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Abstract. We consider a T -periodically perturbed autonomous functional

differential equation of neutral type. We assume the existence of a T -

periodic limit cycle x0 for the unperturbed autonomous system. We also
assume that the linearized unperturbed equation around the limit cycle

has the characteristic multiplier 1 of geometric multiplicity 1 and algebraic

multiplicity greater than 1. The paper deals with the existence of a branch
of T -periodic solutions emanating from the limit cycle. The problem of

finding such a branch is converted into the problem of finding a branch

of zeros of a suitably defined bifurcation equation P (x, ε) + εQ(x, ε) = 0.
The main task of the paper is to define a novel equivalent integral oper-

ator having the property that the T -periodic adjoint Floquet solutions of

the unperturbed linearized operator correspond to those of the equation
P ′(x0(θ), 0) = 0, θ ∈ [0, T ]. Once this is done it is possible to express the

condition for the existence of a branch of zeros for the bifurcation equation
in terms of a multidimensional Malkin bifurcation function.
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1. Introduction

In [26] Malkin developed a perturbation theory to study the existence, unique-

ness and stability of bifurcating periodic solutions from a limit cycle x0 of an

autonomous system when it is perturbed by a T -periodic nonlinear term of small

amplitude. The system is of the form

(1.1) ẋ = φ(x) + εψ(t, x, ε),

where φ ∈ C2(Rn,Rn), ψ ∈ C1(R×Rn× [0, 1],Rn), ψ is T -periodic with respect

to time and ε ≥ 0 is a small parameter. The main tool for this study was the

so-called Malkin bifurcation function

f0(θ) =

∫ T

0

〈z0(τ), ψ(τ − θ, x0(τ), 0)〉 dτ.

Here 〈 · , · 〉 denotes the scalar product in Rn and z0 is a T -periodic solution of

ż = (φ′(x0(t)))∗z,

the adjoint system of the linearized unperturbed system

ẏ = φ′(x0(t))y,

which is assumed to have the characteristic multiplier 1 simple.

In [26] it is shown that if the bifurcation function f0 has a simple zero

θ0 ∈ [0, T ], then there exists a branch of solutions xε, ε ≥ 0 small, emanat-

ing from x0(θ0). In [27] Malkin extended the perturbation theory to periodically

perturbed non autonomous T -periodic systems. The results obtained by Malkin

in these papers have been also proved independently by Loud [22]. Since these

pioneering papers [26], [27], [22] a relevant bibliography has been devoted to

the refinement and development in various directions of the results contained

in these papers, sometimes leading to different expressions and employ of the

bifurcation function. From the huge bibliography on the subject we mention, in

the sequel, some of the papers which are more closely related to the interest and

methods employed in this paper.

Under the regularity assumptions on the functions φ and ψ of (1.1) indicated

above, in [16] the problem of finding a branch of T -periodic solutions originating

from x0 is reduced to the problem of finding a branch of zeros of a bifurcation

equation of the form

(1.2) P (x) + εQ(x, ε) = 0,

where P : Rn → Rn and Q : Rn × [0, 1] → Rn are given by P (x) = Π0(x) − x
and Q(x, ε) = (Πε(x)−Π0(x))/ε with P ′(x0) singular, here Πε is the singular

Poincaré map associated to (1.1). By means of the classical implicit function

theorem, it is shown that, under the usual assumption of the existence of a sim-

ple zero of the Malkin bifurcation function associated to (1.1), the bifurcation
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equation (1.2) has a branch of zeros. The same approach has permitted in [20] to

show the existence of branches of T -periodic solutions along prescribed directions

at some point of the limit cycle.

A significant example of how to associate a suitable abstract bifurcation

function to solve an infinite dimensional bifurcation problem is given in [21].

Precisely, for a class of periodically perturbed autonomous equations, the au-

thors introduce a novel version of the usual equivalent integral operator, i.e.

the operator whose fixed points are the T -periodic solutions of the considered

problem and viceversa.

The resulting bifurcation equation still has the form (1.2). To this equation it

is possible to associate a suitable Malkin bifurcation function with the property

that if it has a simple zero then (1.2) has a branch of zeros. This is ensured by

[17, Theorem 2], which is the infinite dimensional version of [16, Theorem 1].

The aforementioned novel equivalent integral operator is constructed in such

a way that the condition that the characteristic multiplier 1 of the unperturbed

linearized equation is simple ensures that 0 is a simple eigenvalue of P ′(x0(θ)),

θ ∈ [0, T ]. In the infinite dimensional case, this property is not verified if we

build the bifurcation equation (1.2) from the usual equivalent integral operator,

see [21] for the details.

If the functions φ and ψ in (1.1) satisfy less regularity conditions not allow-

ing the employ of the classical implicit function theorem or one of its variants,

then, the Malkin bifurcation function can be usefully employed to prove that the

topological degree of suitably defined operators, whose fixed points are periodic

solutions of the considered equation and viceversa, is different from zero, see [5],

[8], [11], [14], [15], [23]. The behavior of the bifurcating periodic solutions, when

the perturbation vanishes, has been studied in [24] and [25].

In all the papers cited above, when one deals with the existence of bifur-

cation of T -periodic solutions, the crucial assumption is that the characteristic

multiplier 1 of the linearized unperturbed equation is simple. In other words, the

eigenvalue 1 of the translation operator along the trajectories of the linearized

unperturbed equation over the period is simple.

Aim of this paper is to provide an application of the method, based on the

definition of a novel equivalent integral operator, to the relevant case when the

linearized unperturbed equation does not possess T -periodic solutions linearly

independent with e0 := ẋ0, but it possesses T -periodic adjoint Floquet solutions.

Namely, the case when the eigenvalue 1 of the translation operator has geometric

multiplicity 1 and algebraic multiplicity m > 1.

To illustrate by a concrete example the method mentioned above we consider

a class of functional differential equations of neutral type of the form

(1.3) ẋ(t) = φ(x(t− ε), ẋ(t− ε)) + εψ(t, x(t− ε), ẋ(t− ε), ε),
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where φ : Rn × Rn → Rn and ψ : R× Rn × Rn × [0, 1]→ Rn, ψ is T -periodic in

time and ε ∈ [0, 1] is the perturbation parameter.

We assume that (1.3) when ε = 0 has a T -periodic limit cycle x0. The as-

sumptions on φ and ψ will be precised later. The interest for the study of the

conditions ensuring the existence of bifurcation of periodic solutions for differen-

tial equations with delay goes back to the 60–80’s of the twentieth century. Very

recently, new contributions to the existence, bifurcation and stability of peri-

odic solutions for functional differential equations have been presented in several

papers, see e.g. [9], [10], [13], [29], [31]–[33] as well as the extensive references

therein.

The study of the existence, bifurcation and stability of periodic solutions for

delayed differential equations is of particular relevance for the control of vibra-

tions, resonance and other harmful phenomena in various mechanical systems,

as well as for the dynamical analysis of cellular neural networks. Indeed, in the

control of mechanical systems serious problems arise from the unavoidable time

delays in both controller and actuators. Moreover, the presence of switching

delay in neuron amplifiers is a particularly harmful source of potential instabil-

ity for the dynamics of cellular neural network, among an huge bibliography on

these topics we cite here [12] and [6].

In all the previous cited references the delay, when it is finite, is a given fixed

positive number or a periodic function of the time. Furthermore, the employed

methods are of topological nature, mainly fixed point theorems and topological

degree together with different bifurcation theorems. In the present paper the

delay ε > 0 is considered as an effect of the T -periodic perturbation of the

autonomous system, in other words it disappears as the perturbation vanishes

and our method differs from those of the cited papers, since it is based on the

Malkin bifurcation function. It is opinion of the authors that the abstract result,

namely Theorem 2, can be successfully applied to (1.3) also in the case when

the delay is a given fixed positive number. At present the involved calculation

of the related Malkin bifurcation function has not been performed. This may be

matter of future work.

In [7], for the equation (1.3), the existence of the bifurcation of T -periodic

solutions xε, ε ≥ 0 small, emanating from x0 was proved under the assumptions

that the eigenvalue 1 of the translation operator is simple, namely m = 1. This

paper follows the approach described in [16] by associating to (1.3) a bifurcation

equation along the lines indicated in [1]. Moreover, under the assumption that

m > 1 and the geometric multiplicity is equal to 1, in [19] for φ and ψ in (1.3)

of the form

φ(x(t− ε), ẋ(t− ε)) = f(x(t), x(t− εh)) + aẋ(t− εh),

ψ(t, x(t− ε), ẋ(t− ε), ε) = g(t, x(t), x(t− εh), ε) + b(t)ẋ(t− εh),
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a first result on the existence of bifurcation of T -periodic solutions from the limit

cycle x0 has been proved.

The bifurcation results in [7] and [19] make use of the two extensions to

infinite dimensional spaces: [7, Theorem 2.1] and [19, Theorem 3.2] of the result

formulated for the respective bifurcation equation in [16, Theorem 1] in finite

dimension. In particular, since the bifurcation equation in [19] is defined, as in

[16] by means of the translation operator, the use of [19, Theorem 3.2] requires

that the translation operator along the trajectories of (1.3) is defined in the space

W 1
2 [−h, 0] of the absolutely continuous functions with derivative in L2[−h, 0].

Indeed, this space allows to calculate the Floquet vectors of the adjoint equation

as required by Theorem 3.2 of [19], while this computation is quite problematic

in C1[−h, 0]. Moreover, the restrictive assumption on the form of the functions

φ and ψ is due to the necessity to prove the differentiability of the translation

operator in W 1
2 [−h, 0] with respect to both the small parameter ε ≥ 0 and the

space variable.

Coming back to the present paper, here we closely follow the method outlined

in [21] to introduce a bifurcation equation P (x, ε) + εQ(x, ε) = 0 satisfying the

assumptions of [18, Theorem 1] and [19, Theorem 3.2] which are formulated in

terms of a multidimensional Malkin bifurcation function. In particular, in order

to define this bifurcation function it is necessary that there exists a one-to-one

correspondence between the T -periodic adjoint Floquet solutions of the linearized

unperturbed equation and those of the equation P ′(x0(θ), 0) = 0, θ ∈ [0, T ].

