Topological Methods in Nonlinear Analysis Volume 47, No. 1, 2016, 73–89 DOI: 10.12775/TMNA.2015.091

TOPOLOGICAL STRUCTURE OF THE SOLUTION SET OF SINGULAR EQUATIONS WITH SIGN CHANGING TERMS UNDER DIRICHLET BOUNDARY CONDITION

José V. Gonçalves — Marcos R. Marcial — Olimpio H. Miyagaki

ABSTRACT. In this paper we establish existence of connected components of positive solutions of the equation $-\Delta_p u = \lambda f(u)$ in Ω , under Dirichlet boundary conditions, where $\Omega \subset \mathbb{R}^N$ is a bounded domain with smooth boundary $\partial\Omega$, Δ_p is the p-Laplacian, and $f\colon (0,\infty)\to \mathbb{R}$ is a continuous function which may blow up to $\pm\infty$ at the origin.

1. Introduction

In this paper we establish existence of a continuum of positive solutions of

$$\begin{cases} -\Delta_p u = \lambda f(u) & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

where $\Omega \subset \mathbb{R}^N$ is a bounded domain with smooth boundary $\partial\Omega$, Δ_p is the *p*-Laplacian, $1 , <math>\lambda > 0$ is a real parameter, $f \colon (0, \infty) \to \mathbb{R}$ is a continuous function which may blow up to $\pm \infty$ at the origin.

 $^{2010\} Mathematics\ Subject\ Classification.\ 35J25,\ 35J55,\ 35J70.$

 $[\]it Key\ words\ and\ phrases.$ Connected sets; fixed points; Schauder theory; elliptic equations.

This work was supported by ${\rm CNPq/CAPES/PROCAD/UFG/UnB\textsc-Brazil}.$

The first and the third authors were supported in part by CNPq/Brazil.

The second author was supported by CAPES/Brazil.

DEFINITION 1.1. By a solution of $(P)_{\lambda}$ we mean a function $u \in W_0^{1,p}(\Omega) \cap$ $C(\overline{\Omega})$, with u > 0 in Ω , such that

$$(1.1) \qquad \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla \varphi \, dx = \lambda \int_{\Omega} f(u) \varphi \, dx, \quad \varphi \in W_0^{1,p}(\Omega).$$

DEFINITION 1.2. The solution set of $(P)_{\lambda}$ is

(1.2)
$$S := \{ (\lambda, u) \in (0, \infty) \times C(\overline{\Omega}) \mid u \text{ is a solution of } (P)_{\lambda} \}.$$

In the pioneering work [5], Crandall, Rabinowitz and Tartar employed topological methods, Schauder Theory, and Maximum Principles to prove existence of an unbounded connected subset in $\mathbb{R} \times C_0(\overline{\Omega})$ of positive solutions $u \in$ $C^2(\Omega) \cap C(\overline{\Omega})$ of the problem

$$\begin{cases}
-Lu = g(x, u) & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega,
\end{cases}$$

where L is a linear second order uniformly elliptic operator,

$$C_0(\overline{\Omega}) = \{ u \in C(\overline{\Omega}) \mid u = 0 \text{ on } \partial\Omega \}$$

and $g: \overline{\Omega} \times (0,\infty) \to (0,\infty)$ is a continuous function satisfying $g(x,t) \xrightarrow{t\to 0^+} 0$ uniformly for $x \in \overline{\Omega}$. A typical example is $g(x,t) = t^{\gamma}$, where $\gamma > 0$.

Several techniques have been employed in the study of (P_{λ}) . In [11], Giacomoni, Schindler and Takac employed variational methods to investigate the problem

$$\begin{cases}
-\Delta_p u = \frac{\lambda}{u^{\delta}} + u^q & \text{in } \Omega, \\
u > 0 & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega,
\end{cases}$$

where $1 0 \text{ and } 0 < \delta < 1 \text{ with } p^* = Np/(N-p)$ if 1 if <math>p = N, and $p^* = \infty$ if p > N. Several results were shown in that paper, among them existence, multiplicity and regularity of solutions.

In the present work we exploit the topological structure of the solution set of (P_{λ}) and our main assumptions are:

 (f_1) $f:(0,\infty)\to\mathbb{R}$ is continuous and

$$\lim_{u \to \infty} \frac{f(u)}{u^{p-1}} = 0,$$

- (f₂) there are positive numbers a, β, A with $\beta < 1$ such that

 - (i) $f(u) \ge a/u^{\beta}$ for u > A, (ii) $\limsup_{u \to 0} u^{\beta} |f(u)| < \infty$.

The main result of this paper is: