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MULTIPLICITY OF SOLUTIONS

OF ASYMPTOTICALLY LINEAR DIRICHLET PROBLEMS

ASSOCIATED TO SECOND ORDER EQUATIONS IN R2n+1

Alessandro Margheri — Carlota Rebelo

Abstract. We present a result about multiplicity of solutions of asymp-

totically linear Dirichlet problems associated to second order equations in

R2n+1, n ≥ 1. Under an additional technical condition, the number of
solutions obtained is given by the gap between the Morse indexes of the

linearizations at zero and infinity. The additional condition is stable with

respect to small perturbations of the vector field. We show with a simple
example that in some cases the size of the perturbation can be explicitly

estimated.

1. Introduction

In this paper we are interested on the existence of multiple solutions to the

problem

(1.1)
x′′ +A(t, x)x = 0,

x(0) = x(π) = 0,

x ∈ R2n+1, n ≥ 1, t ∈ [0, π].

We will assume that A : [0, π]×R2n+1 → GLs(R2n+1) is a continuous function

with values in the set of the real symmetric matrices of order 2n + 1, denoted

2010 Mathematics Subject Classification. Primary: 34B15; Secondary: 34A26.
Key words and phrases. Dirichlet problem, asymptotically linear, multiplicity of solutions,

topological methods.
Both authors were supported by Fundação para a Ciência e Tecnologia, PEst,

OE/MAT/UI0209/2011 and project PTDC/MAT/113383/2009.

1107



1108 A. Margheri — C. Rebelo

by GLs(R2n+1), and that there exist Ai( · ) : [0, π]→ GLs(R2n+1), i = 0,∞, also

continuous such that

lim
|x|→0

A(t, x) = A0(t) uniformly in t ∈ [0, π],

lim
|x|→∞

A(t, x) = A∞(t) uniformly in t ∈ [0, π],

that is, we assume asymptotically linear conditions at the origin and at infinity.

If the indexes of A0( · ), i(A0), and of A∞( · ), i(A∞), are different we prove,

under an extra technical assumption, the existence of multiple solutions to the

boundary value problem.

The existence of solutions of boundary value problems associated to asymp-

totically linear problems is a subject which has been studied by many authors

for more than 30 years. We mention the seminal papers by Amann and Zehnder

[1], [2] as maybe the first in which existence of solutions to asymptotically linear

boundary value problems was studied. In those papers the authors introduce an

index depending on the linearizations at zero and infinity and prove, when that

index is positive, the existence of one or, in nondegenerate cases, two solutions.

After those works many authors studied this problem both for Hamiltonian sys-

tems and for second order equations, assuming periodic or two-point boundary

conditions (see [5] for details on the bibliography). We note that, for scalar

second order equations, the multiplicity of solutions for the Dirichlet problem in

terms of the gap between the Morse indexes of the linearizations can be easily

proved using the link between Morse index and rotation number (see [9], where

this approach was used for the Neumann and the periodic BVPs). For higher

dimensions and when no symmetry or convexity conditions are assumed usually

the existence of at most two solutions is guaranteed. One of the exceptions is [10]

where multiple periodic solutions to a planar Hamiltonian system were obtained

under no additional conditions by using the Poincaré–Birkhoff theorem. Also,

in what concerns second order equations recently, in [5], (1.1) was considered for

x ∈ R2 and multiple solutions were obtained for the Dirichlet problem assuming

sign conditions on the entries of A(t, x). In both of these papers the number of

solutions increases when the gap of the indexes of the linearizations at zero and

at infinite (Maslov index in the first paper, Morse index in the second) increases.

As far as we know in the case of second order equations in dimension larger

than two, multiple solutions were only obtained in [4]. However the number of

solutions obtained depends on the number of elements of a set which one has to

check to be nonempty.

