Topological Methods in Nonlinear Analysis Volume 48, No. 2, 2016, 453–464 DOI: 10.12775/TMNA.2016.052

© 2016 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University

PERIODIC ORBITS FOR MULTIVALUED MAPS WITH CONTINUOUS MARGINS OF INTERVALS

JIEHUA MAI — TAIXIANG SUN

ABSTRACT. Let I be a bounded connected subset of $\mathbb R$ containing more than one point, and $\mathcal L(I)$ be the family of all nonempty connected subsets of I. Each map from I to $\mathcal L(I)$ is called a multivalued map. A multivalued map $F\colon I\to \mathcal L(I)$ is called a multivalued map with continuous margins if both the left endpoint and the right endpoint functions of F are continuous. We show that the well-known Sharkovskiĭ theorem for interval maps also holds for every multivalued map with continuous margins $F\colon I\to \mathcal L(I)$, that is, if F has an n-periodic orbit and $n\succ m$ (in the Sharkovskiĭ ordering), then F also has an m-periodic orbit.

1. Introduction

Let X be a set and $\mathbb{N} = \{1, 2, \ldots\}$. An infinite sequence (x_1, x_2, \ldots) of elements in X is said to be *periodic* if there is $n \in \mathbb{N}$ such that

$$(1.1) x_{i+n} = x_i for all i \in \mathbb{N}.$$

In this case, we also write $(x_1, \ldots, x_n)^{\circ}$ for (x_1, x_2, \ldots) , where we put the small circle \circ at the top-right corner of the finite sequence (x_1, \ldots, x_n) , which means that we repeat this finite sequence infinitely many times. The least n such that (1.1) holds is called the *period* of (x_1, x_2, \ldots) . Note that if we cannot clearly

²⁰¹⁰ Mathematics Subject Classification. 54C60, 54C05, 37E05, 37C27.

Key words and phrases. Multivalued map; interval map; periodic orbit; period; Sharkovskiĭ's order.

This project is supported by NNSF of China (11261005, 11461003).

mention the period of the infinite sequence $(x_1, \ldots, x_n)^{\circ}$, then it may be a proper factor of n. A periodic sequence of period n is also called an n-periodic sequence.

Denote by $2^X - \{\emptyset\}$ the family of all nonempty subsets of X. Each map from X to $2^X - \{\emptyset\}$ is called a multivalued map on X. An infinite sequence (x_1, x_2, \ldots) of elements in X is called an orbit of $F: X \to 2^X - \{\emptyset\}$ if $x_{i+1} \in F(x_i)$ for all $i \in \mathbb{N}$. The sequence (x_1, x_2, \ldots) is called a periodic orbit of F if it is both a periodic sequence and an orbit of F. If $\mathcal{O} = (x_1, x_2, \ldots) = (x_1, \ldots, x_n)^\circ$ is an n-periodic orbit of F, then, for any $i \in \mathbb{N}$, the finite sequence $(x_i, x_{i+1}, \ldots, x_{i+n-1})$ with length n is called a periodic segment of the orbit \mathcal{O} . If $F: X \to 2^X - \{\emptyset\}$ is a multivalued map and F contains only one element for each $x \in X$, then F is a single-valued map from X to X. Note that if $f: X \to X$ is a single-valued map, then any period segment of a periodic orbit of F contains no repeating element, and if $F: X \to 2^X - \{\emptyset\}$ is a multivalued map, then a period segment of some periodic orbit of F may contain repeating elements. This is a difference between single-valued maps and multivalued maps. Since there may appear repeating elements in a period segment when we study periodic orbits of multivalued maps, it will meet some additional trouble.

Let I be a bounded connected subset of \mathbb{R} containing more than one point, that is, I is a closed interval, or an open interval, or a half-open interval. Denote by \overline{I} the closure of I in \mathbb{R} and by $\mathcal{L}(I)$ the family of all nonempty connected subsets of I. Each map from I to $\mathcal{L}(I)$ is called a *connected-multivalued map* on I. Obviously, for any connected-multivalued map $F \colon I \to \mathcal{L}(I)$, there exists a unique pair of functions $\alpha \colon I \to \overline{I}$ and $\beta \colon I \to \overline{I}$, called the *left endpoint function* and the *right endpoint function* of F, respectively, satisfying the following two conditions:

- (i) $\alpha(x) \leq \beta(x)$ for any $x \in I$;
- (ii) $(\alpha(x), \beta(x)) \subset F(x) \subset [\alpha(x), \beta(x)]$ for any $x \in I$.

If
$$\alpha(x) = \beta(x)$$
, then $F(x) = [\alpha(x), \beta(x)] = {\alpha(x)}$.

A connected-multivalued map $F: I \to \mathcal{L}(I)$ is said to be a multivalued map with continuous margins if both the left endpoint and the right endpoint functions of F are continuous.

In 1964, Sharkovskiĭ found the following order relation in \mathbb{N} :

$$3 \succ 5 \succ 7 \succ \ldots \succ 3 \cdot 2 \succ 5 \cdot 2 \succ 7 \cdot 2 \succ \ldots \succ 3 \cdot 2^2 \succ 5 \cdot 2^2 \succ 7 \cdot 2^2 \succ \ldots$$
$$\ldots \succ 3 \cdot 2^k \succ 5 \cdot 2^k \succ 7 \cdot 2^k \succ \ldots \succ 2^4 \succ 2^3 \succ 2^2 \succ 2 \succ 1.$$

and proved the following theorem.

THEOREM 1.1 (Sharkovskii's theorem, see [17]). Let J be a connected subset of \mathbb{R} and $f: J \to J$ be a single-valued continuous map. For any $m, n \in \mathbb{N}$ with $n \succ m$, if f has an n-periodic orbit, then f has an m-periodic orbit.