Therefore, to this aim we define an appropriate novel equivalent integral operator

with such a property, this is the main point of the paper. Indeed, as showed

in [28], the usual equivalent integral operator does not necessarily satisfy this

property. As already observed the same problem was faced in [21]. On the

other hand, for the translation operator along the trajectories of the linearized

unperturbed equation the adjoint vectors of the eigenvalue 1 correspond to the

T -periodic adjoint Floquet solutions of this equation. This fact turns out to be

quite useful in [19] where the bifurcation equation is built upon the translation

operator.

We would like also to mention the papers [2]–[4] where the bifurcation of

periodic solutions for differential equations with delay is obtained under the as-

sumption that the geometric and algebraic multiplicity of the eigenvalue 1 of the

translation operator are equal and greater than 1. Therefore, the existence of

periodic adjoint Floquet solutions is not allowed. Moreover, under the same as-

sumption, Malkin in [27] proved the uniqueness of T -periodic solutions xε, ε ≥ 0

small, and their asymptotic stability for smooth T -periodic non autonomous

perturbed differential system. The branch originates from the normally non



636 J.-F. Couchouron — M. Kamenskĭı — B. Mikhaylenko — P. Nistri

degenerate manifold S of the initial states of the periodic solutions of the unper-

turbed system. In the case when the perturbation is only Lipschitz, bifurcation

of isolated branches of periodic solutions from S is shown in [5]. Finally, for or-

dinary differential equations Rhouma and Chicone in [30] treated the case when

S is not normally non degenerate, thus allowing the existence of adjoint Floquet

solutions.

The paper is organized as follows. In Section 2 we give a precise formulation

of the considered bifurcation problem. In Section 3 we provide an useful repre-

sentation formula for the T -periodic adjoint Floquet solutions of the linearized

unperturbed equation of (1.3). In Section 4 we introduce the equivalent integral

operator which allows to convert the problem of the existence of T -periodic solu-

tions to (1.3) in the problem of finding the fixed points of the integral operator.

In Section 5, starting from the equivalent integral operator, we define a novel

equivalent integral operator which has the required properties concerning the ad-

joint vectors of the corresponding linearized unperturbed equation. In Section 6

we determine the eigenvector and the adjoint vectors of the adjoint operators of

the linearized unperturbed equation corresponding to both the equivalent inte-

gral operator and the novel equivalent integral operator. Finally, in Section 7 all

the results of the previous Sections permit to verify the conditions under which

Theorem 3.2 of [19] guarantees the existence of the sough-after bifurcation in

terms of a multidimensional Malkin bifurcation function.

2. Formulation of the problem

In this paper we consider a nonlinear autonomous functional differential equa-

tion perturbed by a nonautonomous T -periodic nonlinear perturbation of small

amplitude. We assume that both the right hand side of the autonomous equa-

tion and the perturbation depend on the derivative of the state. Moreover, we

suppose that the perturbation introduces a small delay in time both in the state

and its derivative that disappears as the perturbation vanishes. The resulting

equation turns out to be a functional differential equation of neutral type of the

form

(2.1) ẋ(t) = φ(x(t− ε), ẋ(t− ε)) + εψ(t, x(t− ε), ẋ(t− ε), ε),

where φ : Rn × Rn → Rn and ψ : R × Rn × Rn × [0, 1] → Rn, are continuous

functions, ψ is T -periodic in time and ε ∈ [0, 1] is the perturbation parameter.

We also assume that

‖φ(x, y1)− φ(x, y2)‖ ≤ K‖y1 − y2‖,

for some 0 < K < 1, whenever x ∈ E and

‖ψ(t, x, y1, ε)− ψ(t, x, y2, ε)‖ ≤ L‖y1 − y2‖,
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for some L > 0 uniformly with respect to the other variables. Let ε0 > 0 such

that K + ε0L = q < 1. Since in this paper we are interested in small values of

ε ≥ 0, without loss of generality, we may assume from now on that ε ∈ [0, ε0].

We assume that the unperturbed system, namely (2.1) with ε = 0, has a unique

T -periodic solution x0, that is

(2.2) ẋ0(t) = φ(x0(t), ẋ0(t)), x0(t) = x0(t+ T ), t ∈ R.

Moreover, we assume that φ ∈ C2(U), where U is a neighbourhood of the set

{(t, x0(t), ẋ0(t), ε) : t ∈ [0, T ], ε ∈ [0, ε0]}. Since the equation (2.2) is autonomous

the function xθ0(t) := x0(t + θ) is also a solution to (2.2), for any θ ∈ [0, T ], i.e.

the set of shifts xθ0( · ), θ ∈ [0, T ], represents the family Γ of T -periodic solutions

to (2.2). Therefore the linearized unperturbed equation

(2.3) ẋ(t) = φ′(1)(x
θ
0(t), ẋθ0(t))x(t) + φ′(2)(x

θ
0(t), ẋθ0(t))ẋ(t)

has Γ′ := {ẋθ0( · ) := ẋ0( · + θ) : θ ∈ [0, T ]} as the family of nontrivial T -periodic

solutions.

Let aθ(t) := φ′(1)(x
θ
0(t), ẋθ0(t)) and bθ(t) := φ′(2)(x

θ
0(t), ẋθ0(t)), whenever θ ∈

[0, T ]. Hence (2.3) takes the form

(2.4) ẋ(t) = aθ(t)x(t) + bθ(t)ẋ(t).

Now, we assume that the equation (2.4) has the set of T -periodic adjoint Floquet

solutions given by

vθj (t) =

j∑
i=0

tj−i

(j − i)!T j−i
eθi (t), j = 1, . . . ,m, m ≤ n− 1,

where eθ0(t) := ẋθ0(t) 6≡ 0 for any θ ∈ [0, T ] and eθj are T -periodic functions.

We pose the following:

Problem 2.1. To find conditions to guarantee the existence of a branch

xε, ε ≥ 0 small, of T -periodic solutions to (2.1) emanating from the T -periodic

function xθ00 ∈ Γ for some θ0 ∈ [0, T ].

3. A representation formula

for the T -periodic adjoint Floquet solutions

We need the following result.

Lemma 3.1. Let

vj(t) =

j∑
i=0

tj−i

(j − i)!T j−i
ei(t), j = 1, . . . ,m, m ≤ n− 1,
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where ej are T -periodic functions and e0 is a T -periodic solution of the linear

equation ẋ = A(t)x. If vj is a solution of ẋ = A(t)x, then ej solves the equation

(3.1) ẋ(t) = A(t)x(t)− 1

T
ej−1(t), j = 1, . . . ,m.

Proof. We proceed by induction, consider j = 1 thus v1(t) = te0(t)/T +

e1(t). Since v1 is a solution of ẋ = A(t)x we obtain

1

T
e0(t) +

t

T
ė0(t) + ė1(t) =

t

T
A(t)e0(t) +A(t)e1(t),

hence

ė1(t) = A(t)e1(t)− 1

T
e0(t).

Assume now that the statement holds for j = 1, . . . , k, k < m. We prove that it

is true for j = k + 1. Since

vk+1(t) =
k+1∑
i=0

ti

i!T i
ek+1−i(t)

is a solution of ẋ = A(t)x we have

v̇k+1(t) =

k+1∑
i=1

ti−1

(i− 1)!T i
ek+1−i(t) +

k+1∑
i=1

ti

i!T i
ėk+1−i(t) + ėk+1(t)

=

k∑
i=1

ti

i!T i+1
ek−i(t) +

1

T
ek(t) +

k+1∑
i=1

ti

i!T i
ėk+1−i(t) + ėk+1(t)

=A(t)ek+1(t) +

k+1∑
i=1

ti

i!T i
A(t)ek+1−i(t).

Since by induction

ti

i!T i
1

T
ek−i(t) +

ti

i!T i
ėk+1−i(t) =

ti

i!T i
A(t)ek+1−i(t)

for i = 1, . . . , k and

tk+1

(k + 1)!T k+1
ė0(t) =

tk+1

(k + 1)!T k+1
A(t)e0(t),

we obtain

ėk+1(t) = A(t)ek+1(t)− 1

T
ek(t),

that is (3.1) for j = k + 1. �

Remark 3.2. Consider the equation (2.4). The conditions on ψ imply that

‖bθ(t)‖ < 1 for any t, θ ∈ [0, T ], thus the matrix (I − bθ(t)) is invertible for any

t, θ ∈ [0, T ]. Let Aθ(t) := (I − bθ(t))−1aθ(t), then (2.4) can be rewritten in the

form ẋ = Aθ(t)x. By Lemma 3.1 we have

ėθj (t) = Aθ(t)e
θ
j (t)−

1

T
eθj−1(t),
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that is

ėθj (t) = aθ(t)e
θ
j (t) + bθ(t)ė

θ
j (t) + bθ(t)

1

T
eθj−1(t)− 1

T
eθj−1(t), j = 1, . . . ,m.

As a consequence of Lemma 3.1 we have the following result.

Corollary 3.3. If m is the highest order of the T -periodic adjoint Floquet

solutions then the equation ẋ = A(t)x−em/T does not have T -periodic solutions.

Proof. Arguing by contradiction assume that em+1 is a T -periodic solution

to ẋ = A(t)x− em/T . Consider the function

vm+1(t) :=

m+1∑
i=0

ti

i!T i
em+1−i(t).

If we show that it is a T -periodic solution to ẋ = A(t)x, then we obtain a

contradiction. Indeed,

v̇m+1(t) =

m+1∑
i=1

ti−1

(i− 1)!T i
em+1−i(t) +

m+1∑
i=1

ti

i!T i
ėm+1−i(t) + ėm+1(t).

Since 0 ≤ m+1−i ≤ m for i = 1, . . . ,m+1, by assumption vm+1−i is a T -periodic

solution of ẋ = A(t)x, thus Lemma 3.1 implies that

ėm+1−i(t) = A(t)em+1−i(t)−
1

T
em−i(t).

Therefore

v̇m+1(t) =A(t)em+1(t)− 1

T
em(t) +

m∑
i=0

ti

i!T i+1
ek−i(t)

+

m∑
i=1

ti

i!T i
[A(t)em+1−i(t)−

1

T
em−1(t)] +

tm+1

(m+ 1)!Tm+1
A(t)e0(t)

=A(t)em+1(t) +

m+1∑
i=1

ti

i!T i
A(t)em+1−i(t) = A(t)vm+1(t). �

In the sequel we will denote eθj simply by ej . We can prove the following.

Lemma 3.4. For any t ∈ [0, T ], {ej(t)}mj=0 and {(I − b(t))ej(t)}mj=0 are two

sets of linearly independent vectors of Rn.

Proof. Let A(t) = (I − b(t))−1a(t), we have that

ėj(t) = A(t)ej(t)−
1

T
ej−1(t) for any j = 1, . . . ,m, and ė0(t) = A(t)e0(t).

Consider the linear combination
m∑
j=0

αjej(t) = 0, t ∈ [0, T ].
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Since ej is differentiable at any point t we have

m∑
j=0

αj ėj(t) = 0, t ∈ [0, T ].

Hence

α0A(t)e0(t) +

m∑
j=1

αjA(t)ej(t)−
1

T

m∑
j=1

αjej−1(t) = 0, t ∈ [0, T ].

Thus
m∑
j=1

αjej−1(t) = 0, t ∈ [0, T ],

or equivalently

(3.2)

m−1∑
j=0

αj+1ej(t) = 0, t ∈ [0, T ].

Deriving (3.2) we have

m−1∑
j=0

αj+1ėj(t) = 0, t ∈ [0, T ].

and the same argument as before shows that

m−2∑
j=0

αj+2ej(t) = 0, t ∈ [0, T ].

Repeating this procedure m times we get αme0(t) = 0, t ∈ [0, T ].

On the other hand e0 6≡ 0 and e0 is a solution of ė0(t) = A(t)e0(t), hence

e0(t) 6= 0, for any t ∈ [0, T ]. This implies that αm = 0 whenever t ∈ [0, T ].

Analogously, we can show that αj = 0, for j = 1, . . . ,m− 1. That is {ej(t)}mj=0

is a set of linearly independent vectors in Rn whenever t ∈ [0, T ]. Moreover,

since the matrix (I − b(t)) is invertible for any t ∈ [0, T ] we have the linear

independence in Rn also of the vectors {(I − b(t))ej(t)}mj=0, for any t ∈ [0, T ].�

We need the following general result.

Lemma 3.5. Assume that {yj}mj=0 are continuous functions from [a, b] to Rn,

where m ≤ n − 1. Assume the existence of t̂ ∈ [a, b) such that the vectors

{yj(t̂)}mj=0 are linearly independent in Rn. Then there exists τ̂ > 0 such that

t̂ + τ̂ < b and for any τ ∈ [0, τ̂ ] the vectors {
∫ t̂+τ
t̂

yj(s) ds}mj=0 are linearly

independent in Rn.
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Proof. By assumption the rank of the matrix {yk,j(t̂)}, k = 0, . . . , n − 1,

j = 0, . . . ,m, is m. Thus, we can assume without loss of generality, that

det


y0,0(t̂) . . . y0,m(t̂)

...
. . .

...

ym,0(t̂) . . . ym,m(t̂)

 6= 0.

Arguing by contradiction, we assume the existence of a sequence τp → 0+ as

p→ +∞ such that

det



∫ t̂+τp

t̂

y0,0(s) ds . . .

∫ t̂+τp

t̂

y0,m(s) ds

...
. . .

...∫ t̂+τp

t̂

ym,0(s) ds . . .

∫ t̂+τp

t̂

ym,m(s) ds

 = 0.

By the mean value theorem for integrals we obtain

τm+1
p det


y0,0(t̂+ h0,0τp) . . . y0,m(t̂+ h0,mτp)

...
. . .

...

ym,0(t̂+ hm,0τp) . . . ym,m(t̂+ hm,mτp)

 = 0.

for some hk,j ≥ 0, k = 0, . . . ,m, j = 0, . . . ,m. Passing to the limit as τp → 0+

we obtain a contradiction. �

Remark 3.6. By Lemma 3.4 and Lemma 3.5 we obtain the existence of t0 ∈
(0, T ) such that the vectors {

∫ t0
0

(I − b(s))ej(s) ds}mj=0 are linearly independent

in Rn.

4. The equivalent integral operator

Let Fε : C1(T ) → C1(T ), ε ∈ [0, ε0], the integral operator defined, for any

y ∈ C1(T ), as follows

(4.1) (Fεy)(t) := y(0) +

∫ t

0

[φ(y(s− ε), ẏ(s− ε)) + εψ(s, y(s− ε), ẏ(s− ε), ε)] ds

− t0
T

(
t

t0
− 1

)∫ T

0

[φ(y(s− ε), ẏ(s− ε)) + εψ(s, y(s− ε), ẏ(s− ε), ε)] ds,

for t ∈ [0, T ], where 0 < t0 < T is given in Remark 3.6. Here C1(T ) denotes

the Banach space of continuously differentiable T -periodic functions y : R→ Rn.
Assume that x(t) is a T -periodic solution to (2.1), consider the extension of x

from [0, T ] to R by T -periodicity and denote this extension by y, clearly y ∈
C1(T ), then from (4.1) we have

(Fεy)(t) = y(0) +

∫ t

0

ẏ(s) ds− t0
T

(
t

t0
− 1

)∫ T

0

ẏ(s) ds = y(t), t ∈ [0, T ],
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that is y is a fixed point of Fε. Vice versa, suppose that y is a fixed point of Fε,

hence for any t ∈ [0, T ] we have

(4.2) y(t) = y(0) +

∫ t

0

[φ(y(s− ε), ẏ(s− ε)) + εψ(s, y(s− ε), ẏ(s− ε), ε)] ds

− t0
T

(
t

t0
− 1

)∫ T

0

[φ(y(s− ε), ẏ(s− ε)) + εψ(s, y(s− ε), ẏ(s− ε), ε)] ds,

thus,

(4.3) ẏ(t) = φ(y(t− ε), ẏ(t− ε)) + εψ(t, y(t− ε), ẏ(t− ε), ε)

− 1

T

∫ T

0

[φ(y(s− ε), ẏ(s− ε)) + εψ(s, y(s− ε), ẏ(s− ε), ε)] ds,

Put t = 0 in (4.2). We obtain

(4.4)
t0
T

∫ T

0

[φ(y(s− ε), ẏ(s− ε)) + εψ(s, y(s− ε), ẏ(s− ε), ε)] ds = 0.

Replacing (4.4) into (4.3) we obtain that y ∈ C1(T ) is a T -periodic solution

to (2.1). Therefore, to solve y = Fεy is equivalent to determine T -periodic

solutions of (2.1), for this Fε is called the equivalent integral operator.

Remark 4.1. By [1, Lemma 4.4.4] Fε is condensing with constant q, 0<q<1,

with respect to the Hausdorff measure of non compactness. By [1, Theorem 1.5.9]

the Fréchet derivative of Fε is also q-condensing.

Consider now the operator F0 : C1(T )→ C1(T ) defined by

(F0y)(t) = y(0) +

∫ t

0

φ(y(s), ẏ(s)) ds− t0
T

(
t

t0
− 1

)∫ T

0

φ(y(s), ẏ(s)) ds,

for t ∈ [0, T ]. For every xθ0 ∈ Γ, we denote by yθ ∈ C1(T ) the extension of xθ0
from [0, T ] to R by T -periodicity, we have that F0yθ = yθ whenever θ ∈ [0, T ].

Since F0 is Fréchet differentiable and yθ is differentiable with respect to θ we get(
d

dθ
yθ

)
(t) =

(
d

dθ
yθ

)
(0) +

∫ t

0

[
aθ(s)

(
d

dθ
yθ

)
(s) + bθ(s)

d

dt

(
d

dθ
yθ

)
(s)

]
ds

− t0
T

(
t

t0
− 1

)∫ T

0

[
aθ(s)

(
d

dθ
yθ

)
(s) + bθ(s)

(
d

dθ
yθ

)
(s)

]
ds,

hence d
dθ yθ is a fixed point of F ′0(yθ) for any θ ∈ [0, T ], and so F ′0(yθ) is the

equivalent integral operator for (2.3). As a consequence Γ′ coincides with the set

of all the fixed points of the operator F ′0(yθ), thus 0 ∈ σ(I − F ′0(yθ)). Moreover,

since F ′0(yθ) is q-condensing, with 0 < q < 1, 0 is an eigenvalue of finite multi-

plicity, see [1, Theorem 2.6.11]. The assumption on its multiplicity is crucial for

the calculation of the Malkin bifurcation function to associate to the problem,

indeed this calculation requires the knowledge of all the adjoint vectors of the
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equivalent integral operator and of its adjoint operator. As it is shown in [18] the

T -periodic adjoint Floquet solutions of the linearized unperturbed equation cor-

respond to the adjoint vectors of the translation operator over the period along

the trajectories of (2.4). Unfortunately, such a relationship may fail in the case of

the equivalent integral operator defined in (4.1), see [28]. To solve this problem

we follow the method introduced in [21] consisting in defining a novel equivalent

integral operator for which the above property holds true. For this the first step is

to calculate the adjoint of the operator F ′0(yθ) : C1(T )→ C1(T ). To this regard

observe that all our subsequent results are formulated only in terms of the eigen-

vector and of the corresponding Floquet adjoint vectors of the operator F ′0(yθ)
∗.

These vectors are elements of C1(T )∗. On the other hand, they coincide with

those of the operator F ′0(yθ)
∗ when it is defined in the space W 1

2 (T )∗ = W 1
2 (T ).

Therefore, throughout the paper, in order to calculate these vectors we use the

space W 1
2 (T ) of absolutely continuous T -periodic functions with derivative in

L2(0, T ) . We denote by 〈x, y〉w := 〈x(0), y(0)〉 +
∫ T
0
〈ẋ(s), ẏ(s)〉 ds the inner

product in W 1
2 (T ) and for the sake of simplicity we will omit θ in the notations

for aθ(s) and bθ(s).

