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INDICES OF FIXED POINTS

NOT ACCUMULATED BY PERIODIC POINTS

Luis Hernandez-Corbato

Abstract. We prove that for every integer sequence I satisfying Dold rela-

tions there exists a map f : Rd→Rd, d≥2, such that Per(f)=Fix(f)={o},
where o denotes the origin, and (i(fn, o))n = I.

1. Introduction

Given a map f defined in a Euclidean space onto itself and p a fixed point

of f , the fixed point index or Lefschetz index of f at p, denoted by i(f, p), is an

integer which measures the multiplicity of p as a fixed point of f . The definition

requires the point p to be isolated in the set of fixed points of f , which will be

denoted by Fix(f). The index is a topological invariant of the local dynamics

around p. Since a fixed point of a map is also fixed by any of its iterates fn,

n ≥ 1, the integer i(fn, p) is defined as long as p remains isolated in Fix(fn). The

integer sequence (i(fn, p))∞n=1 will be a denominated fixed point index sequence

throughout this article. In general, it is very difficult to find constraints for these

invariants. In fact, the unique global rule satisfied by fixed point index sequences

is encompassed in the so-called Dold relations, see [4], which are described in
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Section 2. One of the most complete references on fixed point index theory

is [10].

In dimension 1, the only possible values of the index of a fixed point are −1, 0

and 1. From dimension 2 and on any integer sequence satisfying Dold relations

may appear as a fixed point index sequence of some map. Some restrictions

appear as we impose extra conditions over the map f . For instance, Shub and

Sullivan proved in [20] that the sequence is periodic when f is C1. Recently, in [5],

Graff, Jezierski and Nowak–Przygodzki have given a complete description in the

C1 case. Further, if f is a homeomorphism of a surface (i(fn, p))n follows a very

restrictive periodic pattern, see for example [3], [13], [14], [18], [2]. Periodicity of

the sequence has been found to be true in dimension 3 just for homeomorphisms

and locally maximal fixed points (i.e. points p which have a neighbourhood V

such that {p} is the maximal invariant set in V ), see [12], [8].

Any of the previously described constraints disappear when the hypotheses

are substantially weakened. For instance, in the planar case if f is no longer

invertible then Dold relations are the only constraints remaining. In [6], Graff

and Nowak–Przygodzki showed how to define a map in the plane fixing the origin

and such that the fixed point index sequence is a given integer sequence satisfying

Dold relations. Their map is constructed by gluing pieces made up of small radial

sectors carrying a prescribed dynamics. This operation produces lots of periodic

points which accumulate in the fixed one. Incidentally, notice that, in contrast,

if the map is a homeomorphism and the fixed point is accumulated by Per(f)

but not by Fix(fn) then i(fn, p) = 1 (see [17] and also [11, p. 145]).

It is somehow surprising that if the fixed point p is locally maximal (in

the sense previously described) and f is a continuous map in the plane, the

fixed point index sequence satisfies the following three constraints (see [9], [7]):

i(f, p) is bounded from above by 1, the sequence is periodic and every ak is

non-positive for k ≥ 2 (see Section 2 for a definition of ak). It is not known

to what extent these constraints remain valid. In this work we consider the

hypothesis of isolation as a periodic point, which is halfway between the locally

maximal hypothesis and the unrestricted case. In the case of homeomorphisms

the behavior of the fixed point index under this hypothesis is very well understood

and similar to the locally maximal case (see [3], [11], [15], [19]). However, we

prove that for continuous maps it turns out that this weakening is enough to

dissipate all three constraints:

Theorem 1.1. For every d ≥ 2 and every integer sequence I satisfying Dold

relations there exists a map f : Rd → Rd fixing a point p such that:

(a) I = (i(fn, p))n and

(b) p is not accumulated by other periodic orbits of f .
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The most interesting case included in this result is d = 2. For larger dimen-

sions, it suffices to fix the map in a plane and then retract the ambient space to

that plane.

The paper is organized as follows. First, we introduce several definitions and

comments along with some examples of dynamics which are the basic pieces of

our work. In Section 3, we carry out the construction of the map which proves

Theorem 1.1. Our work relies on a definition whose discussion involves symbolic

dynamics and is postponed to the last section.