In this paper we consider the problem in R2n+1, n ≥ 1 and obtain a result

similar to that in [5] by imposing a technical assumption concerning the space of

solutions of some linear problems associated to x′′+A(t, x)x = 0, see Theorem 2.3



Multiplicity of Solutions of Asymptotically Linear Dirichlet Problems 1109

below. Our result works only in a space of odd dimension as a consequence of

the result on degree theory that we apply.

The paper is organized as follows: in Section 2 we state the main result.

Then in Section 3 we state (and prove some) of the auxiliary results which will

be essential for the proof of the main theorem. Also in this section this proof

is given. Finally, in the last section, we give an example of application of the

theorem.

Acknowledgements. The authors thank Professor Rafael Ortega for some

useful discussions about this problem.

2. Statement of the main result

Our main result concerns the multiplicity of solutions to the two-point bound-

ary value problem in R2n+1

(2.1)

x′′ +A(t, x)x = 0, t ∈ [0, π],

x(0) = x(π) = 0,

where A : [0, π]×R2n+1 → GLs(R2n+1) is a continuous function. As pointed out

in [4], this formulation of the problem is quite general.

We assume that uniqueness of solutions of Cauchy problems associated to

system x′′ + A(t, x)x = 0 is guaranteed and that there are continuous functions

A0, A∞ : [0, π]→ GLs(R2n+1) such that

lim
|x|→0

A(t, x) = A0(t) uniformly in t ∈ [0, π],(2.2)

lim
|x|→∞

A(t, x) = A∞(t) uniformly in t ∈ [0, π].(2.3)

Note that under assumption (2.3) the continuability of the solutions to Cauchy

problems associated to x′′ +A(t, x)x = 0 is guaranteed.

In order to state our main result, we recall the definitions of index and nullity

of a path of symmetric matrices. To do this, first we reformulate the proposition

proved in [6, Proposition 2.1] and restated for x ∈ R2 in [5].

Proposition 2.1. Given B( · ) ∈ L∞([0, π]; GLs(Rm)) there exists a se-

quence of real numbers which we call eigenvalues of B( · ), λ1(B) ≤ λ2(B) ≤
. . . ≤ λj(B) → +∞ as j → +∞ such that, for each j, there exists a space of

dimension one of nontrivial solutions (eigenvectors of B( · )) of the problemx′′ + (B(t) + λj(B)Im)x = 0,

x(0) = x(π) = 0,

where Im denotes the identity matrix of order m. Moreover, H1
0 ([0, π];Rm) :=

{x : [0, π] → Rm | x( · ) is continuous on [0, π], satisfies x(0) = 0 = x(π), and

x′ ∈ L2([0, π];Rm)} admits a basis of eigenvectors of B( · ).
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Definition 2.2. Given B( · ) ∈ L∞([0, π]; GLs(Rm)), its index i(B) is de-

fined as the number of negative eigenvalues and its nullity ν(B) is defined as the

number of zero eigenvalues.

The index of B( · ) ∈ L∞([0, π]; GLs(Rm)) as we have just defined coincides

with the Morse index (also called Maslov index) of the boundary value problem

x′′ +B(t)x = 0, x(0) = x(π) = 0 (see [3], [11], [6]).

Note that in the sequence of the eigenvalues of B( · ) we cannot have the same

value repeated more than m times. In the case it is repeated s-times we say that

the corresponding eigenvalue λ(B) = λj(B) = . . . = λj+s(B), for some j, has

a space of eigenvectors of dimension s.

Now we are in position to state our main result. In [5] the same problem

was studied in R2. Multiplicity of solutions was proved assuming a gap between

the indexes of A0( · ) and A∞( · ) and some sign condition on the components

of A(t, x). Now we extend this result to R2n+1 replacing the sign condition by

a technical one, see (H) below.

Theorem 2.3. Assume that A : [0, π]×R2n+1 → GLs(R2n+1) satisfies (2.2)

and (2.3). Suppose that the following condition holds:

(H) there is an hyperplane H passing through the origin such that for each

continuous function y : [0, π]→ R2n+1 the problem x′′(t)+A(t, y(t))x(t) =

0, x(0) = 0 = x(π) has no nontrivial solutions with x′(0) ∈ H.

