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ON A POWER-TYPE COUPLED SYSTEM

OF MONGE–AMPÈRE EQUATIONS

Zhitao Zhang — Zexin Qi

Abstract. We study an elliptic system coupled by Monge–Ampère equa-

tions: 
detD2u1 = (−u2)α in Ω,

detD2u2 = (−u1)β in Ω,

u1 < 0, u2 < 0 in Ω,

u1 = u2 = 0 on ∂Ω,

here Ω is a smooth, bounded and strictly convex domain in RN , N ≥ 2,

α > 0, β > 0. When Ω is the unit ball in RN , we use index theory of fixed

points for completely continuous operators to get existence, uniqueness re-
sults and nonexistence of radial convex solutions under some corresponding

assumptions on α, β. When α > 0, β > 0 and αβ = N2 we also study

a corresponding eigenvalue problem in more general domains.

1. Introduction

Consider the following system coupled by Monge-Ampère equations:

(1.1)


detD2u1 = (−u2)

α
in Ω,

detD2u2 = (−u1)
β

in Ω,

u1 < 0, u2 < 0 in Ω,

u1 = u2 = 0 on ∂Ω.
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Here Ω is a smooth, bounded and strictly convex domain in RN , N ≥ 2, α > 0,

β > 0; detD2u stands for the determinant of Hessian matrix ( ∂2u
∂xi∂xj

) of u.

Monge–Ampère equations are fully nonlinear second order PDEs, and there

are important applications in geometry and other scientific fields. Monge–

Ampère equations have been studied in the past years [1], [6], [9], [12], [16].

However, to our best knowledge, only a few works have been devoted to coupled

systems. We refer the reader to [10] where the author established a symme-

try result for a system, which arises in studying the relationship between two

noncompact convex surfaces in R3. It seems to be H. Wang [13], [14] who first

considered systems for Monge–Ampère equations. He investigated the following

system of equations:

(1.2)


detD2u1 = f(−u2) in B,

detD2u2 = g(−u1) in B,

u1 = u2 = 0 on ∂B.

Here and in the following B := {x ∈ RN : |x| < 1}. By reducing it to a

system coupled by ODEs and using the fixed point index, the author obtained

the following results:

Theorem 1.1 ([13, Theorem 1.1]). Suppose f, g : [0,∞) → [0,∞) are con-

tinuous.

(a) If f0 = g0 = 0 and f∞ = g∞ =∞, then (1.2) has at least one nontrivial

radial convex solution.

(b) If f0 = g0 =∞ and f∞ = g∞ = 0, then (1.2) has at least one nontrivial

radial convex solution.

The notations were

f0 := lim
x→0+

f(x)

xN
, f∞ := lim

x→∞

f(x)

xN
.

The above theorem implies the solvability of (1.2) is related to the asymptotic

behavior of f, g at zero and at infinity. Obviously, it asserts the existence of

a radial convex solution for system (1.1) if Ω = B and one of the following cases

holds:

(1) α > N , β > N ,

(2) α < N , β < N .

What we are curious about is, for the sublinear-superlinear case, i.e. α < N ,

β > N , does system (1.1) admits a radial convex solution when Ω = B?

We obtain that:

Theorem 1.2. Let Ω = B, then (1.1) has a radial convex solution if α > 0,

β > 0 and αβ 6= N2.
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Theorem 1.3. Let Ω = B, α > 0, β > 0 and αβ < N2, then (1.1) has

a unique radial convex solution.

Theorem 1.4. Let Ω = B, α > 0, β > 0 and αβ = N2, then (1.1) admits

no radial convex solution.

We also give new existence results for the more general system (1.2) in Re-

mark 2.2. Our main tool is the fixed point index in a cone used in [13]. However,

based on the idea of decoupling method we will consider a composite operator.

Besides, solutions in our theorems are classical, see Remark 2.3.

