Topological Methods in Nonlinear Analysis Volume 47, No. 2, 2016, 423–438 DOI: 10.12775/TMNA.2016.014

O 2016 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University

POSITIVE SOLUTIONS FOR PARAMETRIC DIRICHLET PROBLEMS WITH INDEFINITE POTENTIAL AND SUPERDIFFUSIVE REACTION

Sergiu Aizicovici — Nikolaos S. Papageorgiou — Vasile Staicu

ABSTRACT. We consider a parametric semilinear Dirichlet problem driven by the Laplacian plus an indefinite unbounded potential and with a reaction of superdiffissive type. Using variational and truncation techniques, we show that there exists a critical parameter value $\lambda_* > 0$ such that for all $\lambda > \lambda_*$ the problem has at least two positive solutions, for $\lambda = \lambda_*$ the problem has at least one positive solution, and no positive solutions exist when $\lambda \in (0, \lambda_*)$. Also, we show that for $\lambda \ge \lambda_*$ the problem has a smallest positive solution.

1. Introduction

Let $\Omega \subset \mathbb{R}^N$ be a bounded domain with a C^2 -boundary $\partial \Omega$. In this paper we study the following parametric Dirichlet problem:

(P_{$$\lambda$$})
$$\begin{cases} -\triangle u(z) + \beta(z)u(z) = \lambda u(z)^{q-1} - f(z, u(z)) & \text{in } \Omega, \\ u|_{\partial\Omega} = 0, \ u > 0, \ \lambda > 0, \ 2 < q < 2^*, \end{cases}$$

where

(1.1)
$$2^* = \begin{cases} 2N/(N-2) & \text{if } N \ge 3, \\ +\infty & \text{if } N \in \{1,2\}. \end{cases}$$

²⁰¹⁰ Mathematics Subject Classification. 35J20, 35J605.

Key words and phrases. Reaction of superdifusive type; maximum principle; local minimizer; mountain pass theorem; bifurcation type theorem; indefinite and unbounded potential.

Here $\beta \in L^s(\Omega)$, with s > N, and it may change sign. Also, $f: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory perturbation (i.e. for all $x \in \mathbb{R}z \mapsto f(z,x)$ is measurable and for almost all $z \in \Omega$, $x \mapsto f(z,x)$ is continuous) which has a (q-1)-superlinear growth near $+\infty$. So, the reaction of (P_λ) exhibits a superdiffusive kind of behavior.

Recall that in superdiffusive logistic equations, the reaction has the form $\lambda x^{q-1} - x^{r-1}$ with $2 < q < r < 2^*$. We show that there is a critical value $\lambda_* > 0$ of the parameter such that for $\lambda > \lambda_*$ problem (P_{λ}) has at least two positive smooth solutions, for $\lambda = \lambda_*$ problem (P_{λ}) has at least one positive smooth solution, and for $\lambda \in (0, \lambda_*)$ no positive smooth solutions exist.

Positive solutions for parametric semilinear Dirichlet problems with $\beta \geq 0$ and more restrictive conditions on the reaction were obtained by Amann [2], Dancer [4], Lin [13], Ouang-Shi [15] and Rabinowitz [17]. To the best of our knowledge, no such results exist for problems with indefinite potential and general superdiffusive reaction. Recently, Gasinski–Papageorgiou [9] and Kyritsi– Papageorgiou [12] studied nonparametric semilinear problems with indefinite potential, either with double resonance (see [9]), or with superlinear reaction (see [12]). Finally, we mention the recent work of Gasinski and Papageorgiou [10] on bifurcation type results for different types of p-Laplacian equations.

Our approach is variational, based on critical point theory coupled with suitable truncation techniques.

2. Mathematical preliminaries and hypotheses

Throughout this paper, by $\|\cdot\|_p$, $1 \le p \le \infty$, we denote the norm of $L^p(\Omega)$, or $L^p(\Omega, \mathbb{R}^N)$ and by $\|\cdot\|$ we denote the norm of the Sobolev space $H_0^1(\Omega)$ defined by

$$||u|| = ||Du||_2$$
 for all $u \in H_0^1(\Omega)$.

Note that if $2 < q < 2^*$ (see (1.1)), then $H_0^1(\Omega) \hookrightarrow L^q(\Omega)$, with compact embedding. Also, if $x \in \mathbb{R}$, then $x^{\pm} = \max\{\pm x, 0\}$. For every $u \in H_0^1(\Omega)$ we set $u^{\pm}(\cdot) = u(\cdot)^{\pm}$. We know that

$$u^{\pm} \in H^1_0(\Omega), \quad |u| = u^+ + u^-, \quad u = u^+ - u^-$$

(see [8]). If $h: \Omega \times \mathbb{R} \to \mathbb{R}$ is a measurable function, then the corresponding Nemytskiĭ map N_h is defined by

$$N_h(u)(\cdot) = h(\cdot, u(\cdot))$$
 for all $u \in H_0^1(\Omega)$.

By $|\cdot|_N$ we will denote the Lebesgue measure on \mathbb{R}^N .

Suppose that $(X, \|\cdot\|)$ is a Banach space and X^* is its topological dual. By $\langle \cdot, \cdot \rangle$ we denote the duality brackets for the pair (X^*, X) , and we will use the symbol " \xrightarrow{w} " to designate weak convergence.