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THE TRIVIAL HOMOTOPY CLASS OF MAPS

FROM TWO-COMPLEXES

INTO THE REAL PROJECTIVE PLANE

Marcio Colombo Fenille

Abstract. We study reasons related to two-dimensional CW-complexes

which prevent an extension of the Hopf–Whitney Classification Theorem
for maps from those complexes into the real projective plane, even in the

simpler situation in which the complex has trivial second integer cohomol-

ogy group. We conclude that for such a two-complex K, the following
assertions are equivalent: (1) Every based map from K into the real pro-

jective plane is based homotopic to a constant map; (2) The skeleton pair

(K,K1) is homotopy equivalent to that of a model two-complex induced by
a balanced group presentation; (3) The number of two-dimensional cells of

K is equal to the first Betti number of its one-skeleton; (4) K is acyclic; (5)

Every based map from K into the circle S1 is based homotopic to a constant
map.

1. Introduction and main theorem

Given topological spaces X and Y , we denote the set of homotopy classes

of maps from X into Y by [X;Y ]. If X and Y have base points x∗ and y∗,

respectively, let [X;Y ]∗ denote the based homotopy classes of based maps from

X into Y , that is, maps (X,x∗) → (Y, y∗). If the base point x∗ ∈ X is non-

degenerated (in particular, if X is a CW-complex) and Y is path connected,

then there exists a natural action of the fundamental group π1(Y, y∗) on the set
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[X;Y ]∗ in such a way that [X;Y ] is the quotient set of [X;Y ]∗ by this action. See

[4, Theorem 6.57]. As a particular consequence, a based map is null-homotopic

if and only if it is based null-homotopic. See [4, Corollary 6.58]. Furthermore, if

Y is simply connected, there exists a bijection between [X;Y ] and [X;Y ]∗. See

[4, § 6.16] for details.

The Hopf–Whitney Classification Theorem [8, Corollary 6.19, p. 244] states

that the set [K;Y ] of the homotopy classes of maps from an n-dimensional

CW-complex K into an (n − 1)-connected n-simple space Y is in one-to-one

correspondence with the cohomology group Hn(K;πn(Y )). We remark that

for n ≥ 2, the hypothesis of Y to be (n − 1)-connected implies automatically

that Y is also n-simple, since in this case Y is simply connected. Again under

such conditions, we have a one-to-one correspondence between [K;Y ] and the

set [K;Y ]∗ of the based homotopy classes, as we noted at the end of the first

paragraph. Therefore, for n ≥ 2, we might replace [K;Y ] by [K;Y ]∗ in the

statement of the Hopf–Whitney Classification Theorem.

Obviously, the Hopf–Whitney Classification Theorem does not apply for

a two-dimensional CW-complex K (shortly a two-complex K) and Y = RP2,

since the real projective plane RP2 is not 1-connected (simply connected). In

fact, we may provide easily examples in which the cohomology group

H2(K;π2(RP2)) = H2(K;Z) = H2(K)

is “smaller” than the set [K;RP2]∗ of based homotopy classes of maps from K

into RP2. This happens, for instance, if K collapses to a bouquet
n∨
S1 of n ≥ 1

circles; in this case, H2(K) = 0, although the set [K;RP2]∗ has 2n elements.

For another example, one in which the two-complex K does not collapses to

a one-complex, consider K = S1 ∨ S2; in this case we have H2(K) ≈ Z whereas

[K;RP2]∗ contains isomorphic copies of Z and Z2. The fact H2(K) is “smaller”

than [K;RP2]∗ is general; in fact, Lemma 3.1 shows that for a two-complex K

with fundamental group Π, there exists a one-to-one correspondence between

H2(K) and [K;RP2]∗ if and only if Hom(Π;Z2) = 0; else, there exists a strictly

injection from H2(K) into [K;RP2]∗. In any case, we have

[K;RP2]∗ = 0 ⇒ H2(K) = 0,

where the expression on the left side means that [K;RP2]∗ contains only the

based homotopy class of the constant map at the base point of RP2.

In this article we study conditions on a finite and connected two-complex K

to ensure the opposite implication, that is, we study the possible triviality of the

set [K;RP2]∗ when K is a finite and connected two-dimensional CW-complex

with trivial second cohomology group. For such a two-complex, we do not have

always [K;RP2]∗ = 0, but we may characterize the two-complexes for which this

happens. Such characterization is our main theorem:
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Theorem 1.1 (Main Theorem). The following assertions are equivalent for

a finite and connected two-dimensional CW-complex K with trivial second integer

cohomology group:

(a) Every based map from K into RP2 is based homotopic to a constant map.

(b) The skeleton pair (K,K1) is homotopy equivalent to that of a model two-

complex induced by a balanced group presentation, that is, a finite group

presentation with the same number of generators and relators.

(c) The number of 2-cells of K is equal to the first Betti number of its one-

skeleton K1.

(d) K is acyclic, that is, K has the homology of a point.

(e) Every based map from K into the circle S1 is based homotopic to a con-

stant map.

The assumption on the nullity of H2(K) is essential for all equivalences, except

(a) ⇔ (c), which always holds true. Moreover, assertions (a) and (d) implies,

each one, the assumption on the nullity of H2(K).

In this theorem, as well as throughout the article, the base point of a complex

will be always one of its 0-cells. In particular, we consider the real projective

plane RP2 with its natural cellular decomposition RP2 = e0∗ ∪ e1∗ ∪ e2∗ so that its

base point is the 0-cell e0∗.

The problem approached in this paper and answered in the Main Theorem

is motivated not only by the Hopf–Whitney Classification Theorem but also by

a specific problem in Topological Root Theory proposed by Claudemir Aniz and

Daciberg Lima Gonçalves in the 2000’s. See [1] and [2]. We explain: let X be

a finite and connected n-dimensional CW-complex. If X is homotopy equivalent

to a complex of dimension less than n, then every map f : X → Y from X into

a closed n-manifold Y is homotopic to a non-surjective map; in this case we say

that f is root free or f is not strongly surjective. Thus, in order to exists a strong

surjection from X into a closed n-manifold Y, it is necessary (but not sufficient, in

general) that X has essential dimension n, that is, X is not homotopy equivalent

to a complex of dimension less than n, the case in which we say also that X is

essentially of dimension n. The essentiality of the dimension of a n-complex X

may be or not detected by the integer cohomology group Hn(X) in the following

sense: If Hn(X) 6= 0, then X is essentially of dimensional n and by the Hopf–

Whitney Classification Theorem there exists a strong surjection from X into

the n-dimensional sphere Sn. However, the reciprocal is not true, that is, if

X is essentially of dimension n, the group Hn(X) is not necessarily nontrivial.

Therefore, the integer cohomology is not able to detect the essential dimension

of a complex. Because of this, and despite that, it is natural to ask if Hn(X)

is able to detect the existence of a strong surjection from X into a closed n-

manifold. Aniz and Gonçalves studied this question for dimension n = 3. In [1],
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Aniz proved that every map from a 3-complex X with H3(X) = 0 into S1×S2 is

root free, but for Y the non-orientable S1-bundle over S2, there exists a strong

surjection f : X → Y from such a 3-complex. In [2], Aniz proved that there is no

strong surjection from such a 3-complex into the orbit space of the 3-sphere S3

with respect to the action of the quaternion groupQ8 determined by the inclusion

Q8 ⊂ S3. There are not many other works on this subject, which shows that

such a study may be far from complete. In this article we present a contribution

for the problem in dimension two. It is noteworthy that the dimension two is

often left out since it does not permit the use of special techniques as obstruction

theory and others. Our approach is mainly based on the combinatorial group

theory. We do not treat the root problem directly; in fact, we do not investigate

the existence of strong surjection, but the existence of nontrivial maps (maps that

are not homotopic to a constant map), and we consider just maps into the real

projective plane. In such context, the nonexistence of nontrivial maps implies

the nonexistence of strong surjection, but not the reciprocal. In this sense, the

Main Theorem presents a class of two-dimensional CW-complexes with trivial

second integer cohomology group for which there are no strong surjections into

the projective plane.

Returning to the Main Theorem, we observe that, once proved that assertions

(a) and (d) implies, each one, the assumption on the nullity of the cohomology

group H2(K), there is no sense in to investigate equivalences with these as-

sertions without the assumption H2(K) = 0. Therefore, such assumption is

automatically essential for all equivalences which involves assertions (a) and (d),

since all the others assertions are possible, even in the absence of the assumption

H2(K) = 0, as we show throughout the paper.

We highlight assertion (e) to remember that for the based spaces (K, k∗)

and (S1, s∗), the set [K;S1]∗ is also denoted by π1(K, k∗) and called the first

cohomotopy set of (K, k∗). Since S1 is the Eilenberg–MacLaner space K(Z, 1),

we have one-to-one correspondences between the sets [K;S1] and [K;S1]∗ and

the cohomology group H1(K). This fact might be used to proof the equivalences

of assertion (e) with each of (b)–(d). However, we will present a simpler proof

for these equivalences in Section 4 using the asphericity of the circle S1.

Assertion (b) exposes an appropriated approach for the proof of the more

interesting equivalences presented in the Main Theorem, those that involve as-

sertions (a) and (e). This approach considers the so-called model two-complexes

induced by group presentations. We follows [7] to present and explore this con-

cept in Section 2. We anticipate that by [7, Theorem 1.9, p. 61], the skeleton pair

of a finite and connected two-complex is homotopy equivalent to that of a model

two-complex. This result will be directly used in the proof of the Main Theorem.

Moreover, it is very useful to build examples.
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In Section 2, we prove the equivalences (b) ⇔ (c) ⇔ (d) using a character-

ization of the nullity of the second cohomology group H2(K) in terms of the

number of cells of the two-complex K, which follows from the Universal Coeffi-

cient Theorem. We also prove that the equivalence (b)⇔ (c) is independent on

the nullity of H2(K).

In Section 3 we prove the equivalence (a)⇔ (b). In order to do this, we prove

a key lemma in which, for a given model two-complex KP with fundamental

group Π, we provide an isomorphism between the abelian group Hom(Π;Z2)

and the addictive group SP of all solutions of a certain linear system induced

by KP .

In Section 4 we first prove that each of the assertions (b)–(d) is equivalent

to (e). Next, we present a direct proof for the implication (e)⇒ (a) as a conse-

quence of the aforementioned Lemma 3.1 and a simple algebraic fact.

Integer coefficient cohomology is understood in whole paper. We simplify K

is a two-dimensional CW-complex by K is a two-complex.

2. Proof of the equivalences (b)⇔ (c)⇔ (d)

Let K be a finite and connected two-complex. Since H2(K) is torsion free,

the Universal Coefficient Theorem implies that H2(K) ≈ H2(K)⊕T1(K), where

T1(K) is the torsion subgroup of H1(K). It follows that H2(K) = 0 if and only if

H2(K) = 0 and H1(K) is torsion free. In this case, the exact homology sequence

of the skeleton pair (K,K1) becomes

0→ H2(K,K1)→ H1(K1)→ H1(K)→ 0.

Since H1(K) is torsion free, this sequence splits and so H1(K1) ≈ H2(K,K1)⊕
H1(K). Defining #2(K) to be the number of 2-cells of K and denoting the first

Betti number by β1, the last isomorphism gives Zβ1(K
1) ≈ Z#2(K)⊕Zβ1(K). This

proves the following result:

Proposition 2.1. Let K be a finite and connected two-complex. If K has

trivial second cohomology group, then #2(K) = β1(K1)− β1(K).

This result is specially interesting for two-complexes with a single 0-cell, or

more particularly for model two-complexes, since for such a two-complex K, the

Betti number β1(K1) coincides with the number of 1-cells.

A model two-complexes KP induced by a group presentation P = 〈x | r〉, with

the set of generators x = {x1, . . . , xn} and the set of (not necessarily reduced)

relators r = {r1, . . . , rm} is that whose one-skeleton K1
P =

n∨
j

S1
j = e0∪e11∪. . .∪e1n

is the bouquet of n circles (so that n = β1(K1
P)) and with m two-dimensional

cells (so that m = #2(KP)), we say e21, . . . , e
2
m, which are attaching on the one-

skeleton according to the relators r1, . . . , rm. See [7, Section 1.2] for details.
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The group presentation P is a presentation for the fundamental group π1(KP)

and we have a natural quotient homomorphism

Ω: π1(K1
P) ≈ F (x)→ F (x)

N(r)
≈ π1(KP),

where F (x) is the free group generated by the alphabet x and N(r) is its normal

subgroup generated by the set of words r.

Proposition 2.2 ([7, Theorem 1.9, p. 61]). The skeleton pair of a finite

and connected two-complex K is homotopy equivalent to that of the model two-

complex KP induced by a group presentation P = 〈x | r〉.

Obviously, if the skeleton pair (K,K1) of the two-complex K is homotopy

equivalent to that of the model two-complex KP of a group presentation P =

〈x1, . . . , xn | r1, . . . , rm〉, then β1(K1) = β1(K1
P) = n. The next result follows

from Proