEX barcodes show no

Klein bottle feature in Kopt5(200, 10). We ran 200 trials on Kopt5(200, t) for

t = 10, 11, 12, there are only 89 experiments whose PLEX barcodes give β0 = 1,

β1 = 2, and β2 = 1, and some barcode intervals with the homology of the Klein

bottle are very short, the others do not have the homology of the Klein bottle.

Figures 23–25 show three PLEX results for Kopt7(200, 10). In Figure 23,

the PLEX barcodes show β0 = 1, β1 = 2, and β2 = 1 from 0.154 to 0.197. In

Figure 24, the PLEX barcodes show β0 = 1, β1 = 2, and β2 = 1 in a very small



674 S. Xia — Y. Yin

0 0.05 0.1 0.15 0.2 0.25 0.3

0

10

20

30

Lazy Optical Flow (dimension 0)

0 0.05 0.1 0.15 0.2 0.25 0.3

0

10

20

Lazy Optical Flow (dimension 1)

0 0.05 0.1 0.15 0.2 0.25 0.3

0

5

10

15
Lazy Optical Flow (dimension 2)

Figure 22. Barcodes for Kopt5(200, 10).
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Figure 23. Barcodes for Kopt7(200, 10).
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Figure 24. Barcodes for Kopt7(200, 10).
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Figure 25. Barcodes for Kopt7(200, 10).

range from 0.145 to 0.149. The PLEX barcodes in Figure 25 do not have the

Klein bottle feature for Kopt7(200, 10). We ran 200 trials on Kopt7(200, t) for

t = 10, 11, 12, there are only 67 trials whose PLEX barcodes give β0 = 1, β1 = 2,

and β2 = 1, and some barcode intervals with the homology of the Klein bottle

are very small, the others do not have the homology of the Klein bottle.

Figures 20–22 indicate that the subspace Kopt5(200, 10) of X5 undergoes

a topological change. There is a similar result for the subspace Kopt7(200, 10)

of X7.

Remark 6.2. We also study Kopt7(w, t) for w = 180, 220, 260, 280, and

t = 10, 11, 12, we ran many experiments on them, which give similar results as

for Kopt7(200, 10), thus we may conclude that the Klein bottle characteristics of

the spaces X3, X5, and X7 gradually disappears as the size of patches increases.

7. Conclusions

In this paper we use techniques of persistent homology to study topological

qualitative analysis of spaces of small optical flow patches. We show that the
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spaces of high-contrast 3× 3, 5× 5, and 7× 7 patches have core subsets modeled

as the primary circle, and each of the spaces X3, X5, and X7 has subspaces with

topology of C3. Using the relation between the spaces of optical flow patches and

the space of two variables polynomials, it is proven that there exist subspaces of

X3, whose homology is that of a Klein bottle. Using the same methods to the

various sizes optical flow patches, we find many similar properties for different

sizes optical flow patches, but they also have their own features. The Klein

bottle’s feature of X3, X5, and X7 depends on the size of optical flow patches,

the the larger patches of spaces, the less of Klein bottle’s feature they have, the

results show that it is necessary to study different size patches in optical flow.

Our results extend research on the topological analysis in images to the field of

image motion.

Acknowledgements. The authors are very grateful to the reviewers for

valuable comments and corrections.

References

[1] H. Adams, A. Atanasov and G. Carlsson, Nudged elastic band in topological data

analysis, Topol. Methods Nonlinear Anal. 45 (2015), 247–272.

[2] H. Adams and G. Carlsson, On the nonlinear statistics of range image patches, SIAM

J. Imag. Sci. 2 (2009), 110–117.

[3] H. Adams and A. Tausz, Javaplex tutorial, http://javaplex.googlecode.com/svn/trunk

/reports/javaplex tutorial/javaplex tutorial.pdf.

[4] S. Baker, D. Scharstein, J.P. Lewis, S. Roth, M. J. Black and R. Szeliski, A data-

base and evaluation methodology for optical flow, Internat. J. Comput. Vision 92 (2011),

1–31.

[5] J.L. Barron, D.J. Fleet and S.S. Beauchemin, Performance of optical flow techniques,

Internat. J. Comput. Vision 12 (1994), 43–77.

[6] G. Carlsson, Topology and data, Bull. Amer. Math. Soc. (N.S.) 46 (2009), 255–308.

[7] G. Carlsson, T. Ishkhanov, V. de Silva and A. Zomorodian, On the local behavior of

spaces of natural images, Internat. J. Comput. Vision, 76 (2008), 1–12.

[8] V. de Silva and G. Carlsson, Topological estimation using witness complexes, Proc.

Sympos. Point-Based Graphics (2004), 157–166.

[9] H. Edelsbrunner, D. Letscher and A. Zomorodian, Topological persistence and sim-

plification, Discrete Comput. Geom. 28 (2002), 511–533.

[10] D.J. Field, Relations between the statistics of natural images and the response properties

of cortical cells, J. Opt. Soc. Amer. 4 (1987), 2379–2394.

[11] A. Geiger, P. Lenz and R. Urtasun, Are we ready for autonomous driving? the kitti

vision benchmark suite, CVPR (2012), 3354–3361.

[12] R. Ghrist, Barcodes: The persistent topology of data, Bull. Amer. Math. Soc. 45 (2008),

61–75.

[13] J.J. Gibson, The Perception of the Visual World, Riverside Press, Cambridge, 1950.

[14] K. Jia, X. Wang and X. Tang, Optical flow estimation using learned sparse model, 2011

IEEE International Conference on Computer Vision, November (2011), 2391–2398.

[15] A.B. Lee, K.S. Pedersen and D. Mumford, The non-linear statistics of high-contrast

patches in natural images, Internat. J. Comput. Vision 54 (2003), 83–103.



676 S. Xia — Y. Yin

[16] S. Roth, and M. J. Black, On the spatial statistics of optical flow, Internat. J. Comput.

Vision 74 (2007), 33–50.

[17] D. Sun, S. Roth and M. J. Black, A quantitative analysis of current practices in optical

flow estimation and the principles behind Them, Internat. J. Comput. Vision 106 (2014),

115–137.

[18] J.H. van Hateren, Theoretical predictions of spatiotemporal receptive fields of fly LMCs,

and experimental validation, J. Comput. Physiology A 171 (1992), 157–170.

[19] D.H. Warren and E.R. Strelow, Electronic Spatial Sensing for the Blind: Contribu-

tions from Perception, Springer, 1985.

[20] S. Xia, On the local behavior of spaces of range image patches, to appear.

[21] A. Zomorodian and G. Carlsson, Computing persistent homology, Discr. Comput.

Geom. 33 (2005), 249–274.

Manuscript received February 23, 2016

accepted May 8, 2016

Shengxiang Xia and Yanmin Yin

College of Science
Shandong Jianzhu University

Jinan 250101, P.R. CHINA

E-mail address: xias@sdjzu.edu.cn, yym@sdjzu.edu.cn

TMNA : Volume 48 – 2016 – No 2