As αβ = N2, for the eigenvalue problem

(1.3)


detD2u1 = λ(−u2)

α
in Ω,

detD2u2 = µ(−u1)
β

in Ω,

u1 < 0, u2 < 0 in Ω,

u1 = u2 = 0 on ∂Ω,

with positive parameters λ and µ, we have:

Theorem 1.5. Suppose Ω ⊂ RN is a bounded, smooth and strictly convex

domain. If α > 0, β > 0 and αβ = N2, then system (1.3) admits a convex

solution if and only if λµα/N = C, where C is a positive constant depending

on N , α and Ω.

We will use the decoupling technique again to prove the assertion. The

solution operator is chosen to be of abstract form which will be specified in

Section 3. What’s more, a generalized Krein–Rutman theorem ([8]) is used. As

to regularity, by Theorem 1.2 and second paragraph of p. 1253 of [11]), we see

any eigenvector (admissible weak solution) of (1.3) belongs to C1(Ω)× C1(Ω).

Recall the eigenvalue problem of the Monge–Ampère operator,detD2u = |λu|N in Ω,

u = 0 on ∂Ω.

In [8], [9], [12], the authors proved by different methods that the above equation

has a unique positive eigenvalue, called the principal eigenvalue of the Monge–

Ampère operator. Now we consider

(1.4)


detD2u = |λv|N in Ω,

detD2v = |λu|N in Ω,

u = v = 0 on ∂Ω.

By Theorem 1.5, we immediately obtain the following result.



720 Z. Zhang — Z. Qi

Corollary 1.6. The system (1.4) admits nontrivial solutions if and only

if |λ| = λ1(Ω), where λ1(Ω) is the principal eigenvalue of the Monge–Ampère

operator corresponding to Ω.

This paper is organized as follows. In Section 2 we give the proofs of The-

orems 1.2–1.4. The eigenvalue problem (1.3) is discussed in Section 3 and we

prove Theorem 1.5 there.

2. Results concerning radial solutions

When Ω = B, let us search radial convex classical (C2(Ω)) solutions of (1.1).

One can convert it to the following system of ODEs (see Appendix A.2 of [5]

or [7]):

(2.1)


((u′1(t))N )′ = NtN−1(−u2(t))α for 0 < t < 1,

((u′2(t))N )′ = NtN−1(−u1(t))β for 0 < t < 1,

u1 < 0, u2 < 0 for 0 ≤ t < 1,

u′1(0) = u′2(0) = 0, u1(1) = u2(1) = 0.

In fact, the conversion is reversible if we choose a suitable working space. How-

ever, we would rather look for solutions of (2.1) in C1[0, 1] × C1[0, 1] first and

discuss the regularity later in Remark 2.3. Solutions of problem (2.1) are equiv-

alent to fixed points of a certain operator, and we can tackle more general sys-

tems. Equivalently, we seek positive concave solutions for convenience by letting

v1 = −u1, v2 = −u2, and we can transform the above system to

(2.2)


((−v′1(t))N )′ = NtN−1(v2(t))α for 0 < t < 1,

((−v′2(t))N )′ = NtN−1(v1(t))β for 0 < t < 1,

v1 > 0, v2 > 0, for 0 ≤ t < 1,

v′1(0) = v′2(0) = 0, v1(1) = v2(1) = 0.

Below we will keep most notations used in [13]. Recall the following lemma

about fixed point index in a cone.

Lemma 2.1 ([2]). Let E be a Banach space, K a cone in E. For r > 0,

define Kr = {u ∈ K : ‖u‖ < r}. Assume T : Kr → K is completely continuous,

satisfying Tx 6= x, for all x ∈ ∂Kr = {u ∈ K : ‖u‖ = r}.
(a) If ‖Tx‖ ≥ ‖x‖, for all x ∈ ∂Kr, then i(T,Kr,K) = 0.

(b) If ‖Tx‖ ≤ ‖x‖, for all x ∈ ∂Kr, then i(T,Kr,K) = 1.

