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NONLINEAR, NONHOMOGENEOUS PARAMETRIC

NEUMANN PROBLEMS

Sergiu Aizicovici — Nikolaos S. Papageorgiou — Vasile Staicu

Abstract. We consider a parametric nonlinear Neumann problem driven

by a nonlinear nonhomogeneous differential operator, with a Carathéodory
reaction f which is p-superlinear in the second variable, but not necessarily

satisfying the usual in such cases Ambrosetti–Rabinowitz condition. We

prove a bifurcation type result describing the dependence of positive so-
lutions on the parameter λ > 0, show the existence of a smallest positive

solution uλ and investigate properties of the map λ 7→ uλ. Finally, we show

the existence of nodal solutions.

1. Introduction

In this paper we study the following nonlinear parametric Neumann problem:

(Pλ)

−div a(Du(z)) + λ|u(z)|p−2u(z) = f(z, u(z)) in Ω,
∂u

∂n
= 0 on ∂Ω, λ > 0,
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1 < p < ∞. Here Ω ⊂ RN is a bounded domain with a C2-boundary ∂Ω.

The map a : RN → RN is continuous, strictly monotone and satisfies certain

regularity conditions which are listed in hypotheses H(a) (see Section 2). These

hypotheses are general enough to incorporate in our framework many differential

operators of interest, such as the p-Laplacian. Also λ > 0 is a parameter and f

is a Carathéodory function (i.e. for all x ∈ R, z 7→ f(z, x) is measurable and for

almost all z ∈ Ω, x 7→ f(z, x) is continuous) which exhibits a (p− 1)-superlinear

growth in the second variable, but not necessarily satisfying the usual in such

cases Ambrosetti–Rabinowitz condition (AR-condition for short).

Our work is motivated by a recent paper of Motreanu, Motreanu and Pa-

pageorgiou [18], who produced constant sign and nodal solutions. Our results

complement and improve those of [18]. More precisely, the authors in [18] pro-

duced positive solutions for problem (Pλ) but did not give the precise depen-

dence of the set of positive solutions on the parameter λ > 0. Here, we prove

a bifurcation-type theorem for large values of λ, which gives a complete picture

of the set of positive solutions as the parameter varies. Moreover, in [18] nodal

(that is, sign-changing) solutions were produced only for the particular case of

equations driven by the p-Laplacian. In contrast, here we generate nodal solu-

tions for the general case. We stress that the p-Laplacian differential operator is

homogeneous, while the differential operator in (Pλ) is not. Hence, the methods

and techniques used in [18] fail in the present setting, and so a new approach

is needed. Finally, we mention that a bifurcation near infinity for a different

class of p-Laplacian Dirichlet problems was recently produced by Gasinski and

Papageorgiou [12].

In the next section, we review the main mathematical tools which will be

used in this paper. We also present the hypotheses on the map y 7→ a(y) and

state some useful consequences of them.

2. Mathematical background

Let (X, ‖ · ‖) be a Banach space and X∗ be its topological dual. By 〈 · , · 〉
we denote the duality brackets for the pair (X∗, X) and

w−→ will designate the

weak convergence.

Let ϕ ∈ C1(X). We say that x∗ ∈ X is a critical point of ϕ if ϕ′(x∗) = 0.

If x∗ ∈ X is a critical point of of ϕ then c = ϕ(x∗) is a critical value of ϕ. We

say that ϕ satisfies the “Palais–Smale condition” (PS-condition for short), if the

following holds:

“Every sequence {un}n≥1 ⊆ X such that {ϕ(un)}n≥1 is bounded

in R and ϕ′(un) → 0 in X∗ as n → ∞ admits a strongly con-

vergent subsequence.”
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This compactness-type condition on the functional ϕ leads to a deformation

theorem from which one can derive the minimax theory of critical values of ϕ.

One of the main results in that theory is the so-called “mountain pass theorem”,

which we recall here.

Theorem 2.1. If ϕ ∈ C1(X) satisfies the PS-condition, u0, u1 ∈ X with

‖u1 − u0‖ > ρ > 0 and

max{ϕ(u0), ϕ(u1)} < inf{ϕ(u) : ‖u− u0‖ = ρ} =: mρ,

c := inf
γ∈Γ

max
t∈[0,1]

ϕ(γ(t)),

where Γ = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1}, then c ≥ mρ and c is

a critical value of ϕ.

The main spaces that we will use in the analysis of problem (Pλ) are the

Sobolev space W 1,p(Ω) and the Banach space C1(Ω). The latter is an ordered

Banach space with positive cone

C+ = {u ∈ C1(Ω) : u(z) ≥ 0 for all z ∈ Ω}.

This cone has a nonempty interior given by

int C+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω}.

By ‖ · ‖ we denote the norm of the Sobolev space W 1,p(Ω), that is

‖u‖ = [‖u‖pp + ‖Du‖pp]1/p for all u ∈W 1,p(Ω),

where ‖ · ‖p denotes the norm in Lp(Ω) (or Lp(Ω,RN )).

Also, by ‖ · ‖ we denote the RN -norm. However, no confusion is possible,

since it will be clear from the context which norm is used. The inner product in

RN will be denoted by ( · , · )RN .

Let θ ∈ C1(0,∞) and assume that there exist constants Ĉ, C0, C1, C2 > 0

such that

(2.1) Ĉ ≤ tθ′(t)

θ(t)
≤ C0 and C1t

p−1 ≤ θ(t) ≤ C2(1 + tp−1) for all t > 0,

with 1 < p <∞. The hypotheses on the map a : RN → RN are the following:

H(a) a(y) = a0(‖y‖)y for all y ∈ RN with a0(t) > 0 for all t > 0 and

(i) a0 ∈ C1(0,∞), t 7→ ta0(t) is strictly increasing in (0,∞), ta0(t) →
0+ as t→ 0+ and

lim
t→0+

ta′0(t)

a0(t)
> −1;

(ii) for some C3 > 0 and all y ∈ RN \ {0}

‖∇a(y)‖ ≤ C3
θ(‖y‖)
‖y‖

;
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(iii) for all y ∈ RN \ {0} and all ξ ∈ RN

θ(‖y‖)
‖y‖

‖ξ‖2 ≤ (∇a(y)ξ, ξ)RN ;

(iv) if G0(t) =
∫ t

0
sa0(s) ds, then there exists ξ0 > 0 such that

pG0(t)− t2a0(t) ≥ −ξ0 for all t > 0;

(v) there exist τ, q ∈ (1, p) such that

t 7→ G0(t1/τ ) is convex and lim
t→0+

G0(t)

tq
= 0.

Remark 2.2. The hypotheses H(a) (i)–(iii) were motivated by the regularity

results of Lieberman [15] (p. 320) and the nonlinear maximum principle of Pucci

and Serrin [25] (pp. 111, 120). Hypotheses H(a) (iv)–(v) are particular for our

problem here, but they are quite general and are satisfied by many differential

operators of interest (see Examples 2.5 below). Hypotheses H(a) imply that the

primitive G0 is strictly convex and strictly increasing.

We set

G(y) = G0(‖y‖) for all y ∈ RN .

Evidently G is convex and differentiable on RN . We have

∇G(y) = G′0(‖y‖) y

‖y‖
= a0(‖y‖)y for all y ∈ RN \ {0}, ∇G(0) = 0.