2. Fixed point index

Before we start with the basic definitions, let us go quickly through the no-

tations and conventions used in the text. The origin of the plane Rd is denoted

by o and we shall often use polar coordinates in S1 × R to represent the punc-

tured plane R2 \ {o}. Notice a small annoyance, for later convenience the radial

coordinate takes values in R instead of R+ and the origin corresponds to the

end r = −∞. We will use two conventions for the angular coordinate: it will

take values either in (−π, π] or in [0, 1). Angles (points in S1) will be denoted

by Greek letters. Closed arcs in S1 are named intervals and each interval J

determines a (radial) sector in the punctured plane which contains all the points

(θ, r) such that θ ∈ J . The (forward) orbit of a point x under a map F is the

set {x, F (x), F 2(x), . . .}. Sequences appear ubiquitously and are always indexed

by the positive integers.

Let U be an open subset of Rd and f : U → Rd a continuous map. Suppose

that p is an isolated fixed point of f . The fixed point index of f at p, denoted

by i(f, p), is defined as the degree of the map id − f : U → Rd at p. In other

words, if B is a closed ball centered at p and such that Fix(f) ∩ B = {p} then

i(f, p) is the degree of the map

φ : ∂B → Sd−1, x 7→ x− f(x)

‖x− f(x)‖ .

As our considerations will soon be limited to dimension 2, we include a more

geometrical approach to the fixed point index in the plane. Let f : R2 → R2 be

a continuous map and γ : S1 → R2 be a Jordan curve disjoint from Fix(f). One

can define another curve η : S1 → R2 by η(t) = γ(t) − f(γ(t)). The index of f

along γ is defined as the winding number of η around the origin. The definition

does not depend on the parametrization of the curve γ and we will often use γ

to refer to the image of the curve as well.

Let p be an isolated fixed point of f and V be an open neighbourhood of p

which does not contain any other fixed point. The index of f along any Jordan

curve γ contained in V which winds around p is equal to the fixed point index

of f at p. The closed topological disk bounded by γ plays the role of B in the
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definition. It is not necessary that γ is confined to V : if D is a Jordan domain

in the plane and p is the only fixed point contained in D (more precisely, in the

interior of D) the index of f along the curve ∂D is again i(f, p).

Henceforth, we assume d = 2 unless otherwise stated.

Lemma 2.1. Let p be an isolated fixed point of the map f and γ be a Jordan

curve which winds (in the positive sense) around p and does not enclose any

other fixed point. Suppose the vectors −→px and
−−−→
xf(x) point in different directions

at every point x in γ. Then, i(f, p) = 1.

Proof. The vector −→px makes one positive turn as x moves along γ and comes

back to the starting point. Since
−−−→
xf(x) does not overlap with −→px it must also

make one positive turn as x moves along γ so, by definition, the index is 1. �

In view of Lemma 2.1 the most critical parts are those around the places

where the vectors −→px and
−−−→
xf(x) point in the same direction. Describing the

dynamics in such pieces will be enough to compute the fixed point index.

Corollary 2.2. Let γ be the boundary of a closed disk D centered at p which

does not contain any other point fixed by f . If f(γ) ⊂ D then i(f, p) = 1.

Example 2.3. Consider the planar map which fixes the origin and is given

in polar coordinates by (θ, r) 7→ (θ, r − 1), θ ∈ S1, r ∈ R. Note that for the

sake of clarity we choose the radial coordinate r to range between −∞ and

+∞, the origin corresponding to r = −∞. Let γ be the curve r = 0. By

Corollary 2.2, the index of the origin is 1. Let us modify the map in a radial

sector so that the dynamics becomes more interesting. Assume now that θ

takes values in (−π, π] and define S = {(θ, r) : θ ∈ [−1, 1]} and a map in

S by f−(θ, r) = (θ · c−(θ), r + 1 − 2θ2), where c− : [−1, 1] → [1/2, 1] satisfies

c−1− (1) = {−1, 0, 1} and also that θ · c−(θ) is strictly increasing in θ ∈ [−1, 1].

See Figure 1.

Using the original map, f− extends to a map in the whole plane. As x moves

along the arc γ ∩S the vector
−−−→
xf(x) makes one turn in the negative sense so the

index must be adjusted by subtracting 1, i(f−, o) = 1− 1 = 0.

Note that the vectors −→ox and
−−−−→
xf−(x) point in the same direction only at

x = (θ = 0, r = 0) and the angular dynamics around θ = 0 forces the contribution

to the index to be negative, as θ = 0 is attracting for θ 7→ θ3.

Since any positive iterate fn−, n ≥ 1, is topologically conjugate to f− we

conclude that i(fn−, o) = i(f−, o) = 0.

A minor modification in the angular behavior of f− at θ = 0 reverses the

sign of its extra contribution to the index. Choose c+ : [−1, 1]→ [1, 2] such that

c−1+ (1) = {−1, 0, 1} and θ · c+(θ) is strictly increasing in θ ∈ [−1, 1]. Define

f+(θ, r) = (θ · c+(θ), r + 1− 2θ2) in S and f+(θ, r) = (θ, r − 1) otherwise. Now
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Figure 1. Qualitative description of maps f− (left) and f+ (right) within
the sector S.

the vector
−−−−→
xf+(x) makes one turn in the positive sense as x moves along γ∩S so

i(f+, o) = 1 + 1 = 2. Notice that the modification in the angular coordinate has

reversed the angular dynamics around θ = 0, it is now repelling. Again, since

fn+ is conjugate to f+ we obtain that i(fn+, p) = i(f+, p) = 2 for every n ≥ 1.

Example 2.4. Let us show a way to modify arbitrarily the index using the

previous construction. Fix an integer m ≥ 1 and start with the map (θ, r) 7→
(θ, r− 1) as before. Take any radial sector Sm and divide it into m equal sectors

Sm = T1 ∪ . . . ∪ Tm. Set the map in each sector Ti to be equal to f− : S → S,

after a suitable affine transformation in the angular coordinate, and denote by

fm,− : Sm → Sm the resulting map.

It is not difficult to check that the origin has now index i(fm,−, o) = 1 −m
as the vector

−−−−−−→
xfm,−(x) winds m times in the negative sense as x moves along

γ ∩ Sm.

In an analogous fashion one can define fm,+ : Sm → Sm and show that

i(fm,+, o) = 1 +m.

We finish this section with some general considerations about the fixed point

index sequence I = (i(fn, p))n. Albrecht Dold [4] found the unique constraint

satisfied by any fixed point index sequence. Define the normalized sequences

σk = (σkn)n by

σkn =

k if n ∈ kN,
0 otherwise.

Dold relations, also called Dold congruences, state that if I is any fixed point

index sequence then I is a (formal) integer combination of normalized sequences,

i.e. there exist integers ak, k ≥ 1, such that

(2.1) I =
∑
k≥1

akσ
k.
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As already commented in the introduction, Dold relations are the only general

constraints governing fixed point index sequences.

3. Theorem 1.1: construction

Let us start with the proof of Theorem 1.1. Fix from now and on a sequence

of integers (ak)k which in view of equation (2.1) uniquely determines the target

sequence of fixed point indices (i(fn, o))n. We will construct a map f̃ : Rd → Rd

whose only periodic orbit is the origin, which is a fixed point, and such that

(3.1) (i(f̃n, o))n =
∑
k≥1

akσ
k.

It is enough to prove the result for d = 2. Indeed, if f is a planar map

satisfying Theorem 1.1 we split Rd = R2 ⊕ Rd−2 and define f̃ = (f, c), where c

denotes the map that sends every point to the origin. From the multiplicativity of

the fixed point index and the fact that c has index 1 at the origin we obtain that

(i(f̃n, o))n = (i(fn, o))n. Clearly f̃ satisfies the requirements of Theorem 1.1.

Our target map f : R2 → R2 will have the appearance of a skew-product in

polar coordinates. We start with a very simple dynamics in the base, the angular

coordinate, namely e2(θ) = 2θ mod 1 (now we assume θ ranges in [0, 1)). The

dynamics will become richer after we replace the angles in a set of periodic orbits

of e2 by intervals and extend the map to them. The set of periodic orbits Λ in

which this blow-up procedure will be carried out is defined by the following two

properties:

(i) Λ is composed of exactly one orbit of each period in a set P ⊂ N.