Now take the Banach space to be C[0, 1] := X with supremum norm. Let

K ⊂ X be

K :=
{
v ∈ X : v(t) ≥ 0, t ∈ [0, 1], min

1/4≤t≤3/4
v(t) ≥ ‖v‖/4

}
,
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which is a cone in X. Denote Kr = {u ∈ K : ‖u‖ < r} as in Lemma 2.1. We

introduce two solution operators. For v ∈ K, define Ti : K → X (i = 1, 2) to be

T1(v)(t) =

∫ 1

t

(∫ s

0

NτN−1vα(τ) dτ

)1/N

ds, t ∈ [0, 1],

T2(v)(t) =

∫ 1

t

(∫ s

0

NτN−1vβ(τ) dτ

)1/N

ds, t ∈ [0, 1].

Note the image of each operator is a nonnegative concave C1-function on [0, 1],

so by Lemma 2.2 in [13], the above two operators map K into itself. Besides,

both operators are completely continuous by standard arguments.

Define a composite operator T = T1T2, which is also completely continuous

from K to itself. Calculation shows that (v1, v2) ∈ C1[0, 1]×C1[0, 1] solves (2.2)

if and only if (v1, v2) belongs to K \ {0} × K \ {0} and satisfies v1 = T1v2,

v2 = T2v1. Thus, if v1 ∈ K \ {0} is a fixed point of T , define v2 = T2v1, then

v2 ∈ K \ {0} so that (v1, v2) ∈ C1[0, 1] × C1[0, 1] solves (2.2); conversely, if

(v1, v2) ∈ C1[0, 1] × C1[0, 1] solves (2.2), then v1 must be a nonzero fixed point

of T in K. So our task is to search nonzero fixed points of T .

We are in a position to give the following proof of Theorem 1.2.

Proof of Theorem 1.2. Let Γ be the positive number given by

(2.3) Γ =

∫ 3/4

1/4

(∫ s

1/4

NτN−1 dτ

)1/N

ds.

For each v ∈ K,

‖T2(v)‖ =

∫ 1

0

(∫ s

0

NτN−1vβ(τ) dτ

)1/N

ds

≥
∫ 3/4

1/4

(∫ s

1/4

NτN−1vβ(τ) dτ

)1/N

ds

≥
∫ 3/4

1/4

(∫ s

1/4

NτN−1
(

1

4
‖v‖
)β

dτ

)1/N

ds = Γ

(
1

4
‖v‖
)β/N

.

Similarly, we obtain ‖T1(v)‖ ≥ Γ(‖v‖/4)α/N . Hence

‖T (v)‖ = ‖T1T2(v)‖ ≥ Γ

(
1

4
‖T2(v)‖

)α/N
≥ Γ

(
1

4
Γ

(
1

4
‖v‖
)β/N)α/N

,

which yields

(2.4) ‖T (v)‖ ≥ Γ1‖v‖αβ/N
2

.

where Γ1 is a positive number that depends on α, β and N .
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On the other hand, for each v ∈ K,

‖T2(v)‖ =

∫ 1

0

(∫ s

0

NτN−1vβ(τ) dτ

)1/N

ds

≤
(∫ 1

0

NτN−1vβ(τ) dτ

)1/N

≤
(∫ 1

0

NτN−1‖v‖β dτ
)1/N

= ‖v‖β/N .

Similarly, ‖T1(v)‖ ≤ ‖v‖α/N , thus

(2.5) ‖T (v)‖ ≤ ‖T2(v)‖α/N ≤ ‖v‖αβ/N
2

.

We take into account the following two cases.

Case 1. αβ > N2.

Choose r1 such that 0 < r1 < 1. For v ∈ K satisfying ‖v‖ = r1, we have

‖Tv‖ < ‖v‖ by (2.5). On the other hand, by the estimate (2.4), we can take

r2 large such that r2 > r1, and for each v ∈ K satisfying ‖v‖ = r2 it holds

‖Tv‖ > ‖v‖. By Lemma 2.1,

i(T,Kr1 ,K) = 1, i(T,Kr2 ,K) = 0.

We obtain i(T,Kr2 \Kr1 ,K) = −1 due to the additivity of the fixed point index.

Then by the existence property of the fixed point index, T has a fixed point say v1
in Kr2 \Kr1 . Denote v2 = T2v1, then (−v1,−v2) is the desired solution of (2.1).