Since G is convex and G(0) = 0, we have

(2.2) G(y) ≤ (a(y), y)RN for all y ∈ RN .

The next lemma summarizes the main properties of G and is an easy consequence

of hypotheses H(a) (i)–(iii).

Lemma 2.3. If hypotheses H(a) (i)–(iii) hold, then:

(a) the map y 7→ a(y) is continuous and strictly monotone, hence maximal

monotone too;

(b) ‖a(y)‖ ≤ C4(1 + ‖y‖p−1) for some C4 > 0 and all y ∈ RN ;

(c) (a(y), y)RN ≥ C1‖y‖p/(p− 1) for all y ∈ RN .

This lemma together with (2.1) and (2.2) leads to the following growth esti-

mates for G.

Corollary 2.4. If hypotheses H(a) (i)–(iii) hold, then

C1

p(p− 1)
‖y‖p ≤ G(y) ≤ C5(1 + ‖y‖p) for some C5 > 0, all y ∈ RN .

Examples 2.5. The following maps a satisfy hypotheses H(a):
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(a) a(y) = ‖y‖p−2y with 1 < p <∞. This map corresponds to the p-Laplace

differential operator defined by

4pu = div(‖Du‖p−2Du) for all u ∈W 1,p(Ω).

(b) a(y) = ‖y‖p−2y + ‖y‖q−2y with 1 < q < p < ∞. This map corresponds

to the (p, q)-Laplacian defined by

4pu+4qu for all u ∈W 1,p(Ω).

Such operators arise in many physical applications (see Cherfils and Ilyasov [6]

and the references therein). Recently there have been existence and multiplicity

results for equations driven by such operators. We mention the works of Aizi-

covici, Papageorgiou and Staicu [4], Cingolani and Degiovanni [7], Mugnai and

Papageorgiou [22], Papageorgiou and Radulescu [23], Sun [26].

(c) a(y) = (1 +‖y‖2)(p−2)/2y with 1 < p <∞. This map corresponds to the

generalized p-mean curvature differential operator defined by

div((1 + ‖Du‖2)(p−2)/2Du) for all u ∈W 1,p(Ω).

(d) a(y) = ‖y‖p−2y +
‖y‖q−2y

1 + ‖y‖q
with 1 < q ≤ p.

(e) a(y) =

‖y‖p−1y if ‖y‖ < 1

2‖y‖p−2y − ‖y‖p−3y if 1 < ‖y‖
with 1 < p <∞.

Let A : W 1,p(Ω)→W 1,p(Ω)∗ be the nonlinear map defined by

(2.3) 〈A(u), y〉 =

∫
Ω

(a(Du), Dy)RN dz for all u, y ∈W 1,p(Ω).

From Papageorgiou, Rocha and Staicu [24] we have:

Proposition 2.6. If hypotheses H(a) (i)–(iii) hold, then the map A : W 1,p(Ω)

→W 1,p(Ω)∗ defined by (2.3) is demicontinuous, strictly monotone (hence maxi-

mal monotone too) and of type (S)+ (that is, if un
w−→ u in W 1,p(Ω) and

lim sup
n→∞

〈A(un), un − u〉 ≤ 0,

then un → u in W 1,p(Ω) as n→∞).

Let f0 : Ω× R→ R be a Carathéodory function such that

|f0(z, x)| ≤ a0(z)(1 + |x|r−1) for a.a. z ∈ Ω, all x ∈ R

with a0 ∈ L∞(Ω)+ and 1 < r < p∗, where

p∗ :=


Np

N − p
if p < N,

+∞ if p ≥ N.
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We set

F0(z, x) =

∫ x

0

f0(z, s) ds

and consider the C1-functional ϕ0 : W 1,p(Ω)→ R defined by

ϕ0(u) =

∫
Ω

G(Du(z)) dz −
∫

Ω

F0(z, u(z)) dz for all u ∈W 1,p(Ω).

From Motreanu and Papageorgiou [21], we have:

Proposition 2.7. If hypotheses H(a) (i)–(iii) hold, ϕ0 : W 1,p(Ω) → R is as

defined above and u0 ∈W 1,p(Ω) is a local C1(Ω)-minimizer of ϕ0, that is, there

exists ρ0 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ C1(Ω) with ‖h‖C1(Ω) ≤ ρ0,

then u0 ∈ C1,α
0 (Ω) for some α ∈ (0, 1) and u0 is also a W 1,p(Ω)-minimizer of ϕ0,

that is, there exists ρ1 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈W 1,p(Ω) with ‖h‖ ≤ ρ1.

Let X be a Banach space, ϕ ∈ C1(X) and c ∈ R. We introduce the following

sets:

ϕc = {u ∈ X : ϕ(u) ≤ c},

Kϕ = {u ∈ X : ϕ′(u) = 0},

Kc
ϕ = {u ∈ Kϕ : ϕ(u) = c}.

For every topological pair (Y1, Y2) with Y2 ⊂ Y1 ⊂ X and every integer k ≥ 0,

by Hk(Y1, Y2) we denote the kth-relative singular homology group with integer

coefficients.

Given an isolated u ∈ Kc
ϕ, the critical groups of ϕ at u are defined by

Ck(ϕ, u) = Hk(ϕc ∩ U, (ϕc ∩ U)\{u}), for all integers k ≥ 0,

where U is a neighbourhood of u such that Kϕ∩ϕc∩U = {u}. The excision prop-

erty of the singular homology implies that the above definition is independent of

the particular choice of the neighbourhood U .

Finally we outline some additional notations used in this paper. By | · |N we

denote the Lebesgue measure on RN . Given x ∈ R, we define x± = max{±x, 0}.
For u ∈W 1,p(Ω) we set u±( · ) = u( · )±. We know that

u± ∈W 1,p(Ω), |u| = u+ + u−, u = u+ − u−.

Given a measurable function h : Ω×R→ R (for example, a Carathéodory func-

tion), we define

Nh(u)( · ) = h( · , u( · )) for all u ∈W 1,p(Ω)
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(the Nemitskĭı operator corresponding to h). Evidently z 7→ Nh(u)(z) = h(z, u(z))

is measurable.

3. Positive solutions

In this section, we prove a bifurcation-type theorem describing the set of

positive solutions of (Pλ) as λ > 0 varies. We impose the following conditions

on the reaction f :

(H1) f : Ω × R → R is a Carathéodory function such that f(z, 0) = 0 almost

everywhere in Ω, f(z, x) > 0 for all x > 0 and

(i) there exists a ∈ L∞(Ω)+ such that f(z, x) ≤ a(z)(1 + xr−1) for

almost all z ∈ Ω, all x ≥ 0, with p < r < p∗;

(ii) if F (z, x) =
∫ x

0
f(z, s) ds then

lim
x→+∞

F (z, x)

xp
= +∞ uniformly for a.a. z ∈ Ω;

(iii) there exist µ ∈ (max{(r − p)N/p, 1}, p∗) and β0 > 0 such that

β0 ≤ lim inf
x→+∞

f(z, x)x− pF (z, x)

xµ
uniformly for a.a. z ∈ Ω;

(iv) there exist δ̂0 and Ĉ0 > 0 such that f(z, x) ≥ Ĉ0x
q−1 for almost all

z ∈ Ω, all x ∈ [0, δ̂0], with q ∈ (1, p) as in hypothesis H(a) (v).

Remarks 3.1. Since in this section we are looking for positive solutions and

all the above hypotheses concern the positive half-axis R+ = [0,∞), we may

assume, without any loss of generality, that f(z, x) = 0 for a.a. z ∈ Ω, all x ≤ 0.

Hypotheses (H1) (ii)–(iii) imply that

lim
x→∞

f(z, x)

xp−1
=∞ uniformly for a.a. z ∈ Ω,

that is, for almost all z ∈ Ω, f(z, · ) is (p − 1)-superlinear. Usually superlinear

problems are treated using the so-called Ambrosetti–Rabinowitz condition (AR-

condition, for short). We recall that the AR-condition (the unilateral version)

says that there exist η > p and M > 0 such that

(3.1) 0 < ηF (z, x) ≤ f(z, x)x for a.a. z ∈ Ω,

all x ≥M and essinf F ( · ,M) > 0.

From (3.1) through integration, we obtain the weaker condition

(3.2) C6x
η ≤ F (z, x) for a.a. z ∈ Ω, all x ≥M with C6 > 0.

By (3.2) and since η > p, we infer that the much weaker condition (H1) (ii) holds.

Hypotheses (H1) (ii)–(iii) together are weaker than the AR-condition and

allow us to include in our framework superlinear functions with “slower” growth

near +∞ (see the examples below).
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Suppose that the AR-condition holds. We may assume that η > max{(r−p)
N/p, 1}. We have

f(z, x)x− pF (z, x)

xη
=
f(z, x)x− ηF (z, x)

xη
+ (η − p)F (z, x)

xη
≥ (η − p)C6

for almost all z ∈ Ω, all x ≥M . So, hypothesis (H1) (iii) holds.

Hypothesis (H1) (iv) implies that the reaction f(z, · ) exhibits a concave term

near zero. Therefore our hypotheses (H1) incorporate the case of equations with

competing nonlinearities (“concave-convex problems”).

We mention that similar or different extensions of the AR-superlinearity con-

dition can be found in Aizicovici, Papageorgiou and Staicu [3], Costa and Mag-

alhães [8], Li and Yang [16], and Mugnai and Papageorgiou [22].

Example 3.2. The following functions satisfy hypotheses (H1). For the sake

of simplicity we drop the z-dependence:

f1(x) = xq−1 + xr−1 for all x ≥ 0 with 1 < q < p < r < p∗,

f2(x) =

xq−1 if x ∈ [0, 1],

xp−1(lnx+ 1) if 1 < x,
with 1 < q < p.

Note that f2 does not satisfy the AR-condition.

We introduce the following two sets: L = {λ > 0 : (Pλ) admits a positive

solution} and, for λ ∈ L, S(λ) = {positive solutions of (Pλ)}. We start with

a useful observation concerning the solution set S(λ).

Proposition 3.3. If hypotheses H(a) (i)–(iii) and (H1) hold, then

S(λ) ⊆ intC+.

Proof. Let λ ∈ L and u ∈ S(λ). We have

(3.3) −div a(Du(z)) + λu(z)p−1 = f(z, u(z)) a.e. in Ω,
∂u

∂n
= 0 on ∂Ω

(see Motreanu and Papageorgiou [20]). From Hu and Papageorgiou [14] and

Winkert [27], we have that u ∈ L∞(Ω). So, we can apply the regularity result of

Lieberman [15] (p. 320) and infer that u ∈ C+ \ {0}.
Since f ≥ 0 (see hypotheses (H1)), from (3.3) we have

(3.4) div a(Du(z)) ≤ λu(z)p−1 for a.a. z ∈ Ω.

Let χ(t) = ta0(t) for all t > 0. Then from the one-dimensional version of

hypothesis H(a) (iii) we have

tχ′(t) = t2a′0(t) + ta0(t) ≥ C1t
p−1,
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hence

(3.5)

∫ t

0

sχ′(s) ds = tχ(t)−
∫ t

0

χ(s) ds = t2a0(t)−G0(t) ≥ C1

p
tp

for all t ≥ 0. Let

H(t) = t2a0(t)−G0(t) and H0(t) =
C1

p
tp for all t ≥ 0.

Let s ∈ (0, 1) and consider the sets

Ds = {t ∈ (0, 1) : H(t) ≥ s} and D0
s = {t ∈ (0, 1) : H0(t) ≥ s}.

From (3.5) we see that D0
s ⊆ Ds, hence we have successively: inf D0

s ≤ inf Ds,

H−1(s) ≤ H−1
0 (s), and∫ δ

0

1

H−1(λsp/p)
ds ≥

∫ δ

0

1

H−1
0 (λsp/p)

ds = C7

∫ δ

0

ds

s
= +∞

for some C7 > 0. Because of (3.4) we can apply the strong maximum principle

of Pucci and Serrin [25, p. 111] and deduce that u(z) > 0 for all z ∈ Ω. Then

invoking the boundary point theorem of Pucci and Serrin [25, p. 120], we conclude

that u ∈ int qC+. Therefore S(λ) ⊆ intC+. �

Next we show that L is nonempty and prove a structural property of L,

namely that L is a half-line.

Proposition 3.4. If hypotheses H(a) and (H1) hold, then

L 6= ∅, and λ ∈ L implies that [λ,+∞) ⊆ L.

Proof. We consider the following auxiliary Neumann problem:

(3.6) −div a(Du(z)) + u(z)p−1 = 1 in Ω,
∂u

∂n
= 0 on ∂Ω, u > 0.

Let Kp : Lp(Ω)→ Lp
′
(Ω) (1/p+ 1/p′ = 1) be the nonlinear map defined by

Kp(u)( · ) = |u( · )|p−2u( · ) for all u ∈ Lp(Ω).

Clearly Kp is continuous and strictly monotone and so is Kp|W 1,p(Ω) which im-

plies that Kp|W 1,p(Ω) is maximal monotone. Let V : W 1,p(Ω) → W 1,p(Ω)∗ be

defined by

V (u) = A(u) +Kp(u) for all u ∈W 1,p(Ω).

Using Proposition 2.6, from Gasinski and Papageorgiou [11, p. 320], we conclude

that V is maximal monotone. Also, we have

〈V (u), u〉 = 〈A(u), u〉+ ‖u‖pp ≥
C1

p− 1
‖Du‖pp + ‖u‖pp (see Lemma 2.3)

≥ C8‖u‖p for some C8 > 0,
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hence V is coercive. Then from in [11, p. 320], we have that V is surjective. So,

we can find u ∈W 1,p(Ω), u 6= 0 such that V (u) = 0, hence

(3.7) A(u) + |u|p−2u = 1.

On (3.7) we act with −u− and obtain

C1

p− 1
‖Du−‖pp + ‖u−‖pp ≤ 0

(see Lemma 2.3), hence u ≥ 0, u 6= 0. Then (3.7) becomes

A(u) + up−1 = 1,

hence u is a positive solution of the auxiliary problem (3.6).

As in the proof of Proposition 3.3, using the nonlinear regularity theory (see

[14], [27] and [15]) and the nonlinear maximum principle (see [25]), we have

u ∈ intC+. So, we can find C9 > 0 such that u(z) ≥ C9 for all z ∈ Ω. Let

λ0 =
1 + ‖Nf (u)‖∞

Cp−1
9

(see hypothesis (H1) (i)). Then

(3.8) A(u) + λ0u
p−1 ≥ Nf (u) in W 1,p(Ω)∗.

