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Abstract. We provide 22 different global phase portraits in the Poincaré
disk of all centers of the so-called Kukles polynomial differential systems
of the form ẋ = −y, ẏ = x + Q5(x, y), where Q5 is a real homogeneous
polynomial of degree 5 defined in R2.

1. Introduction and statement of the main result

Consider a system of the form

(1.1)
ẋ = − y,

ẏ =x+Qn(x, y),

where the dot denotes the derivative with respect to the independent variable t

and Qn is a real homogeneous polynomial of degree n. A system of this form was
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called a Kukles polynomial differential system by Giné in [4]. In [11], Volokitin

and Ivanov raised the following open question about such differential systems:

Open Question. Is it true that a differential system of the form (1.1) with

polynomial nonlinearity Qn of degree higher than 2 has a center at the origin

if and only if its vector field is symmetric with respect to one of the coordinate

axes?

For degrees n = 2, 3 the authors of the open problem knew that the answer

is positive. A positive answer to this question for degrees n = 4, 5 was given

in [4]. In [5], Giné, Llibre and Valls proved that this conjecture holds for n ≥ 5

odd, and in [6] they proved the conjecture for n ≥ 6 even.

More precisely, in [5] the authors proved that for a planar differential system

of the form (1.1), the origin is a center if and only if its vector field is symmetric

with respect to one of the coordinate axes.

In this work we use this information to classify topologically the global phase

portraits of differential systems

(1.2)
ẋ =− y,

ẏ =x+ ax5 + bx3y2 + cxy4,

in the Poincaré disk, where a, b, c are real parameters. Note that systems (1.2)

are invariant under the change of coordinates (t, x, y) �→ (−t,−x, y). That is,

the phase portrait is symmetric with respect to the y-axis.

In [1], [8], [12]–[14], there were classified the global phase portraits of linear

systems with homogeneous nonlinearities of degree 3, so in particular the phase

portraits of the Kukles systems (1.1) of degree 3. Moreover, in [2] and [7], there

have been classified the global phase portraits of the Kukles systems (1.1) of

degree 4.

Our main result is the following one.

Theorem 1.1. The Poincaré compactification of system (1.2) is topologically

equivalent to the Poincaré compactification of one of the following systems:

(i) ẋ = −y, ẏ = x,

(ii) ẋ = −y, ẏ = x+Axy4,

(iii) ẋ = −y, ẏ = x+Ax3y2,

(iv) ẋ = −y, ẏ = x+Ax3y2 + Cxy4,

(v) ẋ = −y, ẏ = x+Ax5,

(vi) ẋ = −y, ẏ = x+Ax5 + Cxy4,

(vii) ẋ = −y, ẏ = x+Ax5 +Bx3y2,

(viii) ẋ = −y, ẏ = x+Ax5 +Bx3y2 + Cxy4,

for an appropriate choice of A ∈ {−1, 1}, B,C ∈ R \ {0}. The phase portraits

in the Poincaré disk of systems (i)–(viii) are topologically equivalent to one of 22
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Figure 1. Phase portrait of systems (1.2) in the Poicaré disk.

phase portraits presented in Figure 1. The possibilities for the phase portraits of

systems (1.2) and the corresponding systems (i)–(viii) are provided in Table 1.

With Program P4 we have checked that all possibilities hold.

In the phase portraits of our figures the separatrices are thicker than or-

bits of the canonical regions, and the thickest lines denote lines of singularities.

For more details about Program P4 see Chapters 9 and 10 of [3]. We present

the relation between the parameters of system (1.2) and the parameters of its

correspondening normal form in Table 2.
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Phase

Portrait of System (1.2) Normal Form (i)–(viii)

Figure 1

(a) a = b = c = 0 (i)

(b)

a < 0, b = c = 0 (v), A = −1

a < 0, b > 0, c < 0, b2 − 4ac < 0 (viii), A = −1, B > 0, C < 0, B2 + 4C < 0

a < 0, b < 0, c < 0 (viii), A = −1, B < 0, C < 0

a < 0, b < 0, c = 0 (vii), A = −1, B < 0

a < 0, b = 0, c < 0 (vi), A = −1, C < 0

(c)

a > 0, b < 0, c > 0, b2 − 4ac < 0 (viii), A = 1, B < 0, C > 0, B2 − 4C < 0

a > 0, b > 0, c > 0 (viii), A = 1, B > 0, C > 0

a > 0, b = 0, c > 0 (vi), A = 1, C > 0

(d)
a > 0, b = c = 0 (v), A = 1

a > 0, b > 0, c = 0 (vii), A = 1, B > 0

(e)
a = b = 0, c > 0 (ii), A = 1

a = 0, b > 0, c > 0 (iv), A = 1, C > 0

(f) a = 0, b > 0, c = 0 (iii), A = 1

(g)

a = b = 0, c < 0 (ii), A = −1

a = 0, b < 0, c = 0 (iii), A = −1

a = 0, b < 0, c < 0 (iv), A = −1, C < 0

(h) a > 0, b < 0, c > 0, b2 − 4ac = 0 (h), A = 1, B < 0, C > 0, B2 − 4C = 0

(i) a < 0, b > 0, c < 0, b2 − 4ac = 0 (h), A = −1, B > 0, C < 0, B2 + 4C = 0

(j)–(l)

a < 0, b > 0, c > 0 (viii), A = −1, B > 0, C > 0

a < 0, b < 0, c > 0 (viii), A = −1, B < 0, C > 0

a < 0, b = 0, c > 0 (vi), A = −1, C > 0

(m)

a > 0, b �= 0, c < 0 (viii), A = 1, C < 0

a > 0, b < 0, c = 0 (vii), A = 1, B < 0

a > 0, b = 0, c < 0 (vi), A = 1, C < 0

(n) a < 0, b > 0, c = 0 (vii), A = −1, B > 0

(o)–(q) a = 0, b < 0, c > 0 (iv), A = −1, C > 0

(r) a = 0, b > 0, c < 0 (iv), A = 1, C < 0

(s)–(u) a > 0, b < 0, c > 0, b2 − 4ac > 0 (viii), A = 1, B < 0, C > 0, B2 − 4C > 0

(v) a < 0, b > 0, c < 0, b2 − 4ac > 0 (viii), A = −1, B > 0, C < 0, B2 + 4C > 0

Table 1. Classification of phase portraits and normal forms of systems (1.2).