Considering regularity (see Remark 2.3 below), we get a classical solution for

system (1.1) when Ω = B.

Case 2. αβ < N2.

By (2.4), we can choose r3 > 0 small enough such that for each v ∈ K

satisfying ‖v‖ = r3, it holds ‖Tv‖ > ‖v‖. On the other hand, the estimate (2.5)

ensures the existence of r4 such that r4 > r3 and for each v ∈ K satisfying

‖v‖ = r4, we have ‖Tv‖ < ‖v‖. By Lemma 2.1, we get

i(T,Kr4 ,K) = 1, i(T,Kr3 ,K) = 0.

The rest of the proof is similar to that in Case 1 and we omit it. �

Remark 2.2. The right hand side of each equation in system (2.1) is of

particular form, while we can handle more general ones, i.e.

(2.6)


((u′1(t))N )′ = NtN−1f(−u2)(t) for 0 < t < 1,

((u′2(t))N )′ = NtN−1g(−u1)(t) for 0 < t < 1,

u1 < 0, u2 < 0, for 0 ≤ t < 1,

u′1(0) = u′2(0) = 0, u1(1) = u2(1) = 0.

Similar arguments go through and we can get the following conclusion: If f, g :

[0,∞)→ [0,∞) are continuous, both nondecreasing, then (2.6) admits a solution

if one of the following cases is satisfied:
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(1) lim
x→0+

f1/N (g1/N (x))/x = 0 and lim
x→∞

f1/N (g1/N (x))/x =∞;

(2) lim
x→∞

f1/N (g1/N (x))/x = 0 and lim
x→0+

f1/N (g1/N (x))/x =∞.

Remark 2.3. The solutions we obtained in Remark 2.2 are in C1[0, 1] ×
C1[0, 1]. Suppose (u1, u2) is a solution of system (2.6), can we get classical

solutions for system (1.2) by letting u1(x) = u1(|x|), u2(x) = u2(|x|)? This is

the case if (u1, u2) has higher order regularity, say belongs to (C2[0, 1)∩C1[0, 1])×
(C2[0, 1)∩C1[0, 1]). To see this, we refer the reader to Lemma 3.1 of [15], which

states that if u(x) = ũ(|x|) in B, then u ∈ C2(B) if and only if ũ ∈ C2[0, 1)

and ũ′(0) = 0. So, let us explore further the regularity of (u1, u2). Since it is

supposed a solution of system (2.6), we have

u1(t) = −
∫ 1

t

(∫ s

0

NτN−1f(−u2(τ)) dτ

)1/N

ds, t ∈ [0, 1],

u′1(t) =

(∫ t

0

NτN−1f(−u2(τ)) dτ

)1/N

, t ∈ [0, 1],

and

(2.7) u′′1(t) =
1

N

(∫ t

0

NτN−1f(−u2(τ)) dτ

)1/N−1

(NtN−1f(−u2(t))).

Similarly, we can obtain

(2.8) u′′2(t) =
1

N

(∫ t

0

NτN−1g(−u1(τ)) dτ

)1/N−1

(NtN−1g(−u1(t))).

By (2.7) and (2.8), if f(x) > 0 and g(x) > 0 for arbitrary x > 0, then calculation

shows (u1, u2) belongs to C2[0, 1] × C2[0, 1]. Thus we get a nontrivial convex

classical solution of system (1.2), by letting u1(x) = u1(|x|), u2(x) = u2(|x|)
on B.

We turn to the proof of the uniqueness result. Fix α > 0, β > 0 such that

αβ < N2 in system (2.1). We only need to show T has at most one fixed point

in K. With this in mind, we will give a sketch of the proof, since the rest of it’s

idea is similar to that used in [7] where uniqueness for one single equation was

established.

Definition 2.4 ([4] or [7, Definition 3.1]). Let P be a cone from a real

Banach space Y . With some u0 ∈ P positive, A : P → P is called u0-sublinear if:

(a) for any x > 0, there exists θ1 > 0, θ2 > 0 such that θ1u0 ≤ Ax ≤ θ2u0,

(b) for any θ1u0 ≤ x ≤ θ2u0 and t ∈ (0, 1), there always exists some η =

η(x, t) > 0 such that A(tx) ≥ (1 + η)tAx.