Using u ∈ intC+, we introduce the following truncation of the reaction f(z, · ):

(3.9) f0(z, x) =


0 if x < 0,

f(z, x) if 0 ≤ x ≤ u(z),

f(z, u(z)) if u(z) < x.

This is a Carathéodory function. Let

F0(z, x) =

∫ x

0

f0(z, s) ds

and consider the C1-functional ϕ
0
: W 1,p(Ω)→ R defined by

ϕ0(u) =

∫
Ω

G(Du(z)) dz +
λ0

p
‖u‖pp −

∫
Ω

F0(z, u(z)) dz for all u ∈W 1,p(Ω).

From (3.9) it is clear that ϕ0 is coercive. Also, using the Sobolev embedding

theorem, we see that ϕ0 is sequentially weakly lower semicontinuous. So, by the

Weierstrass theorem, we can find u0 ∈W 1,p(Ω) such that

(3.10) ϕ0(u0) = inf{ϕ
0
(u) : u ∈W 1,p(Ω)}.

By virtue of H(a) (v) and (H1) (iv), given ε > 0, we can find δ = δ(ε) ∈ (0, δ̂0]

such that

G0(t) ≤ ε

q
tq for all t ∈ [0, δ],
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hence

(3.11) G(y) ≤ ε

q
‖y‖q for all y ∈ RN with ‖y‖ ≤ δ.

Given u ∈ intC+, we can find t ∈ (0, 1] small enough such that

(3.12) tu ≤ u, tu(z) ∈ (0, δ] and t‖Du(z)‖ ∈ [0, δ] for all z ∈ Ω

(recall u, u ∈ intC+ and use Lemma 3.3 of Filippakis, Kristaly and Papageor-

giou [10]). Then we have

ϕ0(tu) =

∫
Ω

G(tDu(z)) dz +
λ0t

p

p
‖u‖pp −

∫
Ω

F0(z, tu(z)) dz(3.13)

≤ λ0t
p

p
‖u‖pp −

tq

q

[
Ĉ0‖u‖qq − ε‖Du‖qq

]
(see (3.11), (3.12) and hypothesis H(a) (iv)). We choose ε ∈ (0, Ĉ0‖u‖qq/‖Du‖qq).
Then from (3.13) it follows

(3.14) ϕ0(tu) ≤ λ0t
p

p
‖u‖pp − C10t

q for some C10 = C10(u) > 0.

Since q < p (see hypothesis H(a) (iv) ), choosing t ∈ (0, 1) even smaller if neces-

sary, from (3.14) we see that ϕ0(tu) < 0 which implies ϕ0(u0) < 0 = ϕ0(0) (see

(3.10)), hence u0 6= 0.

From (3.10) we have ϕ′0(u0) = 0, hence

(3.15) A(u0) + λ0|u0|p−2u0 = Nf0(u0).

On (3.15) we act with −u−0 ∈W 1,p(Ω) and obtain

C1

p− 1
‖Du−0 ‖pp + λ0‖u−0 ‖pp ≤ 0 (see Lemma 2.3 and (3.9)),

hence u0 ≥ 0, u0 6= 0. Also, on (3.15) we act with (u0 − u)+ ∈ W 1,p(Ω). We

obtain

〈A(u0),(u0 − u)+〉+ λ0

∫
Ω

up−1
0 (u0 − u)+ dz

=

∫
Ω

f0(z, u0)(u0 − u)+ dz

=

∫
Ω

f(z, u)(u0 − u)+ dz (see (3.9))

≤ 〈A(u), (u0 − u)+〉+ λ0

∫
Ω

up−1(u0 − u)+ dz (see (3.8)),

hence∫
{u0>u}

(a(Du0)− a(Du), Du0 −Du)RN

+ λ0

∫
{u0>u}

(u0
p−1 − up−1)(u0 − u) dz ≤ 0,
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therefore |{u0 > u}|N = 0, and we conclude that u0 ≤ u. So, we have proved

that

u0 ∈ [0, u] := {u ∈W 1,p(Ω) : 0 ≤ u(z) ≤ u(z) for a.a. z ∈ Ω}, u0 6= 0.

Then equation (3.15) becomes

A(u0) + λ0u
p−1
0 = Nf (u0)

(see (3.9)) therefore u0 ∈ S(λ0) ⊆ intC+ (see Proposition 3.3) and so λ0 ∈ L.

Now, let λ ∈ L and η > λ. Then there exists uλ ∈ S(λ) ⊆ intC+ (see

Proposition 3.3). We have

(3.16) A(uλ) + ηup−1
λ ≥ A(uλ) + λup−1

λ = Nf (uλ) in W 1,p(Ω)∗.

We truncate f(z, · ) at uλ(z) and, reasoning as above with u replaced by uλ and

using (3.16) instead of (3.8), via the direct method, we produce

uη ∈ [0, uλ] ∩ S(η) ⊆ [0, uλ] ∩ intC+.

Therefore η ∈ L and so we conclude that [λ,+∞) ⊆ L. �

A useful by-product of the above proof is the following corollary:

Corollary 3.5. If hypotheses H(a) and (H1) hold, η > λ ∈ L and uλ ∈
S(λ) ⊆ intC+, then we can find uη ∈ S(η) ⊆ intC+ such that uη ≤ uλ.

In fact, we can improve the conclusion of this corollary provided we strengthen

a little the hypotheses on the reaction f . The new hypotheses on the reaction f

are the following:

(H2) f : Ω×R→ R is a Carathéodory function such that for almost all z ∈ Ω

f(z, 0) = 0, f(z, x) > 0 for all x > 0, hypotheses (H2) (i)–(iv) are the

same as (H1) (i)–(iv) and

(v) for every ρ > 0, there exists ξρ > 0 such that for almost all z ∈ Ω

the function x 7→ f(z, x) + ξρx
p−1 is nondecreasing on [0, ρ].

Remark 3.6. Note that if for almost all z ∈ Ω, f(z, · ) ∈ C1(0,∞) and

fx(z, · ) is L∞(Ω)-bounded on compact subsets of (0,∞), hypothesis (H2) (v) is

automatically satisfied. So, the two examples given after hypotheses (H1) satisfy

(H2) (v) .

Proposition 3.7. If hypotheses H(a) and (H2) hold, η > λ ∈ L and uλ ∈
S(λ) ⊆ intC+, then we can find uη ∈ S(η) ⊆ intC+ such that uλ − uη ∈ intC+.

Proof. From Corollary 3.5, we know that there exists uη ∈ S(η) ⊆ intC+

such that

(3.17) uη ≤ uλ.
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Let δ > 0 and set uδη = uη + δ ∈ intC+. Let ρ = ‖uλ‖∞ and let ξρ > 0 be as

postulated by hypothesis (H2) (v). We have

−div a(Duδη) + (λ+ ξρ)(u
δ
η)p−1

≤ − div a(Duη) + ηup−1
η − (η − λ)up−1

η + ξρu
p−1
η + σ(δ)

(with σ(δ)→ 0+ as δ → 0+)

≤ − diva(Duη) + (η + ξρ)u
p−1
η − (η − λ)mp−1

η + σ(δ)

(with mη = min
Ω
uη > 0)

≤ − div a(Duη) + (η + ξρ)u
p−1
η (for δ > 0 small)

= f(z, uη) + ξρu
p−1
η (since uη ∈ S(η))

≤ f(z, uλ) + ξρu
p−1
λ (see (3.17) and hypothesis (H2) (v))

= − div a(Duλ) + ξρu
p−1
λ (since uλ ∈ S(λ)),

hence uδη ≤ uλ for all δ > 0 small (see Damascelli [9, p. 495]) therefore uλ − uη
lies in intC+. �

Let λ∗ = inf L. In what follows, for every λ > 0, ϕλ : W 1,p(Ω) → R is the

energy functional defined by

ϕλ(u) =

∫
Ω

G(Du(z)) dz +
λ

p
‖u‖pp −

∫
Ω

F (z, u(z)) dz for all u ∈W 1,p(Ω).

Evidently ϕλ ∈ C1(W 1,p(Ω)).

Proposition 3.8. If hypotheses H(a) and (H1) hold, then λ∗ > 0.

Proof. We argue by contradiction. So, suppose that λ∗ = 0 and let

{λn}n∈N ⊆ (0,∞) ⊆ L be such that λn ↓ 0 as n→∞. We can find un ∈ S(λn)

for n ≥ 1, such that {un}n∈N is nondecreasing and

(3.18) ϕλn(un) < 0 for all n ≥ 1

(see the last part of the proof of Proposition 3.4). From (3.18) we have

(3.19) −
∫

Ω

pF (z, un) dz ≤ −
∫

Ω

pG(Dun) dz − λn‖un‖pp for all n ≥ 1.

Since un ∈ S(λn) for n ≥ 1, we have A(un) + λnu
p−1
n = Nf (un) hence

(3.20)

∫
Ω

f(z, un)un dz =

∫
Ω

(a(Dun), Dun)RN + λn‖un‖pp for all n ≥ 1.

Adding (3.19) and (3.20), we obtain∫
Ω

[f(z, un)un − pF (z, un)] dz ≤
∫

Ω

[(a(Dun), Dun)RN − pG(Dun)] dz,

hence ∫
Ω

[f(z, un)un − pF (z, un)] dz ≤ ξ0 for all n ≥ 1 (see H(a) (iv)).
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From hypotheses (H1) (i), (iii), we see that we can find β1 ∈ (0, β0) and C11 > 0

such that

(3.21) β1x
µ − C11 ≤ f(z, x)x− pF (z, x) for a.a. z ∈ Ω, all x ≥ 0.

Using (3.21) and (3.20), we have ‖un‖µµ ≤ C12 for some C12 > 0 and all n ≥ 1,

hence

(3.22) {un}n∈N ⊆ Lµ(Ω) is bounded.

First suppose that p < N . It is clear from hypothesis (H1) (iii) that without any

lost of generality we may assume that µ < r < p∗. Let t ∈ (0, 1) such that

(3.23)
1

r
=

1− t
µ

+
t

p∗
.

Invoking the interpolation inequality (see, for example, Gasinski and Papageor-

giou [11, p. 905]), we have

‖un‖r ≤ ‖un‖1−tµ ‖un‖tp∗ for all n ≥ 1.

Then using (3.22) and the Sobolev embedding theorem, we have

(3.24) ‖un‖rr ≤ C13‖un‖tr for some C13 > 0, all n ≥ 1.

Hypothesis (H1) (i) implies that

(3.25) f(z, x) ≤ C14(1 + xr) for a.a. z ∈ Ω, all x ≥ 0, some C14 > 0.

From (3.20) and (3.25), we have∫
Ω

(a(Dun), Dun)RN + λn‖un‖pp ≤ C15(1 + ‖un‖rr)

for some C15 > 0, all n ≥ 1, hence

(3.26)
C1

p− 1
‖Dun‖pp ≤ C16(1 + ‖un‖tr) for some C16 > 0, all n ≥ 1,

(see Lemma 2.3 and (3.24)). Recall that u→ ‖u‖µ+‖Du‖p is an equivalent norm

on the Sobolev space W 1,p(Ω) (see, for example, Gasinski and Papageorgiou [11,

p. 227]). So, from (3.22) and (3.26) we have

(3.27) ‖un‖p ≤ C17(1 + ‖un‖tr) for some C17 > 0, all n ≥ 1.

From (3.23) and the hypothesis on µ (see (H1) (iii)) it follows that tr < p.

Therefore from (3.27), we infer that

(3.28) {un}n∈N ⊆W 1,p(Ω) is bounded.

If p ≥ N , then p∗ = +∞ and W 1,p(Ω) ↪→ Lθ(Ω) for all θ ∈ [1,+∞). Then the

previous argument works if we replace p∗ by η > r > µ and we choose t ∈ (0, 1)

such that
1

r
=

1− t
µ

+
t

η
,
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that is,

tr =
η(r − µ)

η − µ
.

Note that η(r − µ)/(η − µ) → r − µ as η → +∞ = p∗. But by hypothesis

(H1) (iii), r − µ < p. Therefore for η > r large, we have tr < p and so again

(3.28) holds.

By virtue of (3.28) and by passing to a subsequence if necessary, we may

assume that

(3.29) un
w−→ u in W 1,p(Ω) and un → u in Lr(Ω) as n→∞.

Recall that

(3.30) A(un) + λnu
p−1
n = Nf (un) for all n ≥ 1.

On (3.30) we act with un − u ∈ W 1,p(Ω), pass to the limit as n → ∞ and use

(3.29) to obtain lim
n→∞

〈A(un), un − u〉 = 0, hence

(3.31) un → u in W 1,p(Ω) as n→∞

(see Proposition 2.6). So, if in (3.30) we pass to the limit as n → ∞ and use

(3.31) and the fact that λn ↓ 0, we obtain

(3.32) A(u) = Nf (u).

By the nonlinear regularity theory (see Lieberman [15]) it follows that u ∈ C+.

Claim. u 6= 0.

From hypotheses (H1) (i) (iv), we see that we can find C18 > 0 such that

f(z, x) ≥ Ĉ0x
q−1 − C18x

r−1 for a.a. z ∈ Ω, all x ≥ 0.

Motivated by this unilateral growth estimate, we introduce the following auxi-

liary Neumann problem:

(3.33)


−div a(Du(z)) + λ1u(z)p−1

= Ĉ0u(z)q−1 − C18u(z)r−1 in Ω,
∂u

∂n
= 0 on ∂Ω, u > 0.

Let ψ : W 1,p(Ω)→ R be the energy functional for problem (3.33) defined by

ψ(u) =

∫
Ω

G(Du(z)) sdz +
λ1

p
‖u‖pp −

Ĉ0

q
‖u+‖qq +

C18

r
‖u+‖rr

for all u ∈ W 1,p(Ω). Since q < p < r, it is clear that ψ is coercive (see Corol-

lary 2.4). Also, by the Sobolev embedding theorem, we see that ψ is sequentially

weakly lower semicontinuous. So, we can find ũ ∈W 1,p(Ω) such that

(3.34) ψ(ũ) = inf{ψ(u) : u ∈W 1,p(Ω)}.
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Because q < p < r, as in the proof of Proposition 3.4, we check that ψ(ũ) < 0 =

ψ(u), hence ũ 6= 0. From (3.34), we have ψ′(ũ) = 0 hence

(3.35) A(ũ) + λ1|ũ|p−2ũ = Ĉ0(ũ+)q−1 − C18(ũ+)r−1.

On (3.35) we act with −ũ− ∈W 1,p(Ω), and using Lemma 2.3, we obtain ũ ≥ 0,

ũ 6= 0. Then (3.35) becomes

A(ũ) + λ1ũ
p−1 = Ĉ0ũ

q−1 − C18ũ
r−1,

hence ũ is a positive solution of (3.33) and ũ ∈ intC+ (by nonlinear regularity

[15] and the nonlinear maximum principle [25]). Moreover, as in Aizicovici,

Papageorgiou and Staicu [4], we conclude that ũ ∈ intC+ is the unique positive

solution of (3.33).

Let u1 ∈ S(λ1) ⊆ intC+ and consider the Carathéodory function

(3.36) k(z, x) =


0 if x < 0,

Ĉ0x
q−1 − C18x

r−1 if 0 ≤ x ≤ u1(z),

Ĉ0u1(z)q−1 − C18u1(z)r−1 if u1(z) < x.

We set

K(z, x) =

∫ x

0

k(z, s) ds

and consider the C1-functional γ̂ : W 1,p(Ω)→ R defined by

γ̂(u) =

∫
Ω

G(Du(z)) dz +
λ1

p
‖u‖pp −

∫
Ω

K(z, u(z)) dz for all u ∈W 1,p(Ω).

From (3.36) it is clear that γ̂ is coercive. Also, it is sequentially weakly lower

semicontinuous. So, we can find ũ0 ∈W 1,p(Ω) such that

(3.37) γ̂(ũ0) = inf{γ̂(u) : u ∈W 1,p(Ω)}.

As before (see the proof of Proposition 3.4), since 1 < q < p < r, we have

γ̂(ũ0) < 0 = γ̂(0), hence ũ0 6= 0. From (3.37), we have γ̂′(ũ0) = 0 hence

(3.38) A(ũ0) + λ1|ũ0|p−2ũ0 = Nk(ũ0).

On (3.38) we first act with −ũ−0 ∈W 1,p(Ω) and then with (ũ0−u1)+ ∈W 1,p(Ω)

and obtain

ũ0 ∈ [0, u1] := {u ∈W 1,p(Ω) : 0 ≤ u(z) ≤ u1(z) for a.a. z ∈ Ω}

(see the proof of Proposition 3.4). Using (3.36) and (3.37) we obtain

A(ũ0) + λ1ũ
p−1
0 = Ĉ0ũ

q−1
0 − C18ũ

r−1
0 ,

hence ũ0 is a positive solution of (3.33), and by the uniqueness of the positive

solution of (3.33), it follows that ũ0 = ũ ∈ intC+. So, we can say that ũ ≤ u1 ≤
un for all n ≥ 1 (recall that {un}n∈N is nondecreasing), hence ũ ≤ u (see (3.31)),

therefore u 6= 0. This proves Claim.
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On (3.32) we act with 1 ∈ intC+. We obtain

0 =

∫
Ω

f(z, u) dz.

But our hypotheses on f and the Claim, imply
∫

Ω
f(z, u) dz > 0, a contradiction.

This means that λ∗ > 0. �

If we use the stronger hypotheses (H2), we can show that for λ ∈ (λ∗,∞),

problem (Pλ) admits at least two positive solutions.

Proposition 3.9. If hypotheses H(a) and (H2) hold and λ ∈ (λ∗,∞), then

(Pλ) admits at least two positive solutionsuλ, ûλ ∈ intC+, uλ 6= ûλ.

Proof. Let η1, η2 ∈ L and assume that λ∗ < η1 < λ < η2. From Propo-

sition 3.7, we know that we can find uη1 ∈ S(η1) ⊆ intC+ and uη2 ∈ S(η2) ⊆
intC+ such that uη1 − uη2 ∈ intC+.

We introduce the following Carathéodory function:

(3.39) w(z, x) =


f(z, uη2(z)) if x < uη2(z),

f(z, x) if uη2(z) ≤ x ≤ uη1(z),

f(z, uη1(z)) if uη1(z) < x.

We set

W (z, x) =

∫ x

0

w(z, s) ds

and consider the C1-functional ξλ : W 1,p(Ω)→ R defined by

ξλ(u) =

∫
Ω

G(Du(z)) dz +
λ

p
‖u‖pp −

∫
Ω

W (z, u(z)) dz for all u ∈W 1,p(Ω).

From (3.39) we see that ξλ is coercive. Also, it is sequentially weakly lower

semicontinuous. So, we can find uλ ∈W 1,p(Ω) such that

ξλ(uλ) = inf{ξλ(u) : u ∈W 1,p(Ω)},

hence ξ′λ(uλ) = 0 therefore

(3.40) A(uλ) + λ|uλ|p−2uλ = Nw(uλ).

On (3.40) we act with (uλ − uη1)+ ∈W 1,p(Ω) and with (uη2 − uλ)+ ∈W 1,p(Ω),

and obtain

uλ ∈ [uη2 , uη1 ] := {u ∈W 1,p(Ω) : uη2(z) ≤ u(z) ≤ uη1(z) for a.a. z ∈ Ω}.

In fact, reasoning as in the proof of Proposition 3.7, we show that

uλ − uη2 ∈ intC+ and uη1 − uλ ∈ intC+,

hence

(3.41) uλ(z) ∈ intC1(Ω)[uη2 , uη1 ].
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Then from (3.39) we see that uλ ∈ S(λ) ⊆ intC+. So, we have produced one

positive solution for (Pλ). To produce a second positive solution, we introduce

the Carathéodory function k̂ defined by

(3.42) k̂(z, x) =

f(z, uη2(z)) if x < uη2(z),

f(z, x) if uη2(z) ≤ x.

Let

K̂(z, x) =

∫ x

0

k(z, s) ds

and consider the C1-functional σλ : W 1,p(Ω)→ R defined by

σ̂λ(u) =

∫
Ω

G(Du(z)) dz +
λ

p
‖u‖pp −

∫
Ω

K̂(z, u(z)) dz for all u ∈W 1,p(Ω).

As before (see the proof of Proposition 3.4) we can check that

(3.43) Kσ̂λ ⊆ [uη2) := {u ∈W 1,p(Ω) : uη2(z) ≤ u(z) for a.a. z ∈ Ω}.

From (3.39) and (3.42) we see

(3.44) ξλ|[uη2 ,uη1 ] = σ̂λ|[uη2 ,uη1 ].

By (3.41) and (3.44) and since uλ is a minimizer of ξλ, it follows that uλ is

a C1(Ω)-minimizer of σ̂λ. Invoking Proposition 2.7, we infer that uλ is aW 1,p(Ω)-

minimizer of σ̂λ.

We may assume that Kσ̂λ is finite or otherwise we have an infinity of positive

solutions for problem (Pλ) (see (3.43) and (3.42)). Then, from Aizicovici, Papa-

georgiou and Staicu [1] (see the proof of Proposition 29), we can find ρ ∈ (0, 1)

small such that

(3.45) σ̂λ(uλ) < inf{σ̂λ(u) : ‖u− uλ‖ = ρ} =: m̂λ.

Hypothesis (H2) (ii) implies

(3.46) σ̂λ(ξ)→ −∞ as ξ → +∞, ξ ∈ R.