Then, if i(A0) > i(A∞) + ν(A∞) (or i(A0) + ν(A0) < i(A∞)), the problem (2.1)

has at least |i(A0)− i(A∞)− ν(A∞)| (resp. |i(A∞)− i(A0)− ν(A0)|) nontrivial

solutions.

In the following we consider, for each α ∈ R2n+1, the Cauchy problemx′′ +A(t, x)x = 0,

x(0) = 0, x′(0) = α,

and denote by xα its unique solution.

Remark 2.4. (a) It is sufficient to check condition (H) just on the vectors

x′(0) ∈ H such that |x′(0)| = 1. As a consequence, by the continuous dependence

of the solution of an ODE on the vetor fields, property (H) will persist under

small perturbations of A(t, x) in L∞([0, π]× R2n+1,GLs(R2n+1)).

(b) As a consequence of (H), for each continuous function y : [0, π]→ R, the

space of solutions of x′′(t) + A(t, y(t))x(t) = 0, x(0) = 0 = x(π) has at most

dimension one. This remark will be important in the proof of the theorem.

(c) In the proof of Theorem 2.3, instead of assumption (H) we will use the

slightly weaker assumption:
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(H∗) there is an hyperplane H passing through the origin such that for each

α ∈ R2n+1 the problem x′′(t) +A(t, xα(t))x(t) = 0, x(0) = 0 = x(π) has

no nontrivial solutions with x′(0) ∈ H.

We opted to state the theorem with (H) instead of (H∗) as in general it is not

easy to verify that this variant is satisfied.

3. Auxiliary results and proof of the main theorem

In this section we prove Theorem 2.3 after stating (and in some cases proving)

some auxiliary results. We begin with two lemmas. The first one gives the

existence of a suitable open set in which boundary we will look for the initial

conditions of the solutions of (2.1). The second one will be applied to prove the

existence of those initial conditions.

In the following we denote with Br(a) and Br(a), respectively, the open and

the closed balls with center a ∈ Rm and radius r > 0. Also, given a set A ⊂ Rm,

∂A will denote its boundary and A its closure.

Lemma 3.1. Let 0 < r < R and let f : BR(0) \ Br(0) → R be a continuous

function. Assume that f(x) < 0 in ∂Br(0) and f(x) > 0 in ∂BR(0). Then there

exists an open bounded set Ω containing the origin and such that f(x) = 0 in ∂Ω.

Proof. Consider the continuous extension f̃ of f to BR(0) defined by

f̃(x) =


f(x) if r ≤ |x| ≤ R,

f

(
rx

|x|

)
|x|
r

if 0 < |x| < r,

0 if x = 0,

which is negative in Br(0) \ {0}. Then let Ω0 be the connected component of

f̃−1(]−∞, 0[) which contains Br(0) \ {0} and choose Ω = Ω0 ∪ {0}. �

Next lemma, which will be essential to get our result, follows from degree

theory (see [12, Example 13.3 ]).

Lemma 3.2. Let Ω ⊂ R2n+1 be an open bounded set with 0 ∈ Ω. Let ψ : Ω→
R2n+1 be a continuous function such that ψ(x) 6= 0 for each x ∈ ∂Ω. Then there

exists C ∈ R \ {0} and x ∈ ∂Ω such that ψ(x) = Cx.

We concentrate now on the linear, parameter dependent equation

(3.1) x′′ +A(t, xα(t))x(t) = 0,

where α ∈ R2n+1 \ {0}.
We note that if there exists α ∈ R2n+1 \ {0} and a solution x(t) of (3.1)

satisfying x(0) = x(π) = 0, and x′(0) = cα for some c 6= 0, then x(t)/c is
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a solution of (1.1). This remark, previously used in [4] and in [5] will be crucial

in our proof.

