### Isomorphic extensions and applications

DOI: http://dx.doi.org/10.12775/TMNA.2016.050

#### Abstract

#### Keywords

#### References

E. Akin, Enveloping linear maps, Topological Dynamics and Applications, Contemporary Mathematics 215, a volume in honor of R. Ellis, (1998), pp. 121–131.

J. Auslander, Minimal flows and their extensions, North-Holland, 1988.

T. Downarowicz and S. Kasjan, Odometers and Toeplitz subshifts revisited in the context of Sarnaks conjecture, preprint, arXiv:1502.02307.

R. Ellis, The enveloping semigroup of projective flows, Ergodic Theory Dynam. Systems13 (1993), 635–660.

H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, Princeton University Press, Princeton, N.J., 1981.

H. Furstenberg and H. Kesten, Products of random matrices, Ann. Math. Stat. 31, (1960), 457–489.

A. Furman, On the multiplicative ergodic theorem for uniquely ergodic systems, Ann. Inst. H. Poincaré Probab. Statist. 33, (1997), 797–815.

F. Garcia-Ramos, Weak forms of topological and measure theoretical equicontinuity: relationships with discrete spectrum and sequence entropy, Ergodic Teory Dynam. Systems (to appear).

E. Glasner, Ergodic theory via joinings, AMS, Surveys and Monographs, 101, 2003.

E. Glasner, The structure of tame minimal dynamical systems, Ergodic Theory Dynam. Systems 27, (2007), 1819–1837.

E. Glasner and M. Megrelishvili, Representations of dynamical systems on Banach spaces, Recent Progress in General Topology. III, Atlantis Press, Paris, 2014, 399–470.

E. Glasner and B. Weiss, On the construction of minimal skew-products, Israel J. of Math. 34, (1979), 321–336.

E. Glasner and B. Weiss, On the interplay between measurable and topological dynamics. Handbook of Dynamical Systems, Vol. 1B, Elsevier B.V., Amsterdam, 2006, 597–648.

M.R. Herman, Construction d’un difféomorphisme minimal d’entropie topologique non nulle. (French) [Construction of a minimal diffeomorphism with nonzero topological entropy], Ergodic Theory Dynam. Systems 1 (1981), 65–76.

W. Huang, Tame systems and scrambled pairs under an abelian group action, Ergodic Theory Dynam. Sysems 26 (2006), 1549–1567.

W. Huang, P. Lu, and X. Ye, Measure-theoretical sensitivity and equicontinuity, Israel J. Math. 183 (2011), 233–283.

D. Kerr and H. Li, Independence in topological and C ∗ -dynamics, Math. Ann. 338, (2007), 869–926.

E. Lehrer, Topological mixing and uniquely ergodic systems, Israel J. Math. 57 (1987), 239–255

J. Li, S. Tu and X. Ye, Mean equicontinuity and mean sensitivity, Ergodic Theory Dynam. Systems, arXiv:1312.7663, (to appear).

V. I. Oseledec, A multiplicative ergodic theorem. Lyaponov characteristic numbers for dynamical systems Trans. Moscow Mat. Soc. 19, (1968), 197–231.

A. Rosenthal, Strictly ergodic models for noninvertible transformations. Israel J. Math. 64, (1988), 57–72.

P. Sarnak, Three Lectures on the Möbius Function Randomness and Dynamics, http://www.math.ias.edu/files/wam/2011/PSMobius.pdf

P. Walters, Unique ergodicity and random matrix products, Lyapunov Exponents (Bremen, 1984), Lecture Notes in Math., 1186, Springer, Berlin, 1986, 37–55.

B. Weiss, Strictly ergodic models for dynamical systems, Bull. Amer. Math. Soc. 13, (1985), 143–146.

W.A. Veech, The equicontinuous structure relation for minimal abelian transformation groups, Amer. J. Math. 90, (1968), 723–732.

### Refbacks

- There are currently no refbacks.