Lemma 2.5 ([4] or [7, Lemma 3.3]). An increasing and u0-sublinear operator

A can have at most one positive fixed point.
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Now we choose the Banach space to be Y = X = C[0, 1] as before, but we

work in a new cone P := {v ∈ Y : v(t) ≥ 0, t ∈ [0, 1]}. Since K ⊂ P , we only

need to show that T has at most one fixed point in P .

Proof of Theorem 1.3. It is readily seen that T1, T2 are increasing op-

erators with respect to the partial order induced by P . So is T = T1T2. By

Lemma 2.5, we only need to verify that T is u0-sublinear for some u0 positive

in Y . Since αβ < N2, we can assume α < N without loss of generality (otherwise

consider the operator T := T2T1). Under this assumption, take u0 = 1− t, then

T1 satisfies (a) of Definition 2.4, which is a consequence of Lemma 3.4 in [7].

From this we know T = T1T2 also satisfies (a) of Definition 2.4. The proof is

complete if T satisfies (b) of Definition 2.4. To this end, let θ1u0 ≤ x ≤ θ2u0,

ξ ∈ (0, 1), then direct calculation give T2(ξx) = ξβ/NT2(x), T1(ξx) = ξα/NT1(x).

Thus T (ξx) = T1(ξβ/NT2(x)) = ξαβ/N
2

T1T2(x) ≥ (1 + η)ξTx for some η > 0.

The last inequality holds because ξ ∈ (0, 1) and αβ < N2. �

Finally in this section, we prove the nonexistence result.

Proof of Theorem 1.4. As analyzed previously, we only need to show

that T has no positive fixed point in K. For each v ∈ K, we have

(2.9) ‖T2(v)‖ =

∫ 1

0

(∫ s

0

NτN−1vβ(τ) dτ

)1/N

ds

≤
(∫ 1

0

NτN−1vβ(τ) dτ

)1/N

≤
(∫ 1

0

NτN−1‖v‖β dτ
)1/N

= ‖v‖β/N .

Assume that T has a positive fixed point v0 in K, then v0 must be a concave

function satisfying v0(1) = 0 and v0(t) > 0, t ∈ [0, 1). Thus if we take v = v0
in the above estimate, we know the last inequality in (2.9) must be strict. Thus

‖T2v0‖ < ‖v0‖β/N . Similarly we have ‖T1v‖ ≤ ‖v‖α/N , for all v ∈ K. Therefore,

we obtain that ‖Tv0‖ < ‖v0‖αβ/N
2

= ‖v0‖. This contradicts the assumption

v0 = Tv0. �

3. A corresponding eigenvalue problem

Checking the proof of Theorem 1.4, we see the argument would not go

through if the radius of the ball is larger than 1. This observation leads us

to consider the following system

(3.1)


detD2u1 = (−u2)

α
in BR,

detD2u2 = (−u1)
β

in BR,

u1 < 0, u2 < 0 in BR,

u1 = u2 = 0 on ∂BR.
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Here BR denotes the ball of radius R centered at zero, α, β > 0 are such that

αβ = N2. By scaling, the solvability of (3.1) is equivalent to that of the following

problem:

(3.2)


detD2u1 = λ(−u2)

α
in B,

detD2u2 = µ(−u1)
β

in B,

u1 < 0, u2 < 0 in B,

u1 = u2 = 0 on ∂B,

where λ and µ are positive parameters. By Theorem 1.4, (3.2) admits no radial

convex solution when λ = µ = 1. Further calculations show that if (3.2) has

a radial solution, then λ, µ should be in a suitable range. Indeed, let X be

C[0, 1] and the cone K as in Section 2. Now we consider the new operators T̃1,

T̃2 defined as:

T̃1(v)(t) =

∫ 1

t

(∫ s

0

NτN−1λvα(τ) dτ
)1/N

ds, t ∈ [0, 1], v ∈ K,

T̃2(v)(t) =

∫ 1

t

(∫ s

0

NτN−1µvβ(τ) dτ

)1/N

ds, t ∈ [0, 1], v ∈ K.

We also define T̃ := T̃1T̃2, and we will investigate the fixed points of T̃ .

Notice that ‖T̃2(v)‖ ≤ µ1/N‖v‖β/N , ‖T̃1(v)‖ ≤ λ1/N‖v‖α/N , which yield

‖T̃ (v)‖ ≤ λ1/N‖T̃2(v)‖α/N ≤ λ1/Nµα/N
2

‖v‖.

So, if v 6= 0 is a fixed point of T̃ , we have necessarily λµα/N ≥ 1, which implies

λµα/N can’t be too small. On the other hand, with Γ defined in (2.3), we have

for each v ∈ K,

‖T̃2(v)‖ = µ1/N

∫ 1

0

(∫ s

0

NτN−1vβ(τ) dτ

)1/N

ds

≥ µ1/N

∫ 3/4

1/4

(∫ s

1/4

NτN−1vβ(τ) dτ

)1/N

ds

≥ µ1/N

∫ 3/4

1/4

(∫ s

1/4

NτN−1
(

1

4
‖v‖
)β

dτ

)1/N

ds = µ1/NΓ

(
1

4
‖v‖
)β/N

.

Similarly, ‖T̃1(v)‖ ≥ λ1/NΓ(‖v‖/4)α/N , hence

‖T̃ (v)‖ = ‖T̃1T̃2(v)‖ ≥ λ1/NΓ

(
1

4
‖T̃2(v)‖

)α/N
≥ λ1/NΓ

(
1

4

)α/N(
µ1/NΓ

(
1

4
‖v‖
)β/N)α/N

= λ1/Nµα/N
2

(
1

4
Γ

)1+α/N

‖v‖.

So, if v 6= 0 is a fixed point of T̃ , we have necessarily λ1/Nµα/N
2

(Γ/4)1+α/N ≤ 1,

which implies λµα/N can’t be too large.
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Is equation (3.2) solvable for suitable λ and µ? The answer is positive and

the domain need not even be symmetric, as asserted by Theorem 1.5. Our

tool for (1.3) is a generalized Krein–Rutman theorem developed in [8], where

the author discussed eigenvalue problems for a broader class of fully nonlinear

elliptic operators, including the Monge–Ampère operator.

Recall some concepts first(see [8] for details). Let E be a real Banach space

with a cone M ⊂ E. The partial order induced by M is written: u � v ⇔ v−u ∈
M . Let A : E → E. A is said to be homogeneous if it is positively homogeneous

with degree 1. A is monotone if it satisfies x � y ⇒ A(x) � A(y). A is called

positive if A(M) ⊆ M . Finally, a positive operator A : E → E is called strong

(relative to M), if for all u, v ∈ Im(A) ∩M \ {0}, there exist positive constants

ρ and τ (which may depend on u, v), such that u − ρv ∈ M and v − τu ∈ M .

The main content of the generalized Krein–Rutman theorem given in [8] is as

follows.

Lemma 3.1 ([8, Theorem 2.7]). Let E contain a cone M . Let A : E → E be

a completely continuous operator with A|M : M → M homogeneous, monotone,

and strong. Furthermore, assume that there exist nonzero elements w, A(w) ∈
Im(A) ∩M . Then there exists a constant λ0 > 0 with the following properties:

(a) There exists u ∈M \ {0}, with u = λ0A(u);

(b) If v ∈M \ {0} and λ > 0 such that v = λA(v), then λ = λ0.

We also need the following lemmas to prove Theorem 1.5. By Theorem 1.2

and second paragraph of p. 1253 of [11], we have

Lemma 3.2 (A special case of Trudinger [11, Theorem 1.1]). Let Ω be a strictly

convex bounded domain in RN , ψ ∈ C(Ω) with ψ ≥ 0, φ ∈ C(Ω). Then there

exists a unique admissible weak solution u ∈ C1(Ω) of the equation

(3.3)

detD2u = ψ in Ω,

u = φ on ∂Ω.

The definition of admissible weak solution coincides with the Aleksandrov

sense weak solution (please see page 1252-1253 in Trudinger [11]), so Lemma 3.2

is valid for the Aleksandrov sense weak solution in the following Remark 3.1, we

use the Aleksandrov sense weak solution here and in the following part of this

paper.

Remark 3.3. The admissible weak solution in Lemma 3.2 can be viewed

as in Aleksandrov sense. Recall the notion of Aleksandrov solution (see [6],

Definition 1.1.1, Theorem 1.1.13 and Definition 1.2.1). Let Ω ⊂ RN be an open

subset and u : Ω → R. The normal mapping of u, or subdifferential of u, is the

set-valued function ∂u : Ω→ 2R
N

defined by

∂u(x0) = {p ∈ RN : u(x) ≥ u(x0) + p · (x− x0), for all x ∈ Ω}.
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Given e ⊂ Ω, define ∂u(e) =
⋃
x∈e

∂u(x).

Let u be continuous, then the class S = {e ⊂ Ω : ∂u(e) is Lebesgue

measurable} is a Borel σ-algebra. The set function Mu : S → R, Mu(e) =

|∂u(e)| is a measure, finite on compacts, that is called the Monge–Ampère mea-

sure associated with the function u.

Let ν be a Borel measure defined in Ω, an open and convex subset of RN . The

convex function u ∈ C(Ω) is called a generalized solution or Aleksandrov solution

to the Monge–Ampère equation detD2u = ν if the Monge-Ampère measure Mu

associated with u equals ν.

Lemma 3.4 (Comparison Principle, [6]). Let Ω be a bounded convex domain

in RN . Denote µ[u] the Monge–Ampère measure determined by u. Let u, v ∈
C(Ω) be two convex functions satisfyingµ[u](e) ≥ µ[v](e) for all Borel e ⊂ Ω,

u ≤ v on ∂Ω.

then u(x) ≤ v(x) for any x ∈ Ω.

We are ready to give the proof of Theorem 1.5.

Proof of Theorem 1.5. Let E be the Banach space C(Ω) with supremum

norm. Choose the negative cone M := {u ∈ E : u(x) ≤ 0, for all x ∈ Ω}. Notice

the partial order induced by M reads: u � v if and only if v(x) ≤ u(x), for all

x ∈ Ω. Define A1 : E → E, A1(u) = v, where v is the unique admissible weak

solution (Aleksandrov solution) of the equation

(3.4)

detD2v = |u|α in Ω,

v = 0 on ∂Ω.

By Lemma 3.2, A1 is well defined. Similarly we define A2 : E → E, A2(u) = v,

where v is the unique admissible weak solution (Aleksandrov solution) of the

equation

(3.5)

detD2v = |u|β in Ω,

v = 0 on ∂Ω.

By Lemma 3.2 for the admissible weak solutions of (3.4) and (3.5), we see A1u ∈
C1(Ω), A2u ∈ C1(Ω). Finally, we define a composite operator A := A1A2.

Let us verify A satisfies the assumptions of Lemma 3.1.

Firstly, A1, A2 (thus A) are completely continuous by Proposition 3.2 of [8].

Since A(E) ⊆ M , A is positive. Let t > 0, we have A2(tu) = tβ/NA2(u),

A1(tv) = tα/NA1(u). As αβ = N2, we deduce

A(tu) = A1A2(tu) = A1(tβ/NA2(u)) = tA1A2(u) = tA(u),
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which implies that A is homogeneous. Besides, it is easy to get that A1, A2 are

monotone operators by Lemma 3.4, so is A.

To seeA is strong, notice if u ∈ Im(A)∩M\{0}, then there exists a v ∈ E\{0}
such that u = A1(A2v). Now A2v is a nonzero convex function that is strictly

negative in Ω, by Lemma 3.2, we see A2v ∈ C1(Ω), A1(A2v) ∈ C1(Ω). Then

Lemma 3.4 of [3] gives the exterior normal derivative satisfies uν > 0, for all

x ∈ ∂Ω, since u is convex thus subharmonic and u(x) < 0 for x ∈ Ω. Using these

facts, one can get by definition that A is a strong operator.

Finally, N (A) = {0} where N (A) := {u ∈ M : A(u) = 0}. We see all

assumptions in Lemma 3.1 are satisfied, then there exist u∗ ∈ M \ {0} and

λ0 > 0 such that u∗ = λ0A(u∗).

If we define v∗ = A2(u∗), then (u∗, v∗) must be a solution of the following

system 

detD2

(
u

λ0

)
= (−v)

α
in Ω,

detD2v = (−u)
β

in Ω,

u < 0, v < 0 in Ω,

u = v = 0 on ∂Ω.

Furthermore, by the second conclusion of Lemma 3.1, if u1 ∈M \ {0} and λ > 0

satisfy u1 = λA(u1), then λ = λ0. So the following system

(3.6)


detD2u = λ̃(−v)

α
in Ω,

detD2v = (−u)
β

in Ω,

u < 0, v < 0 in Ω,

u = v = 0 on ∂Ω,

admits a solution if and only if λ̃ = λN0 .

Now we show that (1.3) has a convex solution if and only if λµα/N = λN0 ,

which implies the first conclusion of Theorem 1.5. Indeed, if (u, v) is a convex

solution of (1.3), then from detD2v = µ(−u)β we have detD2(µ−1/Nv) = (−u)β .

Let ṽ = µ−1/Nv, then (−v)α = µα/N (−ṽ)α, and thus detD2u = λ(−v)α =

λµα/N (−ṽ)α. It is easily seen (u, ṽ) is a convex solution of (3.6) if λ̃ = λµα/N .

Since we have proved that (3.6) admits a convex solution only when λ̃ = λN0 , we

get λµα/N = λN0 .

On the other hand, assume λµα/N = λN0 , set λ̃ = λµα/N , then λ̃ = λN0 and

(3.6) admits a convex solution, say (u, v). Define v? = µ1/Nv, then it is easy to

show that (u, v?) is a convex solution of (1.3). �
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[7] S. Hu and H. Wang, Convex solutions of boundary value problems arising from Monge–

Ampère equations, Discrete Contin. Dynam. Systems 16 (2006), 705–720.

[8] J. Jacobsen, Global bifurcation problems associated with K-Hessian operators, Topol.

Methods Nonlinear Anal. 14 (1999), 81–130.

[9] P.L. Lions, Two remarks on Monge–Ampère equations, Ann. Mat. Pura Appl. 142 (4)

(1985), 263–275.

[10] L. Ma and B. Liu, Symmetry results for classical solutions of Monge–Ampère system in

the plane, arXiv: 0908.1428.

[11] N.S. Trudinger, Weak solutions of hessian equations, Commun. Partial Differential

Equations 22 (7&8) (1997), 1251–1261.

[12] K. Tso, On a real Monge–Ampère functional, Invent. Math. 101 (1990), 425–448.

[13] H. Wang, Convex solutions of systems arising from Monge–Ampère equations, Electron.

J. Qual. Theory Differ. Equ., Special Edition I. 26 (2009), 1–8.

[14] , Radial convex solutions of boundary value problems for systems of Monge–

Ampère equations, arXiv:1008.4614v1.

[15] W. Wang, On a kind of eigenvalue problems of Monge–Ampère type, Chinese Ann. Math.

Ser. A 28 (3) (2007), 347–358.

[16] Z. Zhang and K. Wang, Existence and non-existence of solutions for a class of Monge–

Ampère equations, J. Differential Equations 246 (2009), 2849–2875.

Manuscript received March 5, 2014

accepted March 18, 2015

Zhitao Zhang

Academy of Mathematics and Systems Science
The Chinese Academy of Sciences

Beijing 100190, P.R. CHINA

E-mail address: zzt@math.ac.cn

Zexin Qi

College of Mathematics and Information Science
Henan Normal University

Xinxiang 453007, P.R. CHINA

E-mail address: qizedong@126.com

TMNA : Volume 46 – 2015 – No 2