For any x, y ∈W 1
2 (T ) we have

〈F ′0(yθ)x, y〉w = 〈(F ′0(yθ)x(0), y(0)〉+

∫ T

0

〈[
d

ds
(F ′0(yθ))x

]
(s), ẏ(s)

〉
ds

=

〈
x(0) +

t0
T

∫ T

0

(a(s)x(s) + b(s)ẋ(s)) ds, y(0)

〉
+

∫ T

0

〈
a(t)x(t) + b(t)ẋ(t)− 1

T

∫ T

0

(a(s)x(s) + b(s)ẋ(s)) ds, ẏ(t)

〉
dt

= 〈x(0), y(0)〉+

∫ T

0

〈
a(s)x(s),

t0
T
y(0)〉 ds+

∫ T

0

〈b(s)ẋ(s),
t0
T
y(0)

〉
ds

+

∫ T

0

〈a(s)x(s), ẏ(s)〉 ds+

∫ T

0

〈b(s)ẋ(s), ẏ(s)〉 ds

−
∫ T

0

〈∫ T

0

a(s)x(s) + b(s)ẋ(s)) ds,
1

T
ẏ(t)

〉
dt

= 〈x(0), y(0)〉+

∫ T

0

〈
x(s), a∗(s)

t0
T
y(0)

〉
ds+

∫ T

0

〈
ẋ(s), b∗(s)

t0
T
y(0)

〉
ds

+

∫ T

0

〈x(s), a∗(s)ẏ(s)〉 ds+

∫ T

0

〈ẋ(s), b∗(s)ẏ(s)〉 ds.

We now calculate the terms containing x. Since x ∈ W 1
2 (T ), it can be

represented as follows

x(s) = x(0) +

∫ s

0

ẋ(t) dt− s

T

∫ T

0

ẋ(t) dt.
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Therefore,∫ T

0

〈
x(s), a∗(s)

t0
T
y(0)

〉
ds

=

∫ T

0

〈
x(0) +

∫ s

0

ẋ(t) dt− s

T

∫ T

0

ẋ(t) dt, a∗(s)
t0
T
y(0)

〉
ds

=

〈
x(0),

∫ T

0

a∗(s)
t0
T
y(0) ds

〉
+

∫ T

0

〈∫ s

0

ẋ(t) dt, a∗(s)
t0
T
y(0)

〉
ds

−
∫ T

0

〈∫ T

0

ẋ(t) dt,
s

T
a∗(s)

t0
T
y(0)

〉
ds

=

〈
x(0),

∫ T

0

a∗(s)
t0
T
y(0) ds

〉
+

∫ T

0

〈
ẋ(t),

∫ T

t

a∗(s)
t0
T
y(0) ds

〉
dt

−
∫ T

0

〈
ẋ(t),

∫ T

0

s

T
a∗(s)

t0
T
y(0) ds

〉
dt,

and ∫ T

0

〈x(s), a∗(s)ẏ(s)〉 ds

=

∫ T

0

〈
x(0) +

∫ s

0

ẋ(t) dt− s

T

∫ T

0

ẋ(t) dt, a∗(s)ẏ(s)

〉
ds

=

〈
x(0),

∫ T

0

a∗(s)ẏ(s) ds

〉
+

∫ T

0

〈
ẋ(s),

∫ T

s

a∗(t)ẏ(t) dt

〉
ds

−
∫ T

0

〈
ẋ(s),

∫ T

0

t

T
a∗(t)ẏ(t) dt

〉
ds.

Finally, we obtain

〈x,(F ′0(yθ))
∗y〉w

= 〈x(0), y(0)〉+

〈
x(0),

∫ T

0

a∗(s)
t0
T
y(0) ds

〉
+

〈
x(0),

∫ T

0

a∗(s)ẏ(s) ds

〉
+

∫ T

0

〈
ẋ(t),

∫ T

t

a∗(s)
t0
T
y(0) ds

〉
dt−

∫ T

0

〈
ẋ(t),

∫ T

0

s

T
a∗(s)

t0
T
y(0) ds

〉
dt

+

∫ T

0

〈
ẋ(s), b∗(s)

t0
T
y(0)

〉
ds+

∫ T

0

〈ẋ(s), b∗(s)ẏ(s)〉 ds

+

∫ T

0

〈
ẋ(s),

∫ T

s

a∗(t)ẏ(t) dt

〉
ds−

∫ T

0

〈
ẋ(s),

∫ T

0

t

T
a∗(t)ẏ(t) dt

〉
ds

+

∫ T

0

〈
ẋ(s),− 1

T

∫ T

0

b∗(t)

(
t0
T
y(0) + ẏ(t)

)
dt

〉
ds,

where the last added term is zero. Thus,

[(F ′0(yθ))
∗y](0) = y(0) +

∫ T

0

a∗(s)

(
t0
T
y(0) + ẏ(s)

)
ds,
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d

dt
(F ′0(yθ))

∗y

]
(t) =

∫ T

t

a∗(s)

(
t0
T
y(0) + ẏ(s)

)
ds+ b∗(t)

(
t0
T
y(0) + ẏ(t)

)
− 1

T

∫ T

0

[ ∫ T

t

a∗(s)

(
t0
T
y(0) + ẏ(s)

)
ds+ b∗(t)

(
t0
T
y(0) + ẏ(t)

)]
dt.

5. A novel equivalent integral operator

In this Section we introduce a novel integral operator F̂ε, ε ≥ 0 small, with

the property that F̂ ′0(yθ) has exactly m adjoint vectors corresponding to the m

T -periodic solutions of the linearized unperturbed equation (2.4). Therefore, it

enjoys the same property of the translation operator along the trajectories of

(2.1). This novel integral operator is obtained by a suitable modification of the

equivalent integral operator defined by means of (2.4). As already noticed, in

general, the equivalent integral operator defined in (4.1) does not have the pre-

vious required property. An analogous construction has been proposed in [21]

when the characteristic multiplier of the unperturbed linearized equation is sim-

ple. To our best knowledge this is the first time that such a construction is

performed in the case of the existence of T -periodic adjoint Floquet solutions.

Let F : C1(T )→ C1(T ) be the operator defined by

(Fx)(t) :=
1

T

∫ t

0

(I − b(s))x(s) ds− t0
T 2

(
t

t0
− 1

)∫ T

0

(I − b(s))x(s) ds,

We need the following result.

Lemma 5.1. There exists τ > 0 such that t0 + τ < T and{∫ t0+τ

t0

ej(s) ds

}m
j=0

and

{∫ t0+τ

t0

(Fej)(s) ds
}m
j=0

are two sets of linearly independent vectors of Rn.

Proof. By Lemma 3.4 and Remark 3.6, {ej(t0)}mj=0 and {(Fej)(t0)}mj=0 are

two sets of linearly independent vectors of Rn, hence from Lemma 3.5 we derive

the assertion. �

Consider now the linearly independent set of vectors
{ ∫ t0+τ

t0
(Fej)(s) ds

}m
j=0

.

If m < n − 1, then we complete this set by adding vectors {hj}n−1j=m+1 in such

a way that
{ ∫ t0+τ

t0
(Fej)(s) ds

}m
j=0
∪ {hj}n−1j=m+1 is a basis of Rn. Let {fj}mj=0 ∪

{kj}n−1j=m+1 ⊂ Rn be such that

(5.1)

〈∫ t0+τ

t0

(Fei)(s) ds, fj
〉

= δi,j :=

0 if i 6= j,

1 if i = j,

with i, j = 0, . . . ,m.

(5.2) 〈hj , fi〉 = 0, j = m+ 1, . . . , n− 1, i = 0, . . . ,m.
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(5.3)

〈∫ t0+τ

t0

(Fei)(s) ds, kj
〉

= 0, i = 0, . . . ,m, j = m+ 1, . . . , n− 1.

(5.4) 〈hi, kj〉 = δi,j , i = m+ 1, . . . , n− 1, j = m+ 1, . . . , n− 1.

Moreover, complete the set of vectors
{ ∫ t0+τ

t0
ej(s) ds

}m
j=0

by adding vectors

{rj}n−1j=m+1 such that their union is a basis of Rn.

Finally, for any t ∈ [0, T ], define the function ξ(t) : Rn → C1(T ) as follows

ξ(t) · :=

m∑
j=0

〈 · , fj〉((Fej)(t)− ej(t)) +

n−1∑
j=m+1

〈 · , kj〉
1

τ
(hj − rj).

We can now define a novel integral operator F̂ε : C1(T )→ C1(T ) as follows

(5.5) (F̂εx)(t) = (Fεx)(t)− ξ(t)
∫ t0+τ

t0

[(Fεx)(s)− x(s)] ds, t ∈ [0, T ].

The following result holds.

Theorem 5.2. F̂ε is equivalent to Fε. Moreover, ej, j = 1, . . . ,m, are the

only adjoint vectors of F̂ ′0(yθ), whenever θ ∈ [0, T ], that is

F̂ ′0(yθ)ej = ej + ej−1, j = 1, . . . ,m, θ ∈ [0, T ].

Proof. First we prove that 1 6∈ σ
( ∫ t0+τ

t0
ξ(s) ds

)
. For this, suppose that

y ∈ Rn is an eigenvector of
( ∫ t0+τ

t0
ξ(s) ds

)
, thus y =

m∑
i=0

αigi +
n−1∑

i=m+1

βihi,

where gi =
∫ t0+τ
t0

(Fei)(s) ds and
∫ t0+τ
t0

ξ(s) y ds = y, or, equivalently,

∫ t0+τ

t0

( m∑
j=0

〈 m∑
i=0

αigi +

n−1∑
i=m+1

βihi, fj

〉
((Fej)(t)− ej(t))

+

n−1∑
j=m+1

〈 m∑
i=0

αigi +

n−1∑
i=m+1

βihi, kj

〉
1

τ
(hj − rj)

)
dt =

m∑
i=0

αigi +

n−1∑
i=m+1

βihi,

or

(5.6)

m∑
j=0

〈 m∑
i=0

αigi +

n−1∑
i=m+1

βihi, fj

〉(
gj −

∫ t0+τ

t0

ej(t) dt

)

+

n−1∑
j=m+1

〈 m∑
i=0

αigi +

n∑
i=m+1

βihi, kj

〉
(hj − rj) =

m∑
i=0

αigi +

n−1∑
i=m+1

βihi.

From (5.1)–(5.4) we have that (5.6) can be rewritten in the form

m∑
j=0

αjgj +

n−1∑
j=m+1

βjhj =

m∑
j=0

αj

(
gj −

∫ t0+τ

t0

ej(t) dt

)
+

n−1∑
j=m+1

βj(hj − rj),
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and so
m∑
j=0

αj

∫ t0+τ

t0

ej(t) dt+

n−1∑
j=m+1

βjrj = 0,

which implies αj = 0, j = 0, . . . ,m, βj = 0,j = m+ 1 . . . , n− 1. That is y = 0,

hence 1 6∈ σ
( ∫ t0+τ

t0
ξ(s) ds

)
.

We now prove the equivalence of the equations:

Fεy = y,(5.7)

F̂εy = y,(5.8)

where Fε is defined in (4.1) and F̂ε in (5.5), ε ∈ [0, ε0]. Assume that y ∈ C1(T ) is

such that (5.7) holds, then
∫ t0+τ
t0

[(Fεy)(s)−y(s)] ds = 0, and so (5.8) is satisfied.

Vice versa, if (5.8) holds we have that

(Fεy)(t)− y(t)− ξ(t)
∫ t0+τ

t0

[(Fεy)(s)− y(s)] ds = 0,

integrating from t0 and t0 + τ we obtain∫ t0+τ

t0

[(Fεy)(s)− y(s)] ds−
∫ t0+τ

t0

ξ(s) ds

∫ t0+τ

t0

[(Fεy)(s)− y(s)] ds = 0.

But 1 6∈ σ(
∫ t0+τ
t0

ξ(s) ds), hence
∫ t0+τ
t0

[(Fεy)(s)− y(s)] ds = 0, i.e. (5.7) is satis-

fied. In particular, from the equivalence between F̂ε and Fε we have F̂ ′0(yθ)e0 =

e0. Let us show that F̂ ′0(yθ)ej = ej + ej−1 with j = 1, . . . ,m and θ ∈ [0, T ]. For

this observe that

(5.9) ξ(t)

∫ t0+τ

t0

(Fej)(s) ds = (Fej)(t)− ej(t) for j = 0, . . . ,m.

Abusing notation in what follows we denote F ′0(yθ) and F̂ ′0(yθ) simply by G

and Ĝ, respectively. Consider, for j = 1, . . . ,m, the equation Ĝej = ej + ej−1.

That is,

(5.10) (Gej)(t)− ξ(t)
∫ t0+τ

t0

[(Gej)(s)− ej(s)] ds = ej(t) + ej−1(t),

for j = 1, . . . ,m and t ∈ [0, T ]. By Lemma 3.1 and Remark 3.2 we have that

(5.11) ej(t) = a(t)ej(t) + b(t)ėj(t)−
1

T
(I − b(t))ej−1(t).

Associating to (5.11) the equivalent integral operator we obtain

ej(t) = ej(0) +

∫ t

0

[a(s)ej(s) + b(s)ėj(s)−
1

T
(I − b(s))ej−1(s)] ds

− t0
T

(
t

t0
− 1

)∫ T

0

[
a(s)ej(s) + b(s)ėj(s)−

1

T
(I − b(s))ej−1(s)

]
ds,
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or, equivalently,

ej(t) = (Gej)(t)−
1

T

∫ t

0

(I − b(s))ej−1(s) ds(5.12)

+
t0
T 2

(
t

t0
− 1

)∫ T

0

(I − b(s))ej−1(s) ds,

i.e. ej(t) = (Gej)(t)− (Fej−1)(t). Thus

ξ(t)

∫ t0+τ

t0

[(Gej)(s)−ej(s)] ds = ξ(t)

∫ t0+τ

t0

(Fej−1)(s) ds = (Fej−1)(t)−ej−1(t),

and so (5.10) takes the form (Gej)(t)− (Fej−1)(t) + ej−1(t) = ej(t) + ej−1(t), or

(Gej)(t)−(Fej−1)(t) = ej(t), that is (5.12). In conclusion, (5.10) is verified since

(5.12) has been proved. It remains only to show they there are no other adjoint

vectors to Ĝ. Arguing by contradiction, assume that there exists u ∈ C1(T ) such

that Ĝu = u+ em; that is

(5.13) (Gu)(t)− ξ(t)
∫ t0+τ

t0

[(Gu)(s)− u(s)]ds = u(t) + em(t).

Integrating (5.13) from t0 and t0 + τ we obtain∫ t0+τ

t0

[(Gu)(s)− u(s)] ds−
∫ t0+τ

t0

ξ(s) ds

∫ t0+τ

t0

[(Gu)(s)− u(s)] ds

=

∫ t0+τ

t0

em(s) ds,

which implies that

(5.14)

∫ t0+τ

t0

[(Gu)(s)− u(s)] ds =

(
I −

∫ t0+τ

t0

ξ(s) ds

)−1 ∫ t0+τ

t0

em(s) ds.

Substituting (5.14) into (5.13) we get

(5.15) (Gu)(t)− ξ(t)
(
I −

∫ t0+τ

t0

ξ(s) ds

)−1 ∫ t0+τ

t0

em(s) ds = u(t) + em(t).

From (5.9) we have

ξ(t)

∫ t0+τ

t0

(Fem)(s) ds = (Fem)(t)− em(t).

Thus∫ t0+τ

t0

ξ(s) ds

∫ t0+τ

t0

(Fem)(s) ds =

∫ t0+τ

t0

(Fem)(s) ds−
∫ t0+τ

t0

em(s) ds,

and so

(5.16)

(
I −

∫ t0+τ

t0

ξ(s) ds

)−1 ∫ t0+τ

t0

em(s) ds =

∫ t0+τ

t0

(Fem)(s) ds.



Periodic Bifurcation Problems 649

Substituting (5.16) into (5.15) we get

(Gu)(t)− ξ(t)
∫ t0+τ

t0

(Fem)(s) ds = u(t) + em(t),

hence, from (5.9), (Gu)(t)− (Fem)(t) + em(t) = u(t) + em(t), namely

(5.17) (Gu)(t)− (Fem)(t) = u(t).

Observe that (5.17) is the equivalent integral equation for the unperturbed lin-

earized equation

u̇(t) = a(t)u(t) + b(t)u̇(t)− 1

T
(I − b(t))em(t),

which contradicts Corollary 3.3. �

6. Eigenvector and adjoint vectors

6.1. The eigenvector of G∗. By assumption the eigenvalue 1 ∈ σ(G)

has geometric multiplicity one with corresponding eigenvector e0 := ẋ0. In

this Section we determine the unique solution of the equation y = G∗y, where

G∗ : W 1
2 (T )→W 1

2 (T ) has been calculated in Section 4. We have that

(6.1) y(t) = (G∗y)(t) = y(0) +

∫ T

0

a∗(s)

(
t0
T
y(0) + ẏ(s)

)
ds

+

∫ t

0

[ ∫ T

r

a∗(s)

(
t0
T
y(0) + ẏ(s)

)
ds+ b∗(r)

(
t0
T
y(0) + ẏ(r)

)]
dr

− t

T

∫ T

0

[ ∫ T

t

a∗(s)

(
t0
T
y(0) + ẏ(s)

)
ds+ b∗(t)

(
t0
T
y(0) + ẏ(t)

)]
dt.

Taking the derivative we obtain

(6.2) ẏ(t) =

∫ T

t

a∗(s)

(
t0
T
y(0) + ẏ(s)

)
ds+ b∗(t)

(
t0
T
y(0) + ẏ(t)

)
− 1

T

∫ T

0

[ ∫ T

t

a∗(s)

(
t0
T
y(0) + ẏ(s)

)
ds+ b∗(t)

(
t0
T
y(0) + ẏ(t)

)]
dt.

Let v(t) := t0y(0)/T + ẏ(t), then ẏ(t) = v(t)− t0y(0)/T and
∫ T
0
v(t) dt = t0y(0).

Hence

(6.3) ẏ(t) = v(t)− 1

T

∫ T

0

v(s) ds.

Replacing (6.3) into (6.2) we obtain

v(t)− 1

T

∫ T

0

v(s) ds =

∫ T

t

a∗(s)v(s) ds+ b∗(t)v(t)

− 1

T

∫ T

0

[ ∫ T

t

a∗(s)v(s) ds+ b∗(t)v(t)

]
dt,
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namely

(6.4) (I − b∗(t))v(t)− 1

T

∫ T

0

[v(s)− b∗(s)v(s)] ds

=

∫ T

t

a∗(s)v(s) ds− 1

T

∫ T

0

∫ T

t

a∗(s)v(s) ds dt.

Let w(t) := (I − b∗(t))v(t), then (6.4) becomes

w(t)− 1

T

∫ T

0

w(s) ds =

∫ T

t

a∗(s)(I − b∗(s))−1w(s) ds

− 1

T

∫ T

0

∫ T

t

a∗(s)(I − b∗(s))−1w(s) ds dt,

that is

(6.5) w(t)−
∫ T

t

a∗(s)(I − b∗(s))−1w(s) ds

=
1

T

∫ T

0

(
w(s)−

∫ T

s

a∗(r)(I − b∗(r))−1w(r) dr

)
ds.

Put η(t) := w(t)−
∫ T
t
a∗(s)(I − b∗(s))−1w(s) ds. Thus (6.5) takes the form

η(t) =
1

T

∫ T

0

η(s) ds,

Hence, η(t) is a constant. Thus

(6.6) ẇ(t) + a∗(t)(I − b∗(t))−1w(t) = 0

is the adjoint equation of ẋ(t) = (I − b(t))−1a(t)x(t), hence (6.6) has a unique

T -periodic solution v0 and we have

v(t) = (I − b∗(t))−1v0(t),

ẏ(t) = (I − b∗(t))−1v0(t)− 1

T

∫ T

0

(I − b∗(s))−1v0(s) ds,

i.e.

y(t) = y(0) +

∫ t

0

(I − b∗(s))−1v0(s) ds− t

T

∫ T

0

(I − b∗(s))−1v0(s) ds.

and so, recalling that y(0) = (1/t0)
∫ T
0
v(s) ds, we get

y(t) =
1

t0

∫ T

0

(I − b∗(s))−1v0(s) ds(6.7)

+

∫ t

0

(I − b∗(s))−1v0(s) ds− t

T

∫ T

0

(I − b∗(s))−1v0(s) ds.
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Observe that y(T ) = y(0), i.e. y is T -periodic. Since v0 is the unique T -periodic

solution to (6.6), the solution to G∗y = y is also unique and, by substituting

(6.7) in G∗y = y, we obtain∫ t

0

[
v0(s)−

∫ T

s

a∗(r)(I − b∗(r))−1v0(r) dr

]
ds

=
t

T

∫ T

0

(
v0(s)−

∫ T

s

a∗(r)(I − b∗(r))−1v0(r) dr

)
ds.

which holds true in virtue of (6.5). Hence, the unique solution of G∗y = y is

given by (6.7).

Consider now the equation

(6.8) (I −G∗)y = z0,

where z0 is a given twice differentiable T -periodic function such that (6.8) is

solvable. In the following we calculate the solution to (6.8). For this, we rewrite

(6.8) as

(6.9) z0(t) = y(t)− y(0)−
∫ T

0

a∗(s)

(
t0
T
y(0) + ẏ(s)

)
ds

−
∫ t

0

[ ∫ T

r

a∗(s)

(
t0
T
y(0) + ẏ(s)

)
ds+ b∗(r)

(
t0
T
y(0) + ẏ(r)

)]
dr

+
t

T

∫ T

0

[ ∫ T

t

a∗(s)

(
t0
T
y(0) + ẏ(s)

)
ds+ b∗(t)

(
t0
T
y(0) + ẏ(t)

)]
dt.

Since z0 is T -periodic, then y is also T -periodic. As before, let v(t) := t0y(0)/T+

ẏ(t), then (6.3) holds. Therefore, from (6.9) we have

ẏ(t) =

∫ T

t

a∗(s)

(
t0
T
y(0) + ẏ(s)

)
ds+ b∗(t)

(
t0
T
y(0) + ẏ(t)

)
− 1

T

∫ T

0

[ ∫ T

t

a∗(s)

(
t0
T
y(0) + ẏ(s)

)
ds+ b∗(t)

(
t0
T
y(0) + ẏ(t)

)]
dt+ ż0(t),

or, equivalently,

v(t)− 1

T

∫ T

0

v(t) dt =

∫ T

t

a∗(s)v(s) ds+ b∗(t)v(t)

− 1

T

∫ T

0

[ ∫ T

t

a∗(s)v(s) ds+ b∗(t)v(t)

]
dt+ ż0(t).

Thus

(I − b∗(t))v(t)− 1

T

∫ T

0

(I − b∗(t))v(t) dt

=

∫ T

t

a∗(s)v(s) ds− 1

T

∫ T

0

∫ T

t

a∗(s)v(s) ds+ ż0(t).
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Again, let w(t) = (I − b∗(t))v(t), hence

(6.10) w(t)−
∫ T

t

a∗(s)(I − b∗(s))−1w(s) ds

=
1

T

∫ T

0

(
w(t)−

∫ T

t

a∗(s)(I − b∗(s))−1w(s) ds

)
dt+ ż0(t).

Taking the derivative of (6.10) we get

(6.11) ẇ(t) + a∗(t)(I − b∗(t))−1w(t)− z̈0(t) = 0.

Let v1(t) be the solution od (6.11) satisfying the initial condition

(6.12) w(0) = w(T )− z0(0).

Since (6.10) is equivalent to (6.8) and (6.11) is obtained by differentiation from

(6.10), to show that the solvability of (6.8) implies the solvability of the Cauchy

problem (6.11)–(6.12) it is enough to verify that (6.12) follows from (6.10). In-

deed, we have

w(0)−
∫ T

0

a∗(s)(I − b∗(s))−1w(s) ds

=
1

T

∫ T

0

(
w(t)−

∫ T

t

a∗(s)(I − b∗(s))−1w(s) ds

)
dt+ ż0(0),

w(T ) =
1

T

∫ T

0

(
w(t)−

∫ T

t

a∗(s)(I − b∗(s))−1w(s) ds

)
dt+ ż0(T ),

from the T -periodicity of z0 we have ż(0) = ż(T ). Therefore,

(6.13) w(0)−
∫ T

0

a∗(s)(I − b∗(s))−1w(s) ds = w(T ).

From (6.9) it follows that

(6.14) −
∫ T

0

a∗(s)(I − b∗(s))−1w(s) ds = z0(0).

Thus (6.13) and (6.14) give (6.12), and we have

v(t) = (I − b∗(t))−1v1(t),

ẏ(t) = (I − b∗(t))−1v1(t)− 1

T

∫ T

0

(I − b∗(s))−1v1(s) ds,

y(0) =
1

t0

∫ T

0

(I − b∗(s))−1v1(s) ds

and finally,

(6.15) y(t) =

∫ t

0

(I − b∗(s))−1v1(s) ds

− t

T

∫ T

0

(I − b∗(s))−1v1(s) ds+
1

t0

∫ T

0

(I − b∗(s))−1v1(s) ds.
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Note that the function given by (6.15) is T -periodic. As we have done for

G∗y = y, by substituting (6.15) into (6.8) and using (6.10) we can verify that y

is a solution to (6.8).

In conclusion, we have proved the following results.

Proposition 6.1. The unique eigenvector of the operator G∗ corresponding

to the eigenvalue 1 is given by

y(t) =

∫ t

0

(I − b∗(s))−1v0(s) ds

− t

T

∫ T

0

(I − b∗(s))−1v0(s) ds+
1

t0

∫ T

0

(I − b∗(s))−1v0(s) ds,

where v0 is the T -periodic solution of the adjoint equation

ẇ(t) + a∗(t)(I − b∗(t))−1w(t) = 0.

Proposition 6.2. Assume that the equation (I − G∗)y = z0 is solvable for

a given T -periodic twice differentiable function z0, then the solution is given by

y(t) =

∫ t

0

(I − b∗(s))−1v1(s) ds

− t

T

∫ T

0

(I − b∗(s))−1v1(s) ds+
1

t0

∫ T

0

(I − b∗(s))−1v1(s) ds,

where v1 is the solution of the Cauchy problemẇ(t) + a∗(t)(I − b∗(t))−1w(t)− z̈0(t) = 0,

w(0) = w(T )− z0(0).

6.2. The eigenvector and the adjoint vectors of Ĝ∗. In the previous

section we have determined the eigenvector of G∗, the adjoint operator of G. In

this section we calculate the eigenvector and the corresponding adjoint vectors

of Ĝ∗, namely the adjoint operator of Ĝ := F̂0

′
(yθ), θ ∈ [0, T ]. For this, from

the definition of the novel integral operator F̂ε, we have to calculate the adjoint

operator Ξ∗ of Ξ defined by

(Ξx)(t) := ξ(t)

∫ t0+τ

t0

x(s) ds.

As pointed out in Section 3 in order to calculate the eigenvector and the adjoint

vectors we can consider the operators as defined in W 1
2 (T ) rather than in C1(T ).

For x, y ∈W 1
2 (T ) we have

〈Ξx,y〉w = 〈(Ξx)(0), y(0)〉+

∫ T

0

〈
d

dt

[
ξ(t)

∫ t0+τ

t0

x(s) ds

]
, ẏ(t)

〉
dt

=

〈
ξ(0)

∫ t0+τ

t0

x(s) ds, y(0)

〉
+

∫ T

0

〈 m∑
j=0

〈∫ t0+τ

t0

x(s) ds, fj

〉
ḃj(t), ẏ(t)

〉
dt
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=

〈 m∑
j=0

〈∫ t0+τ

t0

x(s) ds, fj

〉
bj(0) +

n−1∑
j=m+1

〈∫ t0+τ

t0

x(s) ds, kj

〉
cj , y(0)

〉

+

∫ T

0

〈 m∑
j=0

〈∫ t0+τ

t0

x(s) ds, fj

〉
ḃj(t), ẏ(t)

〉
dt,

where bj(t) := (Fej)(t) − ej(t), j = 0, . . . ,m, and cj := (hj − rj)/τ , j =

m+ 1, . . . , n− 1.

We calculate the three last terms separately. For the first term we have〈 m∑
j=0

〈∫ t0+τ

t0

x(s) ds, fj〉bj(0), y(0)〉 =

m∑
j=0

〈∫ t0+τ

t0

x(s) ds, fj

〉
〈bj(0), y(0)〉

=

m∑
j=0

〈∫ t0+τ

t0

x(s) ds, fj〈bj(0), y(0)〉
〉

=

〈∫ t0+τ

t0

x(s) ds,

m∑
j=0

fj〈bj(0), y(0)〉
〉

=

∫ t0+τ

t0

〈
x(s),

m∑
j=0

fj〈bj(0), y(0)〉
〉
ds

=

∫ T

0

〈
x(s), χ[t0,t0+τ ](s)

m∑
j=0

fj〈bj(0), y(0)〉
〉
ds

=

∫ T

0

〈
x(0) +

∫ s

0

ẋ(t) dt− s

T

∫ T

0

ẋ(t) dt, χ[t0,t0+τ ](s)

m∑
j=0

fj〈bj(0), y(0)〉
〉
ds

=

〈
x(0), τ

m∑
j=0

fj〈bj(0), y(0)〉
〉

+

∫ T

0

〈
ẋ(t),

∫ T

t

χ[t0,t0+τ ](s) ds

m∑
j=0

fj〈bj(0), y(0)〉
〉
dt

−
∫ T

0

〈
ẋ(t),

∫ T

0

s

T
χ[t0,t0+τ ](s) ds

m∑
j=0

fj〈bj(0), y(0)〉
〉
dt.

The second term gives〈 n−1∑
j=m+1

〈∫ t0+τ

t0

x(s) ds, kj〉cj , y(0)

〉

=

∫ T

0

〈
x(s), χ[t0,t0+τ ](s)

n−1∑
j=m+1

kj〈cj , y(0)〉
〉
ds

=

〈
x(0), τ

n−1∑
j=m+1

kj〈cj , y(0)〉
〉
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+

∫ T

0

〈
ẋ(t),

∫ T

t

χ[t0,t0+τ ](s)ds

n−1∑
j=m+1

kj〈cj , y(0)〉
〉
dt

−
∫ T

0

〈
ẋ(t),

∫ T

0

s

T
χ[t0,t0+τ ](s) ds

n−1∑
j=m+1

kj〈cj , y(0)〉
〉
dt.

Finally, we calculate the third term∫ T

0

〈 m∑
j=0

〈∫ t0+τ

t0

x(s) ds, fj

〉
ḃj(t), ẏ(t)

〉
dt

=

∫ T

0

m∑
j=0

〈〈∫ t0+τ

t0

x(s) ds, fj

〉
ḃj(t), ẏ(t)

〉
dt

=

∫ T

0

〈∫ t0+τ

t0

x(s) ds,

m∑
j=0

fj〈ḃj(t), ẏ(t)〉
〉
dt

=

∫ T

0

∫ T

0

〈
x(s), χ[t0,t0+τ ](s) ds

m∑
j=0

fj〈ḃj(t), ẏ(t)〉 ds
〉
dt

=

∫ T

0

〈
x(s), χ[t0,t0+τ ](s)

m∑
j=0

fj

∫ T

0

〈ḃj(t), ẏ(t)〉 dt
〉
ds

=

〈
x(0), τ

m∑
j=0

fj

∫ T

0

〈ḃj(t), ẏ(t)〉 dt
〉

+

∫ T

0

〈
ẋ(t),

∫ T

t

χ[t0,t0+τ ](s) ds

m∑
j=0

fj

∫ T

0

〈ḃj(r), ẏ(r)〉 dr
〉
dt

−
∫ T

0

〈
ẋ(t),

∫ T

0

s

T
χ[t0,t0+τ ](s) ds

m∑
j=0

fj

∫ T

0

〈ḃj(r), ẏ(r)〉 dr
〉
dt.

Observe that∫ T

t

χ[t0,t0+τ ](s) ds = τχ[0,t0](t) + (t0 + τ − t)χ(t0,t0+τ ](t),

(6.16)

∫ t

0

τχ[0,t0](s) ds+

∫ t

0

(t0 + τ − s)χ(t0,t0+τ ](s) ds

=

[
τ(t− t0)− τ2

2

]
χ[0,t0](t) +

[
τ(t− t0) + tt0 −

1

2
(t2 + t20 + τ2)

]
χ(t0,t0+τ ](t)

+ τt0 +
τ2

2
:= p(t),

and ∫ T

0

s

T
χ[t0,t0+τ ](s) ds =

τ

2T
(2t0 + τ).
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Summing up

(Ξ∗y)(0) = τ

( m∑
j=0

fj〈bj(0), y(0)〉+
n−1∑

j=m+1

kj〈cj , y(0)〉+
m∑
j=0

fj

∫ T

0

〈ḃj(s), ẏ(s)〉 ds
)

;

and [
d

dt
(Ξ∗y)

]
(t) =

∫ T

t

χ[t0,t0+τ ](s) ds

[ m∑
j=0

fj〈bj(0), y(0)〉

+

n−1∑
j=m+1

kj〈cj , y(0)〉+

m∑
j=0

fj

∫ T

0

〈ḃj(r), ẏ(r)〉 dr
]

−
∫ T

0

s

T
χ[t0,t0+τ ](s) ds

[ m∑
j=0

fj〈bj(0), y(0)〉

+
n−1∑

j=m+1

kj〈cj , y(0)〉+
m∑
j=0

fj

∫ T

0

〈ḃj(r), ẏ(r)〉 dr
]
,

and finally, we have

(Ξ∗y)(t) = τR0 + p(t)R0 −
τt

2T
(2t0 + τ)R0,

where

(6.17) R0 =

m∑
j=0

fj〈bj , y〉w +

n∑
j=m+1

kj〈cj , y〉w.

We can summarize all the previous calculations as follows.

Proposition 6.3. The adjoint operator Ξ∗ : W 1
2 (T )→W 1

2 (T ) is given by

(Ξ∗y)(t) =

[
τ + p(t)− τt

2T
(2t0 + τ)

]
R0, t ∈ [0, T ],

where p and R0 are defined in (6.16) and (6.17), respectively.

We now calculate the eigenvector of Ĝ∗ and its adjoint vectors. For this,

recall that Theorem 5.2 ensures that the operator Ĝ := F̂ ′0(yθ), θ ∈ [0, T ], has

only one linearly independent eigenvector e0 corresponding to the eigenvalue 1

and exactly m ≤ n− 1 adjoint vectors e1, . . . , em, namely

Ĝe0 = e0 and Ĝej = ej + ej−1, j = 1, . . . ,m.

Since Ĝ is q-condensing, with 0 < q < 1 the eigenvalue 1 of Ĝ is of finite

multiplicity, thus the eigenspace corresponding to the eigenvalue 1 of the adjoint

operator Ĝ∗ has the same structure, namely there exist z0, . . . , zm such that

Ĝ∗z0 = z0,(6.18)

Ĝ∗zj = zj + zj−1, j = 1, . . . ,m.(6.19)
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Since, by definition, Ĝ = G− Ξ(G− I), (6.18) can be rewritten as

(G∗ − (G∗ − I)Ξ∗)z0 = z0

or, equivalently,

(6.20) (G∗ − I)(I − Ξ∗)z0 = 0.

By Proposition 6.1 the equation (G∗ − I)z = 0 is uniquely solvable and we have

the explicit expression of the solution. Denote this solution by z̃0. (I − Ξ) is

invertible, in fact if y is such that (I − Ξ)y = 0, that is

(6.21) y(t)− ξ(t)
∫ t0+τ

t0

y(s) ds = 0.

Integrating (6.21) from t0 and t0 + τ we get∫ t0+τ

t0

y(s) ds−
∫ t0+τ

t0

ξ(s) ds

∫ t0+τ

t0

y(s) ds = 0,

Since 1 /∈ σ
( ∫ t0+τ

t0
ξ(s) ds

)
we have that

(6.22)

∫ t0+τ

t0

y(s) ds = 0.

Replace (6.22) into (6.21) to obtain y(t) = 0, for any t ∈ [0, T ]. Thus (I −Ξ∗) is

also invertible, as a consequence z0 = (I − Ξ∗)−1z̃0 is a solution of (6.20).

We have the following result.

Proposition 6.4. The solution of the equation

(6.23) (I − Ξ∗)x = x0

for any x0 ∈W 1
2 (T ), is T -periodic and it is given by

x(t) =

[
τ + p(t)− τt

2T
(2t0 + τ)

]( m∑
j=0

fjαj +

n−1∑
j=m+1

kjβj

)
+ x0(t), t ∈ [0, T ],

where p(t) is defined by (6.16) and αj, j = 0, . . . ,m; βj, j = m + 1, . . . , n − 1

are known real numbers.

Proof. Since (I−Ξ∗) is invertible, the equation (6.23) is uniquely solvable.

By Proposition 6.3, (6.23) can be rewritten as follows:

(6.24) x(t) =

[
τ + p(t)− τt

2T
(2t0 + τ)

]
·
( m∑
j=0

fj〈bj , x〉w +

n−1∑
j=m+1

kj〈cj , x〉w
)

+ x0(t),

Multiplying (6.24) by bj , j = 0, . . . ,m, and cj , j = m + 1, . . . , n − 1 in W 1
2 (T )

we obtain a system of linear algebraic equations with respect to the unknown
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〈bj , x〉w, j = 0, . . . ,m and 〈cj , x〉w, j = m+ 1, . . . , n− 1, which is solvable since

(6.23) is solvable. Denote the solutions of this system by

(6.25)
αj = 〈bj , x〉w, j = 0, . . . ,m,

βj = 〈cj , x〉w, j = m+ 1, . . . , n− 1.

Substituting (6.25) into (6.24) we obtain

x(t) =

[
τ + p(t)− τt

2T
(2t0 + τ)

]( m∑
j=0

fjαj +

n−1∑
j=m+1

kjβj

)
+ x0(t).

Let p̃(t) := τ + p(t) − (τt/(2T ))(2t0 + τ), since x0(t) is T -periodic and p̃(0) =

p̃(T ) = τ we obtain x(0) = x(T ). Rewrite (6.19) in the equivalent form

(6.26) (G∗ − I)(I − Ξ∗)zj = zj−1, j = 1, . . . ,m.

For j = 1 we have that z0 satisfies the condition of Proposition 6.2, then (G∗−I)z

= −z0 has a solution z̃1, thus z1 = (I−Ξ∗)−1z̃1 is a solution of (6.26) with j = 1.

Applying Proposition 6.4 one can easily determine z1. Observe that z1 satisfies

again the condition of Proposition 6.2, thus we can proceed by using the same

arguments as before to determine zj for j = 2, . . . ,m. �

We now give a very simple example to illustrate the procedure presented in

the proof of Proposition 6.4. We consider the case when n = 2,m = 1, thus we

have that ξ(t)y = 〈y, f0〉b0(t) + 〈y, f1〉b1(t) and (6.24) becomes

(6.27) x(t)− p̃(t)(f0〈b0, x〉w + f1〈b1, x〉w) = x0(t).

Let ai,j := 〈p̃fi, bj〉w with i = 0, 1, j = 0, 1. Therefore

ai,j =

〈
τfi,

t0
T 2

∫ T

0

(I − b(s))ej(s) ds− ej(0)

〉
+

∫ T

0

〈
˙̃p(t)fi,

1

T
(I − b(t))x(t)− 1

T 2

∫ T

0

(I − b(s))ej(s) ds− ej(t)
〉
dt.

