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ALTERNATING HEEGAARD DIAGRAMS

AND WILLIAMS SOLENOID ATTRACTORS

IN 3-MANIFOLDS

Chao Wang — Yimu Zhang

Abstract. We find all Heegaard diagrams with the property “alternating”

or “weakly alternating” on a genus two orientable closed surface. Using

these diagrams we give infinitely many genus two 3-manifolds, each ad-
mits an automorphism whose non-wandering set consists of two Williams

solenoids, one attractor and one repeller. These manifolds contain half

of Prism manifolds, Poincaré’s homology 3-sphere and many other Seifert
manifolds, all integer Dehn surgeries on the figure eight knot, also many

connected sums. The result shows that many kinds of 3-manifolds admit

a kind of “translation” with certain stability.

1. Introduction

In [7], Smale introduced the solenoid attractor into dynamics as an example

of indecomposable hyperbolic non-wandering set. It has a nice geometric model,

namely the nested intersections of solid tori. Suppose f is a fibre preserving

embedding from a disk fibre bundle N over S1 into itself, contracting the fibres

2010 Mathematics Subject Classification. Primary: 57N10, 37C70, 37D45; Secondary:
57M12l.

Key words and phrases. Heegaard diagram; solenoid attractor; Prism manifold; Poincaré’s
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and inducing an expansion on S1, then
∞⋂

i=1

f i(N) is a so-called Smale solenoid.

To generalize this kind of construction, in [9], Williams introduced solenoid at-

tractors derived from expansions on 1-dimensional branched manifolds. It also

has a geometric model, as the nested intersections of handlebodies.

For a 3-manifold M , many of these attractors can be realized by the geo-

metric models with suitable automorphisms f ∈ Diff(M). But in most cases the

realization will not be global. Global means that the non-wandering set Ω(f) is

the union of solenoid attractors and repellers. Here a repeller of f is an attractor

of f−1. By standard arguments in dynamics, one can show that if Ω(f) consists

of solenoid attractors and repellers, then there must be exactly one attractor and

one repeller, and f is like a “translation” on M .

Motivated by the study in Morse theory and Smale’s work in dynamics, the

following question was suggested in [3] by Jiang, Ni and Wang who studied this

global realization question for Smale solenoids.

Question. When does a 3-manifold admit an automorphism whose non-

wandering set consists of solenoid attractors and repellers?

In [3], they showed that for a closed orientable 3-manifold M , there is a dif-

feomorphism f : M → M with the non-wandering set Ω(f) a union of finitely

many Smale solenoids IF and ONLY IF M is a Lens space L(p, q) with p 6= 0,

namely M has Heegaard genus one and is not S1×S2. They also showed that the

diffeomorphism f constructed in the IF part is Ω-stable, but is not structurally

stable.

In the opinion of [3], a manifold M admitting a dynamics f such that Ω(f)

consists of one hyperbolic attractor and one hyperbolic repeller presents a sym-

metry of the manifold with certain stability. The simplest example is the sphere,

which admits a dynamics f such that Ω(f) consists of exactly two hyperbolic

fixed points, a sink and a source. Lens spaces give us more such examples when

we consider more complicated attractors. It is believed by Jiang, Ni and Wang

that many more 3-manifolds admit such symmetries if we replace the Smale

solenoids by the Williams solenoids. As a special case, Wang asked whether the

Poincaré’s homology 3-sphere admits such a symmetry. What about hyperbolic

3-manifolds?

Similar with the discussion in [3], in [5], Ma and Yu showed that for a closed

orientable 3-manifold M , if there is f ∈ Diff(M) such that Ω(f) consists of

Williams solenoids, whose defining handlebodies have genus g ≤ 2, then the

Heegaard genus g(M) ≤ 2. On the other hand, to construct such M and f , they

introduced the alternating Heegaard splitting which is a genus two splitting

and admits a so-called alternating Heegaard diagram (see Definition 2.5). They

showed that if M admits an alternating Heegaard splitting, then there is f such