In addition, minor changes in the first part of the proof of Proposition 3.8, reveal

that

(3.47) σ̂λ satisfies the C-condition

(see also Aizicovici, Papageorgiou and Staicu [3]). Then (3.45)–(3.47) permit the

use of Theorem 2.1 (the mountain pass theorem). So, we can find ûλ ∈W 1,p(Ω)

such that

(3.48) ûλ ∈ Kσ̂λ ⊆ [uη2) (see (3.43)) and σ̂λ(uλ) < m̂λ ≤ σ̂λ(ûλ).

From (3.48) we see that ûλ ∈ S(λ) ⊆ intC+ (see (3.42)) and uλ 6= ûλ. �

Next we examine what happens in the critical case λ = λ∗.
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Proposition 3.10. If hypotheses H(a) and (H1) hold, then λ∗ ∈ L and so,

L = [λ∗,+∞).

Proof. Let {λn}n∈N ⊆ L and assume λn ↓ λ∗. We can find un ∈ S(λn) ⊆
intC+ such that ϕλn(un) < 0 for all n ≥ 1. Then, from the proof of Propo-

sition 3.8, we know that {un}n∈N ⊆ W 1,p(Ω) is bounded. So, we may assume

that

(3.49) un
w−→ u∗ in W 1,p(Ω) and un → u∗ in Lr(Ω) as n→∞.

We have

(3.50) A(un) + λnu
p−1
n = Nf (un) for all n ≥ 1.

Acting on (3.50) with un − u∗ ∈ W 1,p(Ω), passing to the limit as n → ∞ and

using (3.49) we obtain lim
n→∞

〈A(un), un − u∗〉 = 0, hence

(3.51) un → u∗ in W 1,p(Ω) as n→∞

(see Proposition 2.6). Also, from the proof of Proposition 3.8), we know that

ũ0 ≤ un for all n ≥ 1 (here ũ0 ∈ intC+ denotes the unique positive solution of

the auxiliary problem (3.33)). Then from (3.51) we have ũ0 ≤ u∗, hence u∗ 6= 0.

If in (3.50) we pass to the limit as n→∞ and use (3.51), then

A(u∗) + λnu
p−1
∗ = Nf (u∗),

hence u∗ ∈ S(λ∗) ⊆ intC+ and so λ∗ ∈ L, hence L = [λ∗,+∞). �

In fact, we can show that for every λ ∈ L = [λ∗,+∞) problem ( Pλ) admits

a smallest positive solution uλ ∈ S(λ) ⊆ intC+. We will need this fact in the

next section where we produce nodal solutions.

Proposition 3.11. If hypotheses H(a) and (H1) (resp. (H2)) hold, and λ ∈
L = [λ∗,+∞), then problem (Pλ) admits a smallest positive solution uλ ∈ intC+

and the map λ 7→ uλ is nonincreasing (resp. decreasing) and right continuous

from L into C1(Ω).

Proof. As in Aizicovici, Papageorgiou and Staicu [2]), exploiting the mono-

tonicity of A (see Proposition 2.6), we see that for every λ ∈ L, S(λ) is downward

directed, that is, if u1, u2 ∈ S(λ), there exists u ∈ S(λ) such that u ≤ u1, u ≤ u2.

Since we are looking for the smallest positive solution, and since S(λ) is

downward directed, without any loss of generality, we may assume that there

exists C19 > 0 such that

(3.52) ‖u‖∞ ≤ C19 for all u ∈W 1,p(Ω).

From Hu and Papageorgiou [13, p. 178], we know that we can find {un}n∈N ⊆
S(λ) such that inf S(λ) = inf

n≥1
un. We have

(3.53) A(un) + λup−1
n = Nf (un) for all n ≥ 1.
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Because of (3.52), {un}n∈N ⊆W 1,p(Ω) is bounded. So, we may assume that

(3.54) un
w−→ uλ in W 1,p(Ω) and un → uλ in Lr(Ω) as n→∞.

Acting on (3.53) with un − uλ ∈ W 1,p(Ω), passing to the limit as n → ∞ and

using (3.54), we obtain limn→∞〈A(un), un − uλ〉 = 0, hence

(3.55) un → uλ in W 1,p(Ω) as n→∞.

So, if in (3.53) we pass to the limit as n→∞ and use (3.55), then

(3.56) A(uλ) + λ(uλ)p−1 = Nf (uλ).

Recall that ũ ≤ un for all n ≥ 1, where ũ ∈ intC+ is the unique positive solution

of problem (3.33) with λ1 = λ. Then, because of (3.55), we have ũ0 ≤ uλ, hence

uλ ∈ S(λ) ⊆ intC+ and uλ = inf S(λ).

Next, let η > λ and let uλ ∈ S(λ) ⊆ intC+ be the minimal positive solution

of (Pλ). If hypotheses (H1) (resp. (H2)) hold, then from Corollary 3.5 (resp.

Proposition 3.7) we know that we can find uη ∈ S(η) such that

uλ ≥ uη (resp. uλ − uη ∈ intC+) hence uλ ≥ uη (resp. uλ − uη ∈ intC+).

This proves the desired monotonicity of the map λ 7→ uλ .

Finally, let {λn}n∈N ⊆ L be such that λn ↓ λ. We have

(3.57) A(uλn) + λnu
p−1
λn

= Nf (uλn) for all n ≥ 1.

From the proof of Proposition 3.8, we know that

(3.58) {uλn}n∈N ⊆W 1,p(Ω) is bounded.

Using (3.57), (3.58) and Proposition 2.6, as before, we can show that for at least

a subsequence, we have

(3.59) uλn → u in W 1,p(Ω) and u ∈ S(λ) ⊆ intC+.

We claim that u = uλ ∈ intC+. From (3.58), Hu and Papageorgiou [14] (see

Proposition 5) and the regularity result of Lieberman [15, p. 320], we know that

we can find α ∈ (0, 1) and C20 > 0 such that

un ∈ C1,α(Ω) and ‖un‖C1,α(Ω) ≤ C20 for all n ≥ 1.

Exploiting the compact embedding of C1,α(Ω) into C1(Ω) and using (3.59), we

infer that

(3.60) uλn → u in C1(Ω).

If uλ 6= u, then we can find z0 ∈ Ω such that uλ(z0) 6= u(z0), hence

(3.61) uλ(z0) < uλn for all n large enough (see (3.60)).
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But from the previous part of the proof, we have uλn ≤ uλ for all n ≥ 1 which

contradicts (3.61). So, indeed u = uλ and we have proved the right continuity

of λ 7→ uλ from L into C1(Ω). �

Summarizing the situation for problem (Pλ), we can state the following

bifurcation-type result.

Theorem 3.12. (a) If hypotheses H(a) and (H1) hold, then there exists λ∗>0

such that:

(i) For every λ ∈ (0, λ∗), problem (Pλ) has no positive solutions.

(ii) For all λ ≥ λ∗, problem (Pλ) has at least one positive solution. Moreover,

for every λ ≥ λ∗, problem (Pλ) has a smallest positive solution uλ ∈
intC+ and the map λ 7→ uλ from L into C1(Ω) is nonincreasing and

right continuous.

(b) If hypotheses H(a) and (H2) hold, then there exists λ∗ > 0 such that:

(i) For every λ ∈ (0, λ∗), problem (Pλ) has no positive solutions.

(ii) For λ = λ∗, problem (Pλ) has at least one positive solution u∗ ∈ intC+.

(iii) For every λ > λ∗, problem (Pλ) has at least two positive solutions uλ,

ûλ ∈ intC+, uλ 6= ûλ. Moreover, for every λ ≥ λ∗, problem (Pλ) has

a smallest positive solution uλ ∈ intC+ and the map λ 7→ uλ from L
into C1(Ω) is decreasing and right continuous.

4. Nodal solutions

In this section, by imposing bilateral conditions on the reaction f(z, · ) we

produce nodal solutions. So, the new hypotheses on the reaction f are the

following:

(H3) f : Ω×R→ R is a Carathéodory function such that for almost all z ∈ Ω

f(z, 0) = 0, f(z, x)x > 0 for all x 6= 0 and

(i) there exists a ∈ L∞(Ω)+ such that |f(z, x)| ≤ a(z)(1 + |x|r−1) for

almost all z ∈ Ω, all x ∈ R, with p < r < p∗;

(ii) if F (z, x) =
∫ x

0
f(z, s) ds then

lim
x→±∞

F (z, x)

|x|p
= +∞ uniformly for a.a. z ∈ Ω;

(iii) there exist µ ∈ (max{(r − p)N/p, 1}, p∗) and β0 > 0 such that

β0 ≤ lim inf
x→±∞

f(z, x)x− pF (z, x)

|x|µ
uniformly for a.a. z ∈ Ω;

(iv) there exists δ̂0 such that 0 < qF (z, x) ≤ f(z, x)x for almost all

z ∈ Ω, all |x| ≤ δ̂0, and ess inf
Ω

F ( · ,±δ̂0) > 0 with q ∈ (1, p) as in

hypothesis H(a) (v).
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Remarks 4.1. Hypothesis (H3) (iv) is a dual AR-condition near zero. It

implies the weak condition

(4.1) Ĉ0|x|q ≤ F (z, x) for a.a. z ∈ Ω, all |x| ≤ δ̂0, and some Ĉ0 > 0

(see [19])). So, now we have a stronger condition near zero (see hypothesis

(H3) (iv)). Since the conditions on f(z, · ) are now bilateral, reasoning as in

Section 3, we can find λ̂∗ > 0 such that for all λ ≥ λ̂∗ problem (Pλ) has a biggest

negative solution vλ ∈ −intC+ (in this case the set of negative solutions of (Pλ)

is upward directed, that is, if v1, v2 are negative solutions of (Pλ), then there

exists a negative solution v of (Pλ) such that v1 ≤ v, v2 ≤ v).

In what follows, we set λ̃∗ = max{λ∗, λ̂∗} (see Theorem 3.12). We have the

following

Theorem 4.2. If hypotheses H(a) and (H3) hold and λ ≥ λ̃∗, then problem

(Pλ) admits a nodal solution yλ ∈ C1(Ω).

Proof. Let uλ ∈ intC+ and vλ ∈ −intC+ be the two extremal constant

sign solutions of (Pλ). We introduce the following Carathéodory function:

(4.2) e(z, x) =


f(z, vλ(z)) if x < vλ(z),

f(z, x) if vλ(z) ≤ x ≤ uλ(z),

f(z, uλ(z)) if uλ(z) < x.

Let e±(z, x) = e(z,±x±) (the positive and negative truncations of e(z, · )). We

set

E(z, x) =

∫ x

0

e(z, s) ds, E±(z, x) =

∫ x

0

e±(z, s) ds,

and introduce the C1-functionals ψλ, ψ
±
λ : W 1,p(Ω)→ R defined by

ψλ(u) =

∫
Ω

G(Du(z)) dz +
λ

p
‖u‖pp −

∫
Ω

E(z, u(z)) dz for all u ∈W 1,p(Ω),

ψ±λ (u) =

∫
Ω

G(Du(z)) dz +
λ

p
‖u‖pp −

∫
Ω

E±(z, u(z)) dz for all u ∈W 1,p(Ω).

As before (see the proof of Proposition 3.4), we can show that

Kψλ ⊆ [vλ, uλ], Kψ+
λ
⊆ [0, uλ], Kψ−λ

⊆ [vλ, 0].

The extremality of uλ and vλ implies

(4.3) Kψλ ⊆ [vλ, uλ], Kψ+
λ

= {0, uλ}, Kψ−λ
= {0, vλ}.

Claim. uλ ∈ intC+ and vλ ∈ −intC+ are both local minimizers of ψλ.

It is clear from (4.2) that ψ+
λ is coercive. Also, it is sequentially weakly lower

semicontinuous. So, we can find u ∈W 1,p(Ω) such that

(4.4) ψ+
λ (u) = inf{ψ+

λ (u) : u ∈W 1,p(Ω)}.
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By (4.1) and since q < p, we see that ψ+
λ (u) < 0 = ψ+

λ (0), hence u 6= 0. From

(4.3) and (4.4), it follows that u = uλ ∈ intC+. Note that ψλ |C+
= ψ+

λ |C+
,

hence uλ ∈ intC+ is a local C1(Ω)-minimizer of ψλ, therefore uλ ∈ intC+

is a local W 1,p(Ω)-minimizer of ψλ (see Proposition 2.7). Similarly for vλ ∈
−intC+, using this time the functional ψ−λ . This proves Claim.

Without any loss of generality, we may assume that ψλ(vλ) ≤ ψλ(uλ) (the

reasoning is similar if the opposite inequality holds).

We assume that Kψλ is finite (otherwise we already have infinitely many

distinct nodal solutions, see (4.2) and (4.3)). By virtue of Claim, we can find

ρ ∈ (0, 1) small enough such that

(4.5) ψλ(vλ) ≤ ψλ(uλ) < inf{ψλ(u) : ‖u− uλ‖ = ρ} =: mλ, ‖vλ − uλ‖ > ρ

(see Aizicovici, Papageorgiou and Staicu [1], proof of Proposition 29). Recall

that ψλ is coercive. Therefore

(4.6) ψλ satisfies the C-condition.

Then (4.5) and (4.6) permit the use of Theorem 2.1 (the mountain pass theorem).

So, we can find yλ ∈W 1,p(Ω) such that

(4.7) yλ ∈ Kψλ ⊆ [vλ, uλ] (see (4.3)) and mλ ≤ ψλ(yλ).

From (4.5) and (4.7) we see that yλ ∈ [vλ, uλ], yλ /∈ {vλ, uλ}. Hence, if we

show that yλ 6= 0, then yλ is a nodal solution of (Pλ) (recall that uλ and vλ
are the extremal constant sign solutions of (Pλ)), and the nonlinear regularity

of Lieberman [15] will imply that yλ ∈ C1(Ω).

Since yλ is a critical point of mountain pass type for ψλ, we have

(4.8) C1(ψλ, yλ) 6= 0

(see Motreanu, Motreanu and Papageorgiou [19]). On the other hand, hypothesis

(H3) (iv) and the work of Marano and Papageorgiou [17], imply

(4.9) Ck(ψλ, 0) = 0 for all k ≥ 0.

From (4.8) and (4.9) it follows that yλ 6= 0 and so yλ ∈ C1(Ω) is a nodal solution

of (Pλ). �

Remarks 4.3. Nodal solutions for superlinear Neumann problems driven

by the p-Laplacian were obtained by Aizicovici, Papageorgiou and Staicu in [2]

(using the AR-condition) and in [3] (without the AR-condition). Theorem 4.2

improves substantially Theorem 3.5 in [18].
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