(ii) Λ′ ∩Per(e2) = ∅, i.e. no point of accumulation of Λ is periodic under e2.

The task of showing that the definition of Λ is not vacuous is postponed to

Section 4, where we produce a set satisfying both of its defining properties. We

use the notation X ′ to refer to the derived set of a set X. It is composed of all

accumulation points, also called limit points, of X. Property (i) ensures that Λ′

is invariant under e2. Note that (ii) implies that any x ∈ Λ is isolated in Λ.

First, we begin with a map f0 whose radial dynamics makes all the indices

i(fn0 , o) to be equal to 1. We group in P the set of exponents n for which we

need to modify the map to achieve the desired value for the index of fn which,

in view of (3.1), is

(3.2) i(fn, o) =
∑
k|n

kak.

Thus, we set that 1 belongs to P if and only if a1 6= 1 and k ∈ P if and only if

ak 6= 0 for k > 1.

The map f0 is given in polar coordinates by

f0 : (θ, r) 7→ (e2(θ), r − g0(θ)).
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The stretching in the radial direction is determined by the map g0 : S1 → R
which we define by g0(θ) = dist(θ,Λ′). Note that (ii) guarantees that the orbit

under f0 of every point whose angular coordinate is periodic under e2 tends to

the origin. However, if Λ′ 6= ∅ there are points whose ω-limit is not {o} and they

are not periodic.

An application of Corollary 2.2 shows that i(fn0 , o) = 1 for any n ≥ 1. The

dynamics of f0 is somehow complicated though. For any r0, Λ′×{r0} is a closed

invariant set contained in the circle {r = r0} which does not contain any periodic

point. The origin is then far from being locally maximal, since the maximal

invariant set contained in the closed disk {r ≤ r0} is (Λ′ × {r ≤ r0}) ∪ {o}.
Now, we enrich the dynamics of e2 by replacing each point α ∈ Λ with

a non-degenerate interval Jα. Let π : S1 → S1 be the map which realizes this

operation, π−1(α) = Jα for every α ∈ Λ and π is a homeomorphism outside the

intervals Jα. Then, e2 lifts to a map h : S1 → S1 which satisfies π ◦ h = e2 ◦ π.

Define accordingly the map g in π−1(S1 \ Λ) so that π ◦ g = g0 ◦ π and set

f : (θ, r) 7→ (h(θ), r − g(θ)).

It is intentionally still left to complete the definition of g, h for angles inside the

intervals Jα and thus the definition of f within the radial sectors Sα determined

by them.

Let {α0, . . . , αn−1} be an orbit of period n under e2 contained in Λ. The

dynamics of f in the sectors Sα0
, . . . Sαn−1

will be responsible for the value of

the integer coefficient an in (3.1). We define f|Sαi : Sαi → Sαi+1
to be equal to,

after affine rescaling in the angular coordinate, fm,∗, where ∗ = + or −. The

choice of sign and integer m is

(3.3) (m, ∗) =


(a1 − 1,+) if n = 1 and a1 ≥ 2,

(1− a1,−) if n = 1 and a1 ≤ 0,

(an,+) if n ≥ 2 and an > 0,

(−an,−) if n ≥ 2 and an < 0.

It is convenient to say a few words about the dynamics of f before focusing

on the index computation. It still shares some of the properties of f0. For

instance, for every r0 ∈ R, π−1(Λ′)×{r0} is invariant and the maximal invariant

set in the closed disk {r ≤ r0} is (π−1(Λ′) × {r ≤ r0}) ∪ {o}. Each sector Sα
is periodic and contains an odd number (2m+ 1 exactly) of periodic rays of the

same period as Sα, which are alternatively attracting or repelling, the two rays

in the boundary of Sα being attracting. Here attracting means that the orbit

of every point in the ray tends to the origin and repelling means that it goes

to infinity. The orbit of any other point in Sα goes to infinity and approaches

a repelling periodic ray provided the sign in (3.3) is “−”. Otherwise, in case
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the plus sign was assigned in (3.3), most of the orbits tend to the origin and

approach an attracting periodic ray.

In the complement of the regions already described the behavior of the orbits

is not particularly simple. Orbits of points in rays of angle θ such that θ /∈
π−1(Λ′) and whose orbits under h never land in an interval Jα tend to the

origin. However, any of the previously described asymptotics might occur if the

orbit eventually lands in a point with angle in π−1(Λ′) or in some Jα.

On top of all the previous discussion, let us emphasize that Per(f) = {o}.
Indeed, in any orbit the radial coordinate only stabilizes if the angular coordinate

eventually lies in π−1(Λ′). Since in π−1(Λ′) there are no periodic points under h,

the origin is an isolated periodic point.

Proposition 3.1. i(fn, o) =
∑
k|n

kak.

Proof. The computation of the index will be done using the curve γ, which

is the boundary of a circle centered at o (anyone works fine).

Consider the collection J of intervals Jα which satisfy hn(Jα) = Jα. It

contains every Jα such that n is a multiple of the period of α ∈ Λ. Consider the

union of the radial sectors Sα determined by all Jα in J and denote by C its

complement in the plane. The picture in C is easy to analyze. Indeed, as a point

x moves along a component J ′ of γ∩C the vector
−−−−→
xfn(x) never points in the same

direction as −→ox. Moreover, it starts and ends its tour along J ′ pointing to the

opposite direction as −→ox because g(θ) is strictly negative in Λ and the endpoints

of J ′ are fixed by hn. Incidentally, note that the arc fn(J ′) might wind around

the origin several times but this behavior does not make any impact in the index

because fn(J ′) lies inside the disk enclosed by γ.

Thus, the problem amounts to examine what happens in every arc γ ∩ Sα
where Jα ∈ J . Denote by (m, ∗) the pair associated to Sα according to (3.3).

As noticed in Example 2.4, all the maps f lm,∗, l ≥ 1, are conjugate. Up to an

affine transformation in the angular coordinate, the restriction of fn to Sα is

equal to f lm,∗, where l = n/k and k is the period of α. This remark allows to

conclude that, as x moves along γ∩Sα, the vector
−−−−→
xfn(x) turns exactly m times

in the (positive or negative) sense given by ∗.
Consequently, the dynamics in sector Sα adds a1−1 to the index if k = 1 and

ak if k ≥ 2. We need to take care of k sectors for each k divisor of n contained

in P so we finally obtain

i(fn, o) = 1 + (a1 − 1) +
∑

k≥2,k|n

kak

and the result follows. �



Indices of Fixed Points not Accumulated by Periodic Points 655

In order to finish the proof of Theorem 1.1 it suffices to notice that the result

of Proposition 3.1 simply rephrases equation (3.1).

4. Symbolic dynamics: definition of Λ

This section is devoted to discussion about the definition of Λ. Difficulties

arise when trying to meet property (ii) and this makes the example we present

here a bit involved. Notice that if Λ did not satisfy (ii) there would exist periodic

points β under h accumulated by intervals Jα. Since the absolute value of g is

arbitrarily small in Jα as the period of α grows, we would have g(β) = 0 and so

every point in the ray {θ = β} would be periodic, contrary to our hypothesis.

Symbolic dynamics eases the analysis of properties from subsets of our system

whose dynamics can be encoded properly. We will construct Λ from a subset of

a symbolic dynamical system defined using the Prouhet–Thue–Morse sequence.

Several other approaches exist as well. For instance, one may use a symbolic

sequence for which the relative density of each symbol is irrational.

Let Σ2 be the set of one-sided infinite sequences in two symbols {0, 1} and σ

the shift map in Σ2. The dynamical system (S1, e2) is a factor of (Σ2, σ). The

semiconjugation π : Σ2 → S1 first sends an infinite sequence s = d1 . . . dn . . . to

the number x =
∑
n
dn2−n in [0, 1] which has s as binary expansion and then

projects it to S1. For the sake of clarity, here we view S1 as the interval [0, 1]

whose endpoints are identified. The following diagram is commutative:

Σ2

π

��

σ
// Σ2

π

��

S1
e2
// S1.

Let (sn)n be a sequence of periodic infinite sequences whose periods tend to

infinity. Suppose that (sn)n has limit s and s is periodic, i.e. it is made up of

the infinite repetition of some word w (a finite sequence of 0’s and 1’s). Then,

the sequence sn starts with the word w for sufficiently large n. Furthermore,

given any positive integer k it must be the case that sn starts with the word wk,

where wk denotes the word ww . . . w consisting of w repeated k times in a row.

Thus, if for some k ≥ 1 we ensure that sn does not start with an instance of the

pattern wk, for any word w and large enough n, we prove that the limit of (sn)n
is not a periodic sequence.

Our goal is to find a set of periodic sequences A in Σ2 satisfying the following

properties:

(a) For every n ≥ 1, A contains a sequence of period n.

(b) A is invariant under σ, that is, it contains the whole orbit of each of its

periodic points.
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(c) There exists an integer k such that at most a finite number of elements

of A start with the pattern wk.

Once we obtain A we may simply set Λ = π(A) and check properties (i)–(ii)

from the previous section. The semiconjugation guarantees that any point of Λ

is periodic. We shall remove from Λ all orbits whose periods do not belong to

P. The previous considerations and condition (c) ensure that property (ii) is

satisfied.

The set A will be created using the Prouhet–Thue–Morse sequence, which is

defined as follows. Start with the word 0 and at each step do the replacements

0 7→ 01, 1 7→ 10. The words built in the first stages are

0, 01, 0110, 01101001, 0110100110010110, . . .

The process continues ad infinitum and the words converge (note that their

starting subwords are equal) to an infinite sequence t named after Prouhet,

Thue and Morse, who discovered it independently,

t = 01101001100101101001011001101001 . . .

This sequence exhibits an aperiodic yet recurrent behavior and has shown up

in various fields of mathematics. One striking feature of t makes it interesting

to us: it is cube-free, that is it does not contain any instance of the pattern

w3 (a word appearing three times in a row). This result is part of one of the

foundational works on the field of combinatorics on words and was first proved

by Axel Thue in 1912 [21] and then rediscovered by Marston Morse in 1921 [16].

For example the sequences

1001010110100110, 010110100100100101100110

are not cube-free because they contain the words 010101 = 013 and 100100100 =

1003, respectively.

A word v is said to be conjugate to w if there are (possibly empty) words

x, y such that w = xy and v = yx. The circular word of w is the set consisting

of w and all of its conjugates. There is an evident one-to-one correspondence

between periodic infinite sequences whose period is a divisor of n and words

of length n: any such sequence s is formed by the repetition of a word w. As

a tiny trivial remark, note that the orbit of s under the action of the shift map

is made up of the infinite sequences generated from each of the conjugates of the

word w. For example the circular word of 100 is {100, 001, 010} and the orbit of

s = 100100100 . . . under σ has period 3:

σ(s) = 001001001 . . . , σ2(s) = 010010010 . . . , σ3(s) = 100100100 . . . = s.

Consider again the Prouhet–Thue–Morse infinite sequence t = d1 . . . dn . . .

and, for every n ≥ 1, define the word sn = d1 . . . dn of length n. Let s∗n be the
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infinite sequence generated by repetition of sn. Set A to be the union of the

orbits under σ of all the sequences s∗n.

Proposition 4.1. A satisfies properties (a)–(c) above.

Proof. The first two properties follow from the definition so we shall con-

centrate on (c). We will prove that no conjugate of s∗n starts with an instance

of the pattern w6 if n is large enough. In other words, there does not exist any

word w such that a conjugate of sn starts with w6. Suppose on the contrary

that some conjugate yx of sn = xy starts like that and n > 6 length(w). It

follows that either x or y contains the word w3. This fact leads to contradiction

because both x and y are subwords of the Prouhet–Thue–Morse sequence which

is known to be cube-free. �

The previous method generates a set of circular words of every length which

are 6-power free, i.e. do not contain an instance of the patter w6. The construc-

tion is very elementary and very far from being optimal. For a more up-to-date

account on this topic together with an optimal result we refer the reader to [1].
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[15] F. Le Roux, Dynamique des homéomorphismes de surfaces, Versions topologiques des

théorémes de la fleur de Leau–Fatou et de la variété stable, Astérisque 292 (2004).
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