In [4], where equation (3.1) was considered, the following auxiliary result was

obtained:

Lemma 3.3 ([4]). Suppose that the continuous function A : [0, π]×R2n+1 →
GLs(R2n+1) satisfies assumptions (2.2) and (2.3), then

A(t, xα(t)) → A∞(t) in L1([0, π]) if |α| → +∞,

A(t, xα(t)) → A0(t) in L1([0, π]) if |α| → 0.

The fact that the eigenvalues of Bα( · ) := A( · , xα( · )) will converge to the

ones of the corresponding linearizations as |α| → 0 or |α| → +∞, is a consequence

of the result below. Since it is the Rm version of [5, Proposition 2.4] we do not

present its proof. Analogous results can be found in [7] and [8] for the case of

a second order equation. In the following, GL(Rm) will denote the set of the

m×m matrices with real entries.

Proposition 3.4. Fixed M > 0, for each j ∈ N, B → λj(B) is continuous

in {B ∈ L1([0, π]; GLs(Rm)) : ‖B(t)‖ < M for almost every t ∈ (0, π)}.

Consider now the first order linear system in R2(2n+1)

(3.2)

x′ = y,

y′ = −A(t, xα(t))x, x, y ∈ R2n+1, t ∈ [0, π],

associated to the equation (3.1), and denote by Eα(t) ∈ GL(R2(2n+1)) the mon-

odromy matrix generated by the matrix(
0 I

−A(t, xα(t)) 0

)
.

If we write the following block decomposition of Eα(π),

Eα(π) =

(
E1,1
α E1,2

α

E2,1
α E2,2

α

)
,

then one immediately gets that:

Lemma 3.5. There is an isomorphism between the space Vα of solutions of

(3.1) satisfying x(0) = x(π) = 0 and KerE1,2
α given by Vα 3 x( · ) → x′(0) ∈

KerE1,2
α .

The above lemma implies that the nonzero solutions of (3.1) satisfying x(0) =

x(π) = 0, are in one-to-one correspondence with the eigenvectors of the zero

eigenvalue of E1,2
α .

In this connection, the next result concerns the existence of global branches

of eigenvectors of the matrix E1,2
α which depend continuously on α.
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In general, given a matrix depending continuously on a parameter, it is well

known that such branches do not exist. In fact, if the dimension of the eigenspace

is not a constant function of the parameter, then, in general, a discontinuity point

of its dimension will be also a discontinuity point for any branch of eigenvectors.

Moreover, even if the dimension of the eigenspace is a constant function of

a parameter it may not be possible to glue the local continuous branches of

eigenvectors to obtain a global one. In the next proposition we show that under

an additional assumption, a continuous branch of eigenvectors exists when the

dimension of the eigenspace is constant and equal to one.

We state this proposition in the case of the zero eigenvalue, but the result

is still valid if we consider eigenvalues depending continuously on a parameter.

In the statement below, P(Rm) denotes the real projective space of dimension

m− 1, which we describe as the set of all the lines through the origin in Rm.

Proposition 3.6. Let S be a subset of Rm, m ≥ 2 and let E : S → GL(Rm),

α → Eα, be a continuous family of square matrices of order m. Assume that

dim KerEα = 1 for any α ∈ S. Then the map Φ: S → P(Rm) defined by

Φ(α) = KerEα is continuous in S. Moreover, if there exists an hyperplane

through the origin H such that Φ(S) ∩ H = 0, then it is possible to define on S

a continuous branch of eigenvectors α→ vα ∈ KerEα.

Proof. As dim(KerEα) = 1, the function S 3 α → KerEα ∈ P(Rm) is

well defined. Now, for any point in S, we can find a locally continuous branch

α → vα ∈ KerEα \ 0 by solving the system Eαv = 0. In fact, without loss of

generality we may assume that this solution has the form vα = (1, v2,α, . . . , vm,α),

where the vi,α are continuous functions of α. The first part of the statement then

follows since (v2,α, . . . , vm,α) are the affine coordinates of KerEα in the chart Ψ1

of P(Rm) defined by Ψ([(w1, . . . , wm)]) = (v2 := w2/w1, . . . , vm := wm/w1) with

w1 6= 0.

If there exists an hyperplaneH as in the statement, we can choose coordinates

in Rm such that the affine coordinates above work for any α ∈ S. �

We are finally ready to prove our main result.

Proof of Theorem 2.3. Let us assume that i(A0) > i(A∞) + ν(A∞),

the other case can be treated similarly. By the definition of index there are

exactly i(A0) negative eigenvalues of A0( · ), λl(A0), l ∈ {1, . . . , i(A0)}. Also

there are exactly i(A∞)+ν(A∞) negative or zero eigenvalues of A∞( · ), λj(A∞),

j ∈ {1, . . . , i(A∞) + ν(A∞)}. Hence λj(A∞) is positive for every j ∈ N, j ≥
i(A∞) + ν(A∞) + 1.

Fix now any h ∈ N satisfying i(A0) ≥ h ≥ i(A∞) +ν(A∞) + 1. We have that

(3.3) λh(A0) < 0 < λh(A∞).



1114 A. Margheri — C. Rebelo

Our aim consists in proving the existence of αh 6= 0 such that xαh
(π) = 0

as this implies that xαh
( · ) is a solution of (2.1). The intermediate step will

be to find αh 6= 0 such that λh(A( · , xαh
( · ))) = 0 and a solution vαh

( · ) of

x′′ + A(t, xαh
(t))x = 0 satisfying vαh

(0) = vαh
(π) = 0 and v′αh

(0) = Cαh for

some C 6= 0, as then xαh
= vαh

/C and the result follows.

We concentrate on the study of the parameter dependent problem

(3.4)

x′′ +A(t, xα(t))x(t) = 0,

x(0) = x(π) = 0.

By combining Lemma 3.3 and Proposition 3.4 with the inequalities (3.3) we can

choose 0 < R1 < R2 such that λh(A( · , xα( · ))) < 0 for every α with |α| = R1

and λh(A( · , xα( · ))) > 0 for every α with |α| = R2.

Now from Lemma 3.1 we obtain the existence of an open set Ω containing

the origin and such that λh(A( · , xα( · ))) = 0 for each α ∈ ∂Ω.

Using the assumptions of the theorem and Remark 2.4 we are in position to

apply Proposition 3.6 and Lemma 3.5 and prove the existence of a continuous

branch of vectors β(α) ∈ R2n+1 \ {(0, 0)}, α ∈ ∂Ω such that β(α) := v′α(0)

where, for each α, vα( · ) is an eigenvector of A( · , xα( · )) associated to the zero

eigenvalue.

We conclude that, for each α, vα( · ) is a nontrivial solution of the system

(3.5)

x′′ +A(t, xα(t))x = 0,

x(0) = x(π) = 0

satisfying x′(0) = β(α).

By Tietze’s theorem we can extend β to Ω as a continuous function and the

existence of α ∈ ∂Ω and C 6= 0 such that β(α) = C α follows immediately from

Lemma 3.2. Hence we obtain xα( · ) = xβ(α)( · )/C and, consequently, xα(π) = 0.

In particular, we can choose αh = α.

To complete the proof it remains to show that all the values αh that we have

found above are mutually different, or, equivalently, that all the solutions of the

form xαh
are mutually different.

Assume, by contradiction, that there exist two natural numbers h, k ∈ [i(A∞)

+ν(A∞) + 1, i(A0)] with h 6= k such that αh = αk. Let us set α̃ := αh = αk. In

this case λh(A( · , xα̃( · )) = λk(A( · , xα̃( · )) = 0 and this contradicts the fact that

under our assumptions the space of eigenvectors associated to the zero eigenvalue

has dimension one. �

As an immediate consequence of the continuity of the eigenvalues of the

Dirichlet problem stated in Proposition 3.4 and of (a) in Remark 2.4, we get the

following:
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Corollary 3.7. Assume that A(t, x) is such that the assumptions of Theo-

rem 2.3 are satisfied. Consider P : [0, π]× R2n+1 → GLs(R2n+1) such that

lim
|x|→0

P (t, x) = P0(t) uniformly in t ∈ [0, π],

lim
|x|→∞

P (t, x) = P∞(t) uniformly in t ∈ [0, π],

where Pi( · ) : [0, π] → GLs(R2n+1), i = 0,∞ are also continuous functions. As-

sume that uniqueness of Cauchy problems associated to x′′+(A(t, x)+P (t, x))x=0

is guaranteed. Let || · || be a fixed matrix norm. Then, there exists ε∗ such that

if 0 ≤ ε ≤ ε∗ and

||P (t, x)|| ≤ ε, for any (t, x) ∈ [0, π]× R2n+1,

then the same multiplicity results of Theorem 2.3 hold for the Dirichlet problem

(3.6)

x′′ + (A(t, x) + P (t, x))x = 0,

x(0) = x(π) = 0.

4. An example

Corollary 3.7 in the previous section establishes the robustness of the results

stated in Theorem 2.3 with respect to suitable small L∞ perturbations P (t, x) of

the matrix A(t, x). In this Section we present one simple example of application

of Corollary 3.7 where it will be actually possible to give an explicit formula to

compute ε∗. Essentially, the example consists of a suitable perturbation of three

uncoupled equations. Namely, the perturbation P (t, x) is assumed to be such

that its limitss at zero and infinity are given by constant diagonal matrices.

Before presenting the example we give an auxiliary lemma. In the following

given s ∈ R we denote by dse the smallest integer larger than or equal to s and

by bsc the largest integer less than or equal to s.

Lemma 4.1. Let a : [0, π]→ R be a continuous function such that 0 < a− ≤
a(t) ≤ a+ for each t ∈ [0, π] and consider the differential equation x′′+a(t)x = 0.

Let x be a solution of the equation such that x(0) = 0 and x′(0) = 1. Then the

rotation rot(x,x′) of (x, x′) around the origin in the interval [0, π] is less or equal

to d2√a+e/4 and larger or equal to b2√a−c/4. Moreover,

|x(t)| is bounded by

√
a+

a−

(
a+
a−

)(rot(x,x′)−1)/2

,

|x′(t)| is bounded by

(
a+
a−

)rot(x,x′)/2

in the interval [0, π].
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The statements about the rotation are easily obtained using the modified

polar coordinates x = r cos θ and y =
√
a± r sin θ and recalling that the angle

coordinate associated to these coordinates and the one associated to the usual

polar coordinates coincide in the multiples of π/2. In what concerns the bounds

for |x| and for |x′|, they are obtained noticing that, if we let

F±(x, y) = a±
x2

2
+
y2

2
,

we have that F+(x(t), x′(t)) increases in the odd quadrants and decreases in the

even ones while for F−(x(t), x′(t)) the opposite occurs.

In the following, for each matrix M = [mij ] ∈ GL(R3) we denote by M∗ the

transpose of M and by ‖M‖2 =
√
r(M∗M), where r(M) is the spectral radius

of M . Also

‖M‖∞ = max
1≤i≤3

3∑
j=1

|mij |.

Now we describe our example. Consider a continuous function a : [0, π] ×
R3 → R, Lipschitz continuous in x, such that lim|x|→0 a(t, x) = a0 > 0 and

lim
|x|→+∞

a(t, x) = a∞ uniformly in t ∈ [0, π] and satisfying a0 ≤ a(t, x) ≤ a∞. Let

A : [0, π]× R3 → GLs(R3) be given by

A(t, x) =

 1/4 0 0

0 1/4 0

0 0 a(t, x)

 .
We chose the first two entries in the diagonal of the matrix equal to 1/4 only

to simplify the computations, we could have chosen any values, not necessarily

equal, different from squares of integers. As the limits A0 and A∞ of A(t, x) as

|x| → 0 and |x| → +∞ are diagonal constant matrices, it is easy to compute the

index and the nullities of these matrices and to conclude that with our choice

i(A∞)−i(A0)−ν(A0) is equal to the number of square of integers strictly between

a0 and a∞.

Assume now that P : [0, π]×R3 → GLs(R3) is Lipschitz continuous in x and

such that

lim
|x|→i

P (t, x) = Pi =

 p
(i)
1 0 0

0 p
(i)
2 0

0 0 p
(i)
3

 uniformly in t ∈ [0, π], i = 0,∞.

We will provide below an explicit way to estimate the value ε∗ > 0 such

that if

max
t∈[0,π],x∈R3

‖P (t, x)‖∞ < ε∗

then there exist k solutions of the problem (3.6), where k is the number of squares

of integers, n21 < . . . < n2k, strictly between a0 and a∞.
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For each y ∈ C([0, π],R3) we have that there are no nontrivial solutions of

x′′ +A(t, y(t))x = 0, x(0) = x(π) = 0

with x′(0) ∈ H where H = {(a, b, 0), (a, b) ∈ R2}. Considering s ∈ [0, π], let

ψ(t, s) ∈ GL(R3) satisfy

x′′ +A(t, y(t))x = 0, ψ(s, s) = 0 and
∂ψ

∂t
(s, s) = I3.

We have that

ψ(t, s) =


2 sin((t− s)/2) 0 0

0 2 sin((t− s)/2) 0

0 0 g(t, s)

 ,

where g(t, s) is a solution of x′′3 + a(t, y(t))x3=0, x3(s) = 0, x′3(s) = 1.

By the previous lemma we have

rot(x3,x′
3)
≤
d2√a∞e

4
:= K1 and |g(t, s)| ≤

√
a∞
a0

(
a∞
a0

)(K1−1)/2

:= L.

Then, it is ‖ψ(t, s)‖∞ ≤ max{2, L} := K2.

First, we will give an explicit condition on ε > 0 such that if ‖P (t, x)‖∞ < ε

then A(t, x) +P (t, x) verifies condition (H) of Theorem 2.3 (where A is replaced

by A+ P ).

As observed in (a) of Remark 2.4, we only need to consider x′(0) = ` =

(cos θ, sin θ, 0) ∈ H for each θ ∈ [0, 2π[.

For each `, the solution of x′′+A(t, y(t))x = −P (t, y(t))x satisfying x(0) = 0

and x′(0) = ` is given by

(4.1) x(t) = ψ(t, 0)`−
∫ t

0

ψ(t, s)P (s, y(s))x(s) ds.

Hence we have

|x(t)| ≤ 2 +

∫ t

0

‖ψ(t, s)‖2‖P‖2|x(s)| ds

from which, using Gronwall’s inequality, |x(t)| ≤ 2e
√
3K2‖P‖∞t.

Now, from (4.1) we obtain |x(π)| ≥ 2(1−K2πεe
√
3K2επ). We conclude that,

if ε is such that

(4.2) K2πεe
√
3K2επ < 1

we have that condition (H) holds. We fix a value ε0 which satisfies inequality

(4.2). Finally, since the limits at zero and infinity of A(t, x) + P (t, x) are given

by Ai(t) + Pi(t), i = 0,∞, if we take

ε∗ < min{ε0, 3/4, n21 − a0, a∞ − n2k}
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we have that i(A∞+P∞)−i(A0+P0)−ν(A0+P0) ≥ i(A∞)−i(A0)−ν(A0) = k,

and Theorem 2.3 guarantees the existence of k solutions.
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