This work is organized in the following way. In Section 2, we introduce basic

definitions and results. Since we use the Poincaré compactification to study the

orbits near the infinity, we present a summary of this technique in Section 3.

The Markus–Neumann–Peixoto Theorem implies that to determine the phase

portrait of a given planar vector field, it is sufficient to determine the behavior

of a completed separatrix skeleton. We present the ingredients of this result in

Section 4. We study the finite and infinite singular points of system (1.2) in

Sections 5 and 6, respectively. Finally, we prove Theorem 1.1 in Section 7.
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2. Definitions and useful results

Let X : U → R
2 be a vector field defined on the open subset of R2. Suppose

that (x0, y0) ∈ U is a singular point of X . We say that (x0, y0) is a hyperbolic

singular point of X when the real parts of both eigenvalues of DX(x0, y0) are

different from zero. If exactly one of the eigenvalues of DX(x0, y0) is different

from zero then (x0, y0) is a semi-hyperbolic singular point of X . If (x0, y0) is a hy-

perbolic or a semi-hyperbolic singular point of X then it is called an elementary

singularity of X else, (x0, y0) is a non-elementary singular point of X.

Here we use definitions of (stable and unstable) node, saddle point, elliptic,

hyperbolic and parabolic sector (attracting or repelling) as in [3].

In this work, the topological behavior of the flow near a hyperbolic singular

point of X is described by Theorem 2.15 of [3]. To determine the behavior of

the flow near a semi-hyperbolic singular point we use Theorem 2.19 of [3].

If a non-elementary singular point (x0, y0) of X is such that both eigenvalues

of DX(x0, y0) are zero, but DX(x0, y0) is not zero, then (x0, y0) is called a

nilpotent singularity. If DX(x0, y0) is the null matrix then (x0, y0) is a linearly

zero singularity. The study of nilpotent singular points is performed by the

change of coordinates of the form x �→ x, y �→ xy, and x �→ xy, y �→ y, called the

homogeneous blow-up or, simply blow-up, and it is summarized in Theorem 3.5

of [3].

But, all nonelementary singularities of system (1.2) are linearly zero. To

study these singular points we will use the quasihomogeneous blow-up, that is,

a change of variables of the form

(x, y) �→ (xα, xβy), positive x-direction,

(x, y) �→ (−xα, xβy), negative x-direction,

(x, y) �→ (xyα, yβ), positive y-direction,

(x, y) �→ (xyα,−yβ), negative y-direction,

where α, β are positive integers. For quasihomogeneous blow-ups in the x-direc-

tion (respectively y-direction), when α (respectively β) is odd, the information

obtained in the positive x-direction (respectively y-direction) is useful for the

negative x-direction (respectively y-direction). To avoid successive blow-ups we

choose α and β using the Newton diagram (see p. 104 of [3]).

3. Poincaré compactification

In this section we present a technique useful for studying the behavior of

trajectories of polynomial vector fields near the infinity. See p. 149 of [3] for

more details.
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Consider the polynomial vector field X defined on R
2 by the system

ẋ = P (x, y),

ẏ = Q(x, y),

where P and Q are real polynomial functions defined on R
2. We define the degree

d of X as the maximum between the degrees of P and Q.

We consider the notation S
2 = {(z1, z2, z3) ∈ R

3; z21 + z22 + z23 = 1}, S1 =

{(z1, z2, z3) ∈ S
2; z3 = 0} and identify R

2 with the tangent plane π of S2 at the

north pole (0, 0, 1). If we consider the central projection of π in S
2, we obtain

a tangent vector field defined on S
2 \ S

1 such that the infinity points of π are

projected in S
1.

This vector field is symmetric about the center of S
2 and, in general, is

unbounded near S1. After a multiplication by an appropriate factor, the resultant

vector field admits an analytical extension to S
2. Due to the symmetry, it is

sufficient to consider the extended vector field defined only in the closed northern

hemisphere H of S2. The orthogonal projection of H into the disk {(z1, z2, z3) ∈
R

3; z21 + z22 ≤ 1, z3 = 0} is called the Poincaré disk.

More precisely, we denote the northern and southern hemisphere of S2 by

H+ = {(z1, z2, z3) ∈ S
2; z3 > 0} and H− = {(z1, z2, z3) ∈ S

2; z3 < 0}, respec-
tively. The central projections of π := {(z1, z2, z3) ∈ R

3; z3 = 1} in H+ and H−

are defined, respectively, by

f+ : π → H+, z �→ 1

∆(z)
(z1, z2, 1),

f− : π → H−, z �→ 1

∆(z)
(−z1,−z2,−1),

where ∆(z) =
√
z21 + z22 + 1, z ∈ π. Define the vector field X on S

2 \ S1 by

X(w) =

⎧⎨⎩Df+(z)X(z) if w = f+(z),

Df−(z)X(z) if w = f−(z).

In generalX is unbounded in a neighbourhood of S1, then there is no extension of

X to S
2. But we can prove that if we multiply X by wd

3 then the resultant vector

field has a unique analytical extension to S
2, called the Poincaré compactification

of X and denoted by p(X).

Notice that, in general, in each hemisphere we have that p(X) is Cω-equiva-

lent, but not Cω-conjugated, to X . So we can study the behavior of trajectories

of X near a singularity using the correspondent singularities of p(X). But it may

be that p(X) has singularities in S
1. A singular point of p(X) which belongs

to S
2 \ S1 (respectively S

1) is called a finite (respectively infinite) singular point

of X . We can prove that S1 is invariant under the flow of p(X).
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From the definition of f+ and f− it follows that p(X) is symmetric with

respect to the origin, so to study the trajectories of X it is sufficient to study

p(X) in the closed northern hemisphere H+ ∪ S
1.

To obtain expressions of p(X) in local coordinates, we consider the charts

of the sphere S
2. For j = 1, 2, 3 define Uj = {(z1, z2, z3) ∈ S

2; zj > 0}, Vj =

{(z1, z2, z3) ∈ S
2; zj < 0} and ϕj : Uj → R

2, ψj : Vj → R
2 given by

ϕ1(z) = −ψ1(z) =
(z2, z3)

z1
, ϕ2(z) = −ψ2(z) =

(z1, z3)

z2
, ϕ3(z) =

(z1, z2)

z3
.

If we denote by (u, v) the value of ϕj or ψj at the point z we can prove that the

expression of p(X) in the chart (U1, ϕ1) is given by

u̇ = vd
[
− uP

(
1

v
,
u

v

)
+Q

(
1

v
,
u

v

)]
, v̇ = −vd+1P

(
1

v
,
u

v

)
.

The expression of p(X) in the chart (U2, ϕ2) is

u̇ = vd
[
P

(
u

v
,
1

v

)
− uQ

(
u

v
,
1

v

)]
, v̇ = −vd+1Q

(
u

v
,
1

v

)
,

and the expression of p(X) in the chart (U3, ϕ3) is

u̇ = P (u, v), v̇ = Q(u, v).

Finally, for each j = 1, 2, 3, the expression of p(X) in the chart (Vj , ψj) is the

expression of p(X) in the chart (Uj , ϕj) multiplied by the factor (−1)d−1.

Using this notation we observe that (u, v) ∈ Uj is a infinite singular point of

X if and only if the expression of p(X) in the chart (Uj , ϕj) vanishes in (u, v)

and v = 0.

Notice that if z is a infinite singular point of X then −z is also a infinite

singular point ofX . In this case, from the expressions of p(X) in local coordinates

it follows that the behavior of the flow near−z can be determined by the behavior

of the flow near z, because the flow near −z differs from the flow near z by the

factor (−1)d−1. Then the study of p(X) in the charts (Vj , ψj), j = 1, 2, 3, is

superfluous.

Moreover, notice that if z is an infinite singular point of X with z ∈ U2,

z �= (0, 1, 0), then z ∈ U1∪V1. It follows that to study all infinite singular points

of X , it is sufficient to study the singularities of p(X) in U1 and the origin of U2.

4. Markus–Neumann–Peixoto Theorem

In this section we present the Markus–Neumann–Peixoto Theorem which

reduces the work of determining the phase portrait of a given planar vector

fields to the determination of their separatrices (see definition below) and a finite

number of special orbits. More details in [9], [10] or p. 33 of [3]. It is sufficient

to consider C1-vector fields.
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Let X and Y be C1-vector fields defined on the open sets U and V of R2,

respectively. Using the notation of Markus and Neumann, we denote by (U,Φ)

and (V,Ψ) the flow of X and Y , respectively. We say that (U,Φ) and (V,Ψ) are

topologically equivalent if there exists a homeomorphism of U in V which carries

the orbits of X in orbits of Y , preseving or reversing the orientation of all orbits.

If (U,Φ) and (V,Ψ) are topologically equivalent then we also say that their phase

portraits are topologically equivalent.

Suppose that U = R
2. We say that the flow (R2,Φ) is parallel if it is topolog-

ically equivalent of the flow (V,Ψ) defined by one of the following vector fields:

• Y defined on R
2 by Y (x, y) = (1, 0), for all (x, y) ∈ R

2,

• Y defined on R
2 \ {(0, 0)} such that, in polar coordinates Y is given by

ṙ = 0, θ̇ = 1,

• Y defined on R
2 \ {(0, 0)} such that, in polar coordinates Y is given by

ṙ = r, θ̇ = 0.

The flows of the above three vector fields are called strip flow, annulus flow and

nodal flow, respectively.

Given p ∈ U , we denote the orbit, α-limit and ω-limit of p by γ(p), α(p) and

ω(p), respectively. We say that γ(p) is a separatrix if

• γ(p) is a singular point, or

• γ(p) is a periodic orbit and there is no neighbourhood of γ(p) consisting

of periodic orbits, or

• γ(p) is homeomorphic to R and there is no neighbourhood W of γ(p)

with the following two properties:

– q ∈W ⇒ α(q) = α(p) and ω(q) = ω(p),

– the boundary of W is composed by α(p), ω(p) and by two another

orbits γ(p1), γ(p2) such that α(p1) = α(p2) = α(p) and ω(p1) =

ω(p2) = ω(p).

The union of all separatrices of a given flow (U,Φ) is called an extended

separatrix skeleton, which is a closed invariant subset of U and is denoted by Σ.

Each connected component of U \ Σ is an open invariant set, called a canonical

region. The next result says that there are only three possibilities for the flow

in each canonical region.

Proposition 4.1. In each canonical region the flow is parallel.

The completed separatrix skeleton is the union of the extended separatrix

skeletons with one orbit in each canonical region. Given the flows (R2,Φ) and

(R2,Ψ), consider their extended separatrix skeletons C1 and C2, respectively. We

say that C1 and C2 are topologically equivalent if there exists a homeomorphism

of R2 in R
2 which maps orbits of C1 to orbits of C2 preseving or reversing the

orientation.
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Finally we recall the Markus–Newmann–Peixoto Theorem. This result im-

plies that, to draw the phase portrait of a given planar vector field it is sufficient

to determine its separatrices and the behavior of one orbit in each canonical

region.

Theorem 4.2 (Markus–Neumann–Peixoto). Suppose that (R2,Φ) and (R2,Ψ)

are continuous flows with only isolated singular points. Then (R2,Φ) and (R2,Ψ)

are topologically equivalent if and only if their completed separatrices skeletons

are topologically equivalent.

5. Symmetries and finite singular points of system (1.2)

From now on X is the vector field defined by system (1.2). Additionally to

the symmetry of X with respect to the y-axis, X is invariant under the change

of coordinates (x, y) �→ (−x,−y). Now to draw the phase portrait of X it is

sufficient to study the quadrant given by x, y ≥ 0 in the Poincaré disk.

