Existence of solutions in the sense of distributions of anisotropic nonlinear elliptic equations with variable exponent

Mohamed Badr Benboubker, Houssam Chrayteh, Hassane Hjiaj, Chihab Yazough

DOI: http://dx.doi.org/10.12775/TMNA.2015.063

Abstract


The aim of this paper is to study the existence of solutions in the sense of distributions for a~strongly nonlinear elliptic problem where the second term of the equation $f$ is in $ W^{-1,\overrightarrow{p}'(\,\cdot\,)}(\Omega)$ which is the dual space of the anisotropic Sobolev $W_{0}^{1,\overrightarrow{p}(\,\cdot\,)}(\Omega)$ and later $f$ will be in~$L^{1}(\Omega)$.

Keywords


Anisotropic Sobolev spaces; variable exponent; strongly nonlinear elliptic equations; boundary value problems; solution in the sense of distributions

Full Text:

PREVIEW FULL TEXT

References


E. Azroul, A. Barbara, M. B. Benboubker and S. Ouaro, Renormalized solutions for a $p(x)$-Laplacian equation with Neumann nonhomogeneous boundary conditions and $L^{1}$-data, An. Univ. Craiova Ser. Mat. Inform. 40 (2013), no. 1, 9-22.

E. Azroul, M. B. Benboubker and S. Ouaro, Entropy solutions for nonlinear nonhomogeneous Neumann problems involving the generalized $p(x)$-Laplace operator, J. Appl. Anal. Comput. 3 (2013), no. 2, 105-121.

E. Azroul, M. B. Benboubker and M. Rhoudaf, On some p(x)-quasilinear problem with right-hand side measure, Math. Comput. Simul. 102 (2014), 117-130.

E. Azroul, H. Hjiaj and A. Touzani, Existence and Regularity of Entropy solutions For Strongly Nonlinear $p(x)$-elliptic equations, Electron. J. Differentail Equations 68 (2013), 1-27.

E. Azroul, C. Yazough and H. Redwane, Existence of solutions for some nonlinear elliptic unilateral problems with measure data, Electron. J. Qual. Theory Differ. Equ. (2013), No. 43, 1-21.

M. B. Benboubker, E. Azroul and A. Barbara, Quasilinear elliptic problems with nonstandard growths, Electron. J. Differential Equations 62 (2011), 1-16.

M. B. Benboubker, H. Chrayteh, M. El Moumni and H. Hjiaj, Entropy and renormalized solutions for nonlinear elliptic problem involving variable exponent and measure data, Acta Math. Sin. (Engl. Ser.) 31 (2015), 151-169.

M. Bendahmane, M. Chrif and S. El Manouni, An Approximation Result in Generalized Anisotropic Sobolev Spaces and Application, Z. Anal. Anwend. 30 (2011), no. 3, 341-353.

L. Boccardo, F. Murat and J. P. Puel, Existence of Bounded Solutions for non linear elliptic unilateral problems, Ann. Mat. Pura Appl. (4) 152 (1988), 183-196.

H. Chrayteh, Qualitative properties of eigenvectors related to multivalued operators and some existence results, J. Optim. Theory Appl. 155 (2012), 507-533.

H. Chrayteh and J. M. Rakotoson, Eigenvalue problems with fully discontinuous operators and critical exponents, Nonlinear Anal. 73 (2010), 2036-2055.

L. Diening, P. Harjulehto, P. Hasto and M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, Heidelberg, 2011.

X. Fan, J. Shen and D. Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}(Omega)$, J. Math. Anal. Appl. 262 (2001), no. 2, 749-760.

X. L. Fan and D. Zhao, On the generalised Orlicz-Sobolev Space $W^{k,p(x)}(Omega)$, J. Gansu Educ. College 12 (1) (1998), 1-6.

P. Gwiazda, P. Minakowski and A. Świerczewska-Gwiazda, On the anisotropic Orlicz spaces applied in the problems of continuum mechanics, Discrete Contin. Dyn. Syst. Ser. S 6 (5) (2013), 1291-1306.

P. Gwiazda, P. Minakowski and A. Wróblewska, Elliptic problems in generalized Orlicz- -Musielak spaces, Cent. Eur. J. Math. 10 (6) (2012), 2019-2032.

P. Gwiazda and A. Świerczewska-Gwiazda, On steady non-Newtonian fluids with growth conditions in generalized Orlicz spaces, Topol. Methods Nonlinear Anal. 32 (1) (2008), 103-113.

P. Gwiazda and A. Świerczewska-Gwiazda, On non-Newtonian fluids with a property of rapid thickening under different stimulus, Math. Models Methods Appl. Sci. 18}(7) (2008), 1073-1092.

P. Gwiazda, A. Świerczewska-Gwiazda and A. Wróblewska, Monotonicity methods in generalized Orlicz spaces for a class of non-Newtonian fluids, Math. Methods Appl. Sci. 33 (2) (2010), 125-137.

P. Gwiazda, P. Wittbold, A. Wróblewska and A. Zimmermann, Renormalized solutions of nonlinear elliptic problems in generalized Orlicz spaces, J. Differential Equations 253 (2) (2012), 635-666.

P. Harjulehto and P. Hasto, Sobolev Inequalities for Variable Exponents Attaining the Values $1$ and $n$, Publ. Mat. 52 (2008), no. 2, 347-363.

HS} E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer-Verlag, Berlin, Heidelberg, New York, 1965.

B. Kone, S. Ouaro and S. Traore, Weak solutions for anisotropic nonlinear elliptic equations with variable exponents, Electronic J. Differential Equations 144 (2009), 1-11.

J. L. Lions, Quelques methodes de resolution des problemes aux limites non lineaires, Dunod et Gauthiers-Villars, Paris 1969.

M. Mihailescu, P. Pucci and V. Radulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl. 340 (2008), 687-698.

A. Świerczewska-Gwiazda, Anisotropic parabolic problems with slowly or rapidly growing terms, Colloq. Math. 134 (1) (2014), 113-130.

A. Wróblewska, Steady flow of non-Newtonian fluids-monotonicity methods in generalized Orlicz spaces, Nonlinear Anal. 72 (11) (2010), 4136-4147.

D. Zhao, W. J. Qiang and X. L. Fan, On generalized Orlicz spaces $L^{p(x)}(Omega)$, J. Gansu Sci. 9 (2) (1997), 1-7.

V. V. Zhikov, On Lavrentiev's phenomenon, Russian J. Math. Phys. 3 (1995), 249-269.

V. V. Zhikov, On some variational problem, Russian J. Math. Phys. 5 (1997), 105-116.


Refbacks

  • There are currently no refbacks.

Partnerzy platformy czasopism