Multiplying (6.27) by b0 and b1 in the space W 1
2 (T ) we obtain the system(1− a0,0)〈b0, x〉w − a1,0〈b1, x〉w = 〈b0, x0〉w,

−a0,1〈b0, x〉w + (1− a1,1)〈b1, x〉w = 〈b1, x0〉w.

This system has a unique solution α0 = 〈b0, x0〉w, α1 = 〈b1, x0〉w. In conclusion,

x(t) = p̃(t)(α0f0 + α1f1) + x0(t).
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7. Existence of bifurcation

Consider the novel equivalent integral operator defined in (5.5), that is

(F̂εx)(t) = (Fεx)(t)− ξ(t)
∫ t0+τ

t0

[(Fεx)(s)− x(s)]ds, t ∈ [0, T ],

where Fε is given in (4.1), i.e.

(Fεx)(t) = x(0) +

∫ t

0

[φ(x(s− ε), ẋ(s− ε)) + εψ(s, x(s− ε), ẋ(s− ε), ε)] ds

− t0
T

(
t

t0
− 1

)∫ T

0

[φ(x(s− ε), ẋ(s− ε)) + εψ(s, x(s− ε), ẋ(s− ε), ε)] ds.

Define P : W 1
2 (T )× [0, 1]→W 1

2 (T ) and Q : W 1
2 (T )× [0, 1]→W 1

2 (T ) as follows

P (x, ε)(t) := P̃ (x, ε)(t)− x(t)− ξ(t)
∫ t0+τ

t0

[P̃ (x, ε)(s)− x(s)] ds,

and

Q(x, ε)(t) := Q̃(x, ε)(t)− ξ(t)
∫ t0+τ

t0

Q̃(x, ε)(s) ds,

where

P̃ (x, ε)(t) :=x(0) +

∫ t

0

φ(x(s− ε), ẋ(s− ε)) ds

− t0
T

(
t

t0
− 1

)∫ T

0

φ(x(s− ε), ẋ(s− ε)) ds,

and

Q̃(x, ε)(t) :=

∫ t

0

ψ(s, x(s− ε), ẋ(s− ε), ε) ds

− t0
T

(
t

t0
− 1

)∫ T

0

ψ(s, x(s− ε), ẋ(s− ε), ε) ds.

Therefore, F̂εx = x can be rewritten in the form of the following bifurcation

equation

(7.1) P (x, ε) + εQ(x, ε) = 0.

In this section our aim is to verify that the conditions of ([19, Theorem 3.2])

are satisfied for the bifurcation equation (7.1). As a consequence, we obtain

the existence of a branch of T -periodic solutions to (2.1) bifurcating from the

limit cycle x0. For this, we adopt the abstract setting of ([19, Theorem 3.2]),

namely we consider P,Q : E × [0, 1] → E, where E is a Banach space. We

assume that the equation P (x, 0) = 0 has a one-dimensional manifold of solution

Γ̂ := {x(θ) : θ ∈ [0, T ]}, T ∈ R. In the following R′(i)(x, ε) will denote the

derivative of R(x, ε) with respect to the i-variable, i ∈ {1, 2}.
We assume the following conditions:



660 J.-F. Couchouron — M. Kamenskĭı — B. Mikhaylenko — P. Nistri

(c1) P and Q are continuous operators in both the variables in a neighbour-

hood U of Γ̂× [0, 1].

(c2) For any ε ∈ [0, 1] there exist P ′(1)(x, ε) and P ′′(1,1)(x, ε) in a neighbourhood

V of Γ̂, continuous in both the variables in U .

(c3) For any ε ∈ [0, 1] there exists P ′(2)(x(θ), ε) and P ′′(2,1)(x(θ), ε) continuous

in ε, whenever θ ∈ [0, T ].

(c4) There exists P ′′(1,2)(x(θ), 0), whenever θ ∈ [0, T ].

(c5) For any ε ∈ [0, 1] there exists Q′(1)(x, ε) in V continuous in both the

variables in U .

(c6) There exists Q′(2)(x(θ), 0) whenever θ ∈ [0, T ].

(c7) x(θ) is twice differentiable for any θ ∈ [0, T ] and x′(θ) 6≡ 0, for any

θ ∈ [0, T ].

(c8) The operator I −P ′(1)(x(θ), 0) is q-condensing with respect to the Haus-

dorff measure of non compactness with constant 0 < q < 1, θ ∈ [0, T ].

(c9) The zero eigenvalue of the operator P ′(1)(x(θ), 0), θ ∈ [0, T ], has geo-

metric multiplicity 1 and algebraic multiplicity m > 1, m ≤ n − 1. We

denote by e0(θ) the corresponding unique linearly independent eigenvec-

tor x′0(θ) and by ej(θ), j = 1, . . . ,m, the adjoint vectors, i.e. for any

θ ∈ [0, T ],

P ′(1)(x(θ), 0)e0(θ) = 0,

P ′(1)(x(θ), 0)ej(θ) = ej−1(θ) j = 1, . . . ,m.

Without loss of generality, compare ([19, Lemma 3.1]), we may assume that,

for any θ ∈ [0, T ],

〈ej(θ), zm−j(θ)〉 6= 0, j = 1, . . . ,m,

〈ej(θ), zi(θ)〉 = 0, i, j = 1, . . . ,m, i 6= m− j,

where z0(θ) is the eigenvector of the adjoint operator (P ′(1)(x(θ), 0))∗ and zj(θ),

j = 1, . . . ,m, are the adjoint vectors of (P ′(1)(x(θ), 0))∗.

Finally, denote by π(θ) : E → span{e0(θ), . . . , em(θ)} the Riesz projector

associated to P ′(1)(x(θ), 0) and by αj(θ), j = 0, . . . ,m, the coefficients of the

decomposition of e′0(θ), namely

e′0(θ) = α0(θ)e0(θ) +

m∑
j=1

αj(θ)ej(θ) + ỹ(θ),

where ỹ(θ) ∈ (I − π(θ))E. Define

y0(θ) := − (P ′(1)(x(θ), 0)|(I−π(θ))E)−1(P ′(2)(x(θ), 0) +Q(x(θ), 0)),

A(θ) :=π(θ)P ′′(1,2)(x(θ), 0)e0(θ)

+ π(θ)P ′′(1,1)(x(θ), 0)e0(θ)y0(θ) + π(θ)Q′(1)(x(θ), 0)e0(θ),
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R(θ) :=π(θ)P ′′(1,2)(x(θ), 0)y0(θ)

+
1

2
π(θ)P ′′(2,2)(x(θ), 0) +

1

2
π(θ)P ′′(1,1)(x(θ), 0)y0(θ)y0(θ)

+ π(θ)Q′(1)(x(θ), 0)y0(θ) + π(θ)Q′(2)(x(θ), 0).

We are now in the position to define the generalized multidimensional Malkin

bifurcation function as follows

Mθ(λ0, . . . , λm) = −1

2
λ20

m∑
j=1

αj(θ)ej−1(θ) +A(θ)λ0 +

m∑
j=1

λjej−1(θ) +R(θ).

The following result holds:

Theorem 7.1 ([19, Theorem 3.2]). Assume conditions (c1)–(c9). Let θ0 ∈
[0, T ] be such that

π(θ0)(Q(x(θ0), 0) + P ′(2)(x(θ0), 0)) = 0.

If the system Mθ0(λ0, . . . , λm) = 0 is solvable with respect to λj, j = 0, . . . ,m,

and for the solution (µ0, . . . , µm) the condition

det

(
∂

∂λ0
Mθ0(µ0, . . . , µm), . . . ,

∂

∂λm
Mθ0(µ0, . . . , µm)

)
6= 0

holds. Then equation (7.1) has a solution of the form

(7.2) xε = x(θ0) + εµ0e0(θ0) + ε2
m∑
j=1

µjej(θ0) + εy0(θ0) +O(ε3).

Proof. The results of all the previous Sections allow to easily verify that

the assumptions (c1)–(c9) are fulfilled by the operators P and Q. For the sake

of conciseness we refer to [19] to see how the conditions on the multidimensional

Malkin bifurcation function are used in the proof. �

Remark 7.2. We recall that in the case when m = 1 the corresponding

bifurcation result for (2.1) was obtained in [7].
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[7] J.-F. Couchouron, M. Kamenskĭı and P. Nistri, An infinite dimensional bifurcation

problem with application to a class of functional differential equations of neutral type,

Commun. Pure Appl. Anal. 12 (2013), 1854–1859.

[8] M. Fec̆kan, Bifurcation of periodic solutions in differential inclusions, Appl. Math. 42

(1997), 369–393.

[9] J.R. Graef and L. Kong, Periodic solutions for functional differential equations with

sign-changing non-linearities, Proc. Roy. Soc. Edinburgh Sect. A 140 (2010), 597–616.

[10] J.K. Hale and M. Weedermann, On the perturbations of delay-differential equations

with periodic orbits, J. Differential Equations 197 (2004), 219–256.

[11] M. Henrard and F. Zanolin, Bifurcation from a periodic orbit in perturbed planar

Hamiltonian systems, J. Math. Anal. Appl. 277, (2003), 79–103.

[12] H.Y. Hu and Z. Wang, Dynamics of Controlled Mechanical Systems with Delayed Feed-

back, Springer–Verlag, Berlin, Heidelberg, 2002.
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[17] M.I. Kamenskĭı and B.A. Mikhaylenko, Averaging principle and the variational ap-

proach in the problem on the bifurcation of periodic solutions from non isolated equilibria

of the averaged equation, Differential Equations 48 (2011), 1036–1047.

[18] , On perturbations of systems with multidimensional degeneration, Autom. Remote

Control 72 (2011), 1036–1047.

[19] , Bifurcation of periodic solutions from a degenerate cycle in equations of neutral

type with a small delay, Discrete Contin Dyn. Syst. Ser. B 18 (2013), 437–452.
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