Local strong solutions of the nonhomogeneous Navier-Stokes system with control of the interval ofexistence

Reinhard Farwig, Hermann Sohr, Werner Varnhorn

DOI: http://dx.doi.org/10.12775/TMNA.2015.074

Abstract


Consider a bounded domain $\varOmega\subseteq \mathbb R^3$ with smooth boundary $\partial\varOmega$,
a time interval $[0,T)$, $0<T\le \infty$, and in $[0,T) \times\varOmega$ the %completely
nonhomogeneous Navier-Stokes system $u_t - \Delta u+u\cdot \nabla u + \nabla p = f$, $u|_t=0=v_0$, $\text\rm div\,u=k$, $u|_\partial\varOmega = g$, with sufficiently smooth data $f,v_0,k,g$. In this general case there are mainly known two classes of weak solutions, the class of global weak solutions, similar as in the well known case $k=0$, $g=0$ which need not be unique, see \citeFKS11, and the class of local very weak solutions, see \citeA02, \citeA03, \citeFGS06, which are uniquely determined but have no differentiability properties and need not satisfy an energy inequality.  
Our aim is to introduce the new class of local strong solutions in the usual sense for $k\not= 0$, $g\not=0$ satisfying similar regularity and uniqueness properties as in the well known case $k=0$, $g=0$. Further, we obtain precise information through the given data  on the interval of existence $[0,T^*)$, $0<T^*\le T$.  
Our proof is essentially based on a detailed analysis of the corresponding linear system.


Keywords


Instationary Navier-Stokes equations; nonhomogeneous data; strong solutions; weak solutions

Full Text:

PREVIEW FULL TEXT

References


H. Amann, Nonhomogeneous Navier-Stokes Equations with Integrable Low-regularity Data, Int. Math. Ser., Kluwer Academic/Plenum Publishing, New York, 2002, 1-26.

H. Amann, Navier-Stokes equations with nonhomogenous Dirichlet data, J. Nonlinear Math. Phys. 10, Suppl. 1 (2003), 1-11.

R. Farwig, G.P. Galdi and H. Sohr, A new class of weak solutions of the Navier-Stokes equations with nonhomogeneous data, J. Math. Fluid Mech. 8 (2006), 423-444.

R. Farwig, H. Kozono and H. Sohr, Very weak, weak and strong solutions to the instationary Navier-Stokes system, Topics on Partial Differential Equations, J. Necas Center for Mathematical Modeling, Lecture Notes, Vol. 2, (P. Kaplicky, S. Necasova, eds.), pp. 15-68, Prague 2007.

R. Farwig, H. Kozono and H. Sohr, Global weak solutions of the Navier-Stokes equations with nonhomogeneous boundary data and divergence, Rend. Sem. Math. Univ. Padova 125 (2011), 51-70.

R. Farwig, H. Sohr and W. Varnhorn, On optimal initial value conditions for local strong solutions of the Navier-Stokes equations, Ann. Univ. Ferrara 55 (2009), 89-110.

R. Farwig, H. Sohr and W. Varnhorn, Necessary and sufficient conditions on local strong solvability of the Navier-Stokes system, Appl. Anal. 90 (2011), 47-58.

R. Farwig, H. Sohr and W. Varnhorn, Extensions of Serrin's uniqueness and rgularity conditions for the Navier-Stokes equations, J. Math. Fluid Mech. 14 (2012), 529-540.

R. Farwig, H. Sohr and W. Varnhorn, Besov space regularity conditions for weak solutions of the Navier-Stokes equations, J. Math. Fluid Mech. 16 (2014), 307-320.

H. Kozono and H. Sohr, Remarks on uniqueness of weak solutions of the Navier-Stokes equations, Analysis 16 (1996), 255-271.

K. Masuda, Weak solutions of Navier-Stokes equations, Tohoku Math. J. 36 (1984), 623-646.

J. Serrin, The initial value problem for the Navier-Stokes equations, Univ. Wisconsin Press, Nonlinear Problems (R.E. Langer, ed.), 1963.

H. Sohr, The Navier-Stokes Equations, Birkhauser-Verlag, Basel-Boston-Berlin, 2001.


Refbacks

  • There are currently no refbacks.

Partnerzy platformy czasopism