We study the finite singular points of system (1.2) using Theorem 2.15 of [3]

in the following remark.

Remark 5.1. If a ≥ 0 then (0, 0) is the unique singularity of (1.2). If a < 0

then there exist another two singularities, (±1/ 4
√−a, 0). In this case

DX

(
± 1

4
√−a, 0

)
=

(
0 −1

−4 0

)
,

and there are hyperbolic saddle points. Moreover, [1,−2] and [1, 2] are eigenvec-

tors associated to the eigenvalues 2 and −2, respectively.

6. Infinite singular points of system (1.2)

To study the infinity singularities of X , we observe that the Poincaré com-

pactification of X in the charts (U1, ϕ1) and (U2, ϕ2) is given by

(6.1)
u̇ =(1 + u2)v4 + p(u),

v̇ =uv5,

and

(6.2)
u̇ = − (1 + u2)v4 − u2q(u),

v̇ = − uv5 − uvq(u),

respectively, where p(u) = cu4 + bu2 + a and q(u) = au4 + bu2 + c.

We will perform the study of infinite singular points in U1 and the origin of

U2 in Subsections 6.1 and 6.2, respectively.
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6.1. Infinity singular points in U1. In this section we study the local

phase portrait of infinite singular points of (1.2) which belong to U1. Note that

Remark 6.1. (u0, 0) is a singular point of (6.1) if and only if p(u0) = 0.

Suppose that (u0, 0) is a singularity of system (6.1). From both symmetries

of system (6.1) it follows that it is sufficient to study the infinity singular points

in U1 of the form (u0, 0) with u0 ≥ 0.

The Jacobian matrix of the vector field defined by system (6.1) evaluated at

(u0, 0) is

(6.3)

(
p′(u0) 0

0 0

)
,

so (u0, 0) is a semi-hyperbolic or a linearly zero singular point of system (6.1).

6.1.1. Semi-hyperbolic singular points. The semi-hyperbolic singular points

in U1 are treated in the next result.

Lemma 6.2. Suppose that p(u0) = 0 and p′(u0) �= 0. Then u0 �= 0, moreover,

if u0 > 0 and p′(u0) > 0 then (u0, 0) is a semi-hyperbolic unstable node of

system (6.1). If u0 > 0 and p′(u0) < 0 then (u0, 0) is a semi-hyperbolic saddle

point of system (6.1).

Proof. From the definition of p it follows that u0 �= 0. After the translation

u �→ u− u0 system (6.1) becomes

(6.4)
u̇ =(1 + (u+ u0)

2)v4 + p(u+ u0),

v̇ =(u+ u0)v
5.

Define

A(u, v) = (1 + (u+ u0)
2)v4 + p(u+ u0)− p′(u0)u,

B(u, v) = (u+ u0)v
5,

then we can write system (6.4) in the form

(6.5)
u̇ = p′(u0)u +A(u, v),

v̇ =B(u, v).

Let f = f(v) be the solution of the equation p′(u0)f(v) + A(f(v), v) = 0 in

a neighbourhood of (0, 0) and define g(v) = B(f(v), v). Then

g(j)(0) = 0, j = 0, 1, 2, 3, 4, g(5)(0) = 5!u0,

and Lemma 6.2 follows from Theorem 2.19 of [3]. �
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6.1.2. Nonelementary singular points. Suppose that p(u0) = p′(u0) = 0,

then (u0, 0) is a linearly zero singular point of system (6.1) and we use quasiho-

mogeneous blow-up to study this singular point. The choice of the exponents α, β

of the quasihomogeneous blow-up is given by the Newton diagram and depends

of the order of vanishing of p at u0.

Lemma 6.3. Assume that p(u0) = p′(u0) = 0. Then we can write p in the

form p(u) = (u − u0)
N p̃(u − u0), for a suitable choice of N = 2 or N = 4.

Moreover,

(6.6) N = 2 ⇒ p̃(u) = cu2 + 4cu0u+ 6cu20 + b, p̃(0) =
p′′(u0)

2
,

and the case N = 4 corresponds to a = b = 0, c �= 0, p̃ ≡ c.

Proof. It is sufficient to show that the case N = 3 is impossible. It is true

when c = 0. Suppose that c �= 0 and p′′′(u0) = 24cu0 �= 0, then u0 �= 0. Since p

is an even function, p(−u0) = 0.

On the other hand, if we take u = −u0 in the Taylor formula p(u) = (u −
u0)

3(4cu0 + c(u− u0)) we obtain p(−u0) = −16cu40 �= 0. �

In Lemmas 6.4 and 6.5 we consider cases N = 2 and N = 4, respectively.

Lemma 6.4. Suppose that p(u0) = p′(u0) = 0. If u0 ≥ 0 and p′′(u0) > 0 then

the sectorial decomposition of system (6.1) at (u0, 0) is composed by two hyper-

bolic sectors (Figure 3). If u0 = 0 and p′′(0) < 0 then the sectorial decomposition

of system (6.1) at (u0, 0) is composed by six hyperbolic sectors (Figure 5). If

u0 > 0 and p′′(u0) < 0 then the sectorial decomposition of system (6.1) at (u0, 0)

is composed by two hyperbolic sectors and one parabolic repelling sector, that is,

it is a saddle-node (Figure 7).

Proof. Suppose that u0 ≥ 0. After the translation u �→ u − u0 and using

notation of Lemma 6.3, system (6.1) becomes

(6.7)
u̇ =(1 + (u+ u0)

2)v4 + u2p̃(u),

v̇ =(u + u0)v
5.

Notice that for system (6.7) we have

(6.8) u = 0, v �= 0 ⇒ u̇ > 0.

We take the quasihomogeneous blow-up in the positive u-direction defined

by u = u2, v = u v which carries system (6.7) into

(6.9)
u̇ =

1

2
u3[(1 + (u2 + u0)

2)v4 + p̃(u2)],

v̇ =(u2 + u0)u
4v5 − 1

2
u2v[(1 + (u2 + u0)

2)v4 + p̃(u2)].
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Rescaling the independent variable by the rule dt = u2ds, system (6.9) becomes

(6.10)
u′ =

1

2
u[(1 + (u2 + u0)

2)v4 + p̃(u2)],

v′ =(u2 + u0)u
2v5 − 1

2
v[(1 + (u2 + u0)

2)v4 + p̃(u2)],

where the prime denotes derivative with respect to s.

The singularities of system (6.10) with u = 0 are isolated and are given by

(0, v0), where v0 = 0 or v0 is a solution of the equation

(6.11) v40 = −p̃(0)/(1 + u20).

The Jacobian matrix of the vector-field defined by system (6.10) evaluated at

(0, v0) is (
[(1 + u20)v

4
0 + p̃(0)]/2 0

0 −[5(1 + u20)v
4
0 + p̃(0)]/2

)
.

If p̃(0) > 0 then the origin is the unique singular point of system (6.10) with

u = 0 and it is a hyperbolic saddle point.

If p̃(0) < 0, then there are three singular points of system (6.10) with u = 0,

namely: (0, 0) which is a hyperbolic saddle point, and (0, v0) with v0 given by

the two real solutions of the equation (6.11), which are semi-hyperbolic saddle

points.

Now, we take the quasihomogeneous blow-up in the negative u−direction

defined by u = −u2, v = u v, which carries system (6.7) into

(6.12)
u̇ = − 1

2
u3[(1 + (−u2 + u0)

2)v4 + p̃(−u2)],

v̇ =(−u2 + u0)u
4v5 +

1

2
u2v[(1 + (−u2 + u0)

2)v4 + p̃(−u2)].
Rescaling the independent variable by the rule dt = u2ds, system (6.12) becomes

(6.13)
u′ = − 1

2
u[(1 + (−u2 + u0)

2)v4 + p̃(−u2)],

v′ =(−u2 + u0)u
2v5 +

1

2
v[(1 + (−u2 + u0)

2)v4 + p̃(−u2)].
The singular points of system (6.13) with u = 0 are isolated and given by

(0, v0), where v0 = 0 or v0 is defined by the real solutions of (6.11). The Jacobian

matrix of the vector-field defined by system (6.13) evaluated at (0, v0) is( −[(1 + u20)v
4
0 + p̃(0)]/2 0

0 [5(1 + u20)v
4
0 + p̃(0)]/2

)
.

If p̃(0) > 0 then the origin is the unique singular point of system (6.13) with

u = 0 and it is a hyperbolic saddle point.

If p̃(0) < 0 then there are three singular points of system (6.13) with u = 0,

namely: (0, 0) which is a hyperbolic saddle point, and (0, v0) with v0 given by the

two real solutions of equation (6.11), which are semi-hyperbolic singular points.
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Moreover, if u0 = 0 then (0, v0) is a semi-hyperbolic saddle point and if u0 > 0

then (0, v0) is a semi-hyperbolic unstable node.

For the case u0 ≥ 0, p(u0) = p′(u0) = 0 and p′′(u0) > 0 we summarize the

blow-ups in Figure 2. From (6.8) it follows that the sectorial decomposition of

system (6.1) at (u0, 0) is as given in Figure 3.

(a) (b) (c) (d)

uuuu

vvvv

Figure 2. Case u0 ≥ 0, p(u0) = p′(u0) = 0 and p′′(u0) > 0. (a) Blow-up
in the negative u-direction, system (6.13), (b) system (6.12), (c) blow-up
in the positive u-direction, system (6.10), (d) system (6.9).

u

v

u0

Figure 3. Sectorial decomposition of system (6.1) at (u0, 0) when u0 ≥ 0,
p(u0) = p′(u0) = 0 and p′′(u0) > 0.

For the case u0 = 0, p(0) = p′(0) = 0 and p′′(0) < 0 we summarize the

blow-ups in Figure 4. From (6.8) it follows that the sectorial decomposition of

system (6.1) at the origin of U1 is as given in Figure 5.

For the case u0 > 0, p(u0) = p′(u0) = 0 and p′′(u0) < 0 we summarize the

blow-ups in Figure 6. From (6.8) it follows that the sectorial decomposition of

system (6.1) at (u0, 0) is as given in Figure 7. �

Lemma 6.5. If a = b = 0 and c > 0 then the sectorial decomposition of

system (6.1) at the origin is composed by two hyperbolic sectors (Figure 8 (c)).

If a = b = 0 and c < 0 then the sectorial decomposition of system (6.1) at the

origin is composed by six hyperbolic sectors (Figure 10).

Proof. Suppose that a = b = 0 and c �= 0. In this case for system (6.1) we

have

(6.14) u = 0, v �= 0 ⇒ u̇ > 0
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(a) (b) (c) (d)

uuuu

vvvv

Figure 4. Case u0 = 0, p(0) = p′(0) = 0 and p′′(0) < 0. (a) Blow-up in
the negative u-direction, system (6.13), (b) system (6.12), (c) blow-up in
the positive u-direction, system (6.10), (d) system (6.9).

u

v

Figure 5. Sectorial decomposition of system (6.1) at the origin when
u0=0, p(0) = p′(0) = 0 and p′′(0) < 0.

and

(6.15) v = 0 ⇒ u̇ = cu4.

For the case a = b = 0 and c > 0 we take the blow-up u = u, v = u v which

carries system (6.1) into

(6.16)
u̇ =(1 + u2)u4v 4 + cu4,

v̇ =u5v5 − u3v5(1 + u2)− cu3v.

Rescaling the independent variable by the rule dt = u3ds, system (6.16) becomes

(6.17)
u′ =(1 + u2)uv4 + cu,

v′ = u2v5 − v5(1 + u2)− cv.

Then the origin is a hyperbolic saddle point of system (6.17).
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(a) (b) (c) (d)

uuuu

vvvv

Figure 6. Case u0 > 0, p(u0) = p′(u0) = 0 and p′′(u0) < 0. (a) Blow-up
in the negative u-direction, system (6.13), (b) system (6.12), (c) blow-up
in the positive u-direction, system (6.10), (d) system (6.9).

u

v

u0

Figure 7. Sectorial decomposition of system (6.1) at (u0, 0) when u0 > 0,
p(u0) = p′(u0) = 0 and p′′(u0) < 0.

When c > 0 the blow-up is presented in Figures 8 (a)–(b). From (6.14) it

follows that the sectorial decomposition of system (6.1) at the origin is given by

Figure 8 (c).

For the case a = b = 0 and c < 0 we take the blow-up u = u v, v = v which

carries system (6.1) into

(6.18)
u̇ =(1 + cu4)v3,

v̇ = u v6.
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(a) (b) (c)

u

v

uu

vv

Figure 8. Case a = b = 0 and c > 0. (a) Blow-up, system (6.17),

(b) system (6.16), (c) sectorial decomposition of system (6.1) at the
origin.

Rescaling the independent variable by the rule dt = v3ds, system (6.18) becomes

(6.19)
u′ =1 + cu4,

v′ =u v3.

Then the singularities with v = 0 are (±1/ 4
√−c, 0) which are semi-hyperbolic

saddle points.

(a) (b)

uu

vv

Figure 9. Case a = b = 0 and c < 0. (a) Blow-up, system (6.19), (b) sys-
tem (6.18).

When c < 0 the blow-up is presented in Figures 9 (a)–(b). From (6.14) and

(6.15) it follows that the sectorial decomposition of system (6.1) at the origin is

given by Figure 10. �

u

v

Figure 10. Case a = b = 0, c > 0. Sectorial decomposition of system (6.1)
at the origin.
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6.2. The origin of U2. In this section we study the local phase portrait of

the origin of U2.

Remark 6.6. For system (6.2) we have that u̇ < 0 when u = 0, v �= 0.

Moreover, this system is invariant under the change of coordinates (t, u, v) �→
(−t,−u, v).

As in the previous section the choice of exponents α and β of the quasiho-

mogeneous blow-up depends of the order of the vanishing of q at the origin. So

we will divide the study of the origin of U2 in the cases c �= 0; c = 0, b �= 0 and

c = b = 0, a �= 0 which will be treated in Lemmas 6.7–6.9, respectively.

In the next section we will prove that all possibilities for the sectorial de-

composition of system (6.2) at the origin presented in Lemmas 6.7 and 6.8 are

realized for an appropriate choice of parameters a, b and c. On the other hand,

for the case a < 0 and b = c = 0, only the second possibility for the sectorial

decomposition of system (6.2) at the origin presented by Lemma 6.9 is realized.

(a) (b) (c)

u

v

uu

vv

Figure 11. Case c < 0. (a) Blow-up in the positive u-direction, system
(6.21), (b) system (6.20), (c) sectorial decomposition of system (6.2) at the
origin.

Lemma 6.7. If c < 0 then there are two possibilities for the sectorial decom-

position of system (6.2) at the origin: either two elliptic sectors, or two elliptic

sectors, one parabolic repelling sector and one parabolic attracting sector (Fi-

gure 11 (c)). If c > 0 then the sectorial decomposition of system (6.2) at the

origin is composed by two hyperbolic sectors, one parabolic repelling sector and

one parabolic attracting sector (Figure 12 (c)).

Proof. Suppose c �= 0. After the blow-up in the positive u-direction defined

by u = u2, v = u v, system (6.2) becomes

(6.20)
u̇ = − 1

2
u3[(1 + u4)v4 + q(u2)],

v̇ =
1

2
u2v[(1 + u4)v4 − q(u2)].
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(a) (b)

(c)

u

v

u u

vv

Figure 12. Case c > 0. (a) Blow-up in the positive u-direction, system
(6.21), (b) system (6.20), (c) sectorial decomposition of system (6.2) at the
origin.

Rescaling the independent variable by the rule dt = u2ds, system (6.20) writes

(6.21)
u′ = − 1

2
u[(1 + u4)v4 + q(u2)],

v′ =
1

2
v[(1 + u4)v4 − q(u2)].

The singular points of system (6.21) with u = 0 are of the form (0, v0) where

v0 = 0 or v0 is a solution of the equation v40 = c, then (0, v0) is an isolated

singular point.

The Jacobian matrix of the vector field defined by system (6.21) evaluated

at (0, v0) is ( −(v40 + c)/2 0

0 (5v40 − c)/2

)
.

If c < 0 then the origin is the unique singular point of (6.21) with u = 0,

moreover, this is a hyperbolic unstable node. The blow-up in the positive u-

direction is presented in Figures 11 (a)–(b). From Remark 6.6 it follows that the

sectorial decomposition of system (6.2) at the origin is given by Figure 11 (c).

If c > 0 then there are three singular points of (6.21) with u = 0, namely:

(0, 0) is a hyperbolic stable node and (0,± 4
√
c) are hyperbolic saddle points.

The blow-up in the positive u-direction is presented in Figures 12 (a)–(b). From

Remark 6.6 it follows that the sectorial decomposition of system (6.2) at the

origin is given by Figure 12 (c). �

Lemma 6.8. If c = 0 and b < 0 then there are two possibilities for the

sectorial decomposition of system (6.2) at the origin: either two elliptic sectors,

or two elliptic sectors, one parabolic repelling sector and one parabolic attracting
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sector (Figure 13 (c)). If c = 0 and b > 0 then the sectorial decomposition of

system (6.2) at the origin is composed by two hyperbolic sectors (Figure 14 (c)).

(a) (b) (c)

u

v

u u

vv

Figure 13. Case c = 0 and b < 0. (a) Blow-up, system (6.23), (b) sys-

tem (6.22), (c) sectorial decomposition of system (6.2) at the origin.

(a) (b) (c)

u

v

u u

vv

Figure 14. Case c = 0 and b > 0. (a) Blow-up, system (6.23), (b) system
(6.22), (c) sectorial decomposition of system (6.2) at the origin.

Proof. Suppose that c = 0, b �= 0. We take the blow-up defined by u = u,

v = u v which carries system (6.2) into

(6.22)
u̇ = − (1 + u2)u4v4 − u4(au2 + b),

v̇ =u3v5.

Rescaling the independent variable by the rule dt = u3ds, system (6.22) becomes

(6.23)
u′ = − (1 + u2)uv4 − u(au2 + b),

v′ = v5.

The singular point with u = 0 is (0, 0) and this is an isolated singularity. The

Jacobian matrix of the vector-field defined by system (6.23) evaluated at (0, 0) is( −b 0

0 0

)
.

If b < 0 then (0, 0) is a semi-hyperbolic unstable node of system (6.23). The

blow-up is presented in Figures 13 (a)–(b). From Remark 6.6 it follows that the

sectorial decomposition of system (6.2) at the origin is given by Figure 13 (c).
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If b > 0 then (0, 0) is a semi-hyperbolic saddle point of system (6.23). The

blow-up is presented in Figures 14 (a)–(b). Using Remark 6.6 it follows that the

sectorial decomposition of system (6.2) at the origin is given by Figure 14 (c).�

Lemma 6.9. If a < 0 and b = c = 0 then there are two possibilities for the

sectorial decomposition of system (6.2) at the origin: either two elliptic sectors,

or two elliptic sectors, one parabolic repelling sector and one parabolic attracting

sector (Figure 15 (c)). If a > 0 and b = c = 0 then the sectorial decomposition of

system (6.2) at the origin is composed by two hyperbolic sectors (Figure 16 (c)).

(a) (b)

(c)

u

v

u u

vv

Figure 15. Case a < 0 and b = c = 0. (a) Blow-up in the positive u-
direction, system (6.25), (b) system (6.24), (c) sectorial decomposition of
system (6.2) at the origin.

(a) (b) (c)

uuu

vvv

Figure 16. Case a > 0 and c = b = 0. (a) Blow-up in the positive u-
direction, system (6.25), (b) system (6.24), (c) sectorial decomposition of
system (6.2) at the origin.
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Proof. Suppose a �= 0, b = c = 0. After the blow-up in the positive

u-direction defined by u = u2, v = u3 v system (6.2) becomes

(6.24)
u̇ = − 1

2
u11[(1 + u4)v4 + a)],

v̇ = − u10v(u4v4 + a) +
3

2
u10v[(1 + u4)v4 + a)].

Rescaling the independent variable by the rule dt = u10ds, system (6.24) becomes

(6.25) u′ = −1

2
u[(1 + u4)v4 + a)], v′ =

1

2
v(u4v4 + 3v4 + a).

The singular points of system (6.25) with u = 0 are isolated and given by (0, v0),

where v0 = 0 or v0 is a solution of the equation 3v40 = −a. The Jacobian matrix

of the vector-field defined by (6.25) evaluated at (0, v0) is( −(v4 + a)/2 0

0 (15v4 + a)/2

)
.

If a<0 then there are three singular points of system (6.25) with u=0, moreover

(0, 0) is a hyperbolic saddle point, and (0,± 4
√−a/3) are hyperbolic unstable

nodes. The blow-up in the positive u-direction is given by Figures 15 (a)–(b).

From Remark 6.6 it follows that the sectorial decomposition of system (6.2) at

the origin is given by Figure 15 (c).

If a > 0 then the origin is the unique singular point of system (6.25) with

u = 0, and it is a hyperbolic saddle point. We present the blow-up in the positive

u-direction in Figures 16 (a)–(b). From Remark 6.6 it follows that the sectorial

decomposition of system (6.2) at the origin is given by Figure 16 (c). �

7. Proof of Theorem 1.1

The proof of Theorem 1.1 is a combination of Lemmas 7.1, 7.2 and Re-

mark 7.3. In Lemma 7.1 we use a linear change of coordinates to find normal

forms of system (1.2). Finally, in Lemma 7.2 we determine the possibilities for

the global phase portrait in the Poincaré disk of each normal form.

Lemma 7.1. All systems of the form (1.2) are topologically equivalent to

one of the normal forms (i)–(viii) for an appropriate choice of A ∈ {−1, 1},
B,C ∈ R \ {0}. The correspondence between parameters of system (1.2) and

parameters of its respective normal form is given in Table 2.

Proof. Fixed δ �= 0, after the linear change of coordinates (x, y) �→ (δx, δy)

system (1.2) becomes

ẋ = −y, ẏ = x+
a

δ4
x5 +

b

δ4
x3y2 +

c

δ4
xy4.

Considering the appropriate choice of δ = 4
√±a, δ = 4

√±b or δ = 4
√±c, we

obtain Table 2. �
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System (1.2) Normal form (i)–(viii)

a = b = c = 0 (i)

a = b = 0, c �= 0 (ii), A = c/|c|
a = 0, b �= 0, c = 0 (iii), A = b/|b|
a = 0, b �= 0, c �= 0 (iv), A = b/|b|, C = c/|b|
a �= 0, b = c = 0 (v), A = a/|a|
a �= 0, b = 0, c �= 0 (vi), A = a/|a|, C = c/|a|
a �= 0, b �= 0, c = 0 (vii), A = a/|a|, B = b/|a|
a �= 0, b �= 0, c �= 0 (viii), A = a/|a|, B = b/|a|, C = c/|a|

Table 2. Correspondence between the parameters of system (1.2) and the
parameters of normal forms.

Lemma 7.2. The phase portrait in the Poincaré disk of each normal form

(i)–(viii) is topologically equivalent to one of the phase portraits of Figure 1. The

possibilities for the global phase portrait in the Poincaré disk for each normal

form (i)–(viii) are presented in the first and third columns of Table 1.

Proof. From [5] it follows that the origin is a center of all normal forms

(i)–(viii). Combining Remarks 5.1, 6.1, Lemmas 6.2–6.9 and the symmetries of

system (1.2), we obtain the local phase portraits in the Poincaré disk presented in

Figure 17. The correspondence between normal forms and local phase portraits

of Figure 17 is given in Table 3. Since system (1.2) is linear when a = b = c = 0,

the global phase portrait in the Poincaré disk of the vector field corresponding

to Figure 17 (a) is given by Figure 1 (a).

Now we will determine the global phase portrait in the Poincaré disk of the

normal forms corresponding to Figure 17 (b). In this case, the finite singularities

of X are the origin, which is a center, and two hyperbolic saddle points, see

Remark 5.1. Notice that from the definition of system (1.2) it follows that ẋ < 0

and ẏ = 0 if x = 0 and y > 0; ẋ > 0 and ẏ = 0 if x = 0 and y < 0. Moreover,

ẋ = 0 and ẏ > 0 when x ∈ (−∞,−1) ∪ (0, 1) and y = 0; ẋ = 0 and ẏ < 0 when

x ∈ (−1, 0)∪ (1,+∞) and y = 0. Combining this with the symmetries of system

(1.2), we obtain that the global phase portrait in the Poincaré disk of the normal

forms corresponding Figure 17 (b) is given by Figure 1 (b).

In the same way we can prove that the global phase portrait in the Poincaré

disk of normal forms corresponding to Figures 17 (a)–(i) is given by Figures 1 (a)–

(i), respectively. Also, the global phase portrait in the Poincaré disk of nor-

mal forms corresponding to Figures 17 (k), (l), (n) is given by Figures 1 (m), (n),

and (r), respectively.
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Local Phase

Portrait of Normal Form

Figure 17

(a) (i)

(b)

(v), A = −1

(viii), A = −1, B > 0, C < 0, B2 + 4C < 0

(viii), A = −1, B < 0, C < 0

(vii), A = −1, B < 0

(vi), A = −1, C < 0

(c)

(viii), A = 1, B < 0, C > 0, B2 − 4C < 0

(viii), A = 1, B > 0, C > 0

(vi), A = 1, C > 0

(d)
(v), A = 1

(vii), A = 1, B > 0

(e)
(ii), A = 1

(iv), A = 1, C > 0

(f) (iii), A = 1

(g)

(ii), A = −1

(iii), A = −1

(iv), A = −1, C < 0

(h) (viii), A = 1, B < 0, C > 0, B2 − 4C = 0

(i) (viii), A = −1, B > 0, C < 0, B2 + 4C = 0

(j)

(viii), A = −1, B > 0, C > 0

(viii), A = −1, B < 0, C > 0

(vi), A = −1, C > 0

(k)

(viii), A = 1, B �= 0, C < 0

(vii), A = 1, B < 0

(vi), A = 1, C < 0

(l) (vii), A = −1, B > 0

(m) (iv), A = −1, C > 0

(n) (iv), A = 1, C < 0

(o) (viii), A = 1, B < 0, C > 0, B2 − 4C > 0

(p) (viii), A = −1, B > 0, C < 0, B2 + 4C > 0

Table 3. Classification of local phase portraits in the Poincaré disk

of normal forms (i)–(viii).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 17. Local phase portraits in the Poincaré disk of normal forms

(i)–(viii).

With the same arguments we can prove that for each normal form corre-

sponding to Figures 17 (j), (m), (o) there exist three possibilities for the global

phase portrait in the Poincaré disk, which are presented in Figures 1 (j), (k), (l),

Figures 1 (o), (p), (q) and Figures 1 (s), (t), (u), respectively.

Finally, we will prove that the global phase portrait in the Poincaré disk of

normal form corresponding to Figure 17 (p) is given by Figure 1 (v). In fact,

first observe that in this case for the corresponding system (6.1) in R
2 the union

of points (u, v) such that u̇ = 0 is the union Λ of the graphics of the functions

v = ± 4
√−p(u)/(1 + u2), the points (u, v) for which u̇ > 0 are given by the region

R+ in Figure 18. The region R− corresponds to the points (u, v) such that u̇ < 0.

To complete the proof, it is sufficient to show that α(Γ) = {F} in Fi-

gure 19 (a), where α(Γ) denotes the α-limit of the orbit Γ. Suppose that this

assertion is false, then α(Γ) = {D} or α(Γ) = {E}. The phase portraits of

system (6.1) in R
2, for cases α(Γ) = {D} and α(Γ) = {E}, are presented in

Figures 19 (b)–(c), respectively. If α(Γ) = {D} then an integral curve which

connects points E and H provides a contradiction with the sign of u̇ in the

region R+ presented in Figure 18. In the same way, if α(Γ) = {E} then Γ

contradicts Figure 18. �
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R+R+
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Figure 18. Signs of u̇ for system (6.1) corresponding to case of Figure 17 (p).

a b c

D

E
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F
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ΓΓ

Γ
uu

v v

Figure 19. (a) Local phase portrait in the Poincaré disk (b) global phase
portrait in R

2 of system (6.1), if α(Γ) = {D}, (c) global phase portrait
in R

2 of system (6.1), if α(Γ) = {E}.

Remark 7.3. Using Program P4, we can check that the global phase por-

traits in the Poincaré disk of Figures 1 (j), (l) are realized by choosing a = −1,

b ∈ {−1, 0, 1}, c = 20 and a = −1, b ∈ {−1, 0, 1}, c = 1 in system (1.2), respec-

tively. Then, by continuity, choosing a = −1 and b ∈ {−1, 0, 1}, the global phase
portrait in the Poincaré disk of Figure 1 (k) is realized for the appropriate choice

of c ∈ (1, 20). In the same way, the global phase portraits in the Poincaré disk

of Figures 1 (o), (q) are realized by the choice a = 0, b = −1, c = 10 and a = 0,

b = −1, c = 0.1, respectively. By continuity, the global phase portrait in the

Poincaré disk of Figure 1 (p) is realized for a = 0, b = −1 and the appropriate

choice of c ∈ (0.1, 10). Finally, the global phase portraits in the Poincaré disk

of Figures 1 (s), (u) are realized choosing a = 1, b = −2.1, c = 1 and a = 1,

b = −10, c = 1, respectively. By continuity, the global phase portrait in the

Poincaré disk of Figure 1 (t) is realized for a = −1, c = 1 and the appropriate

choice of c ∈ (−10,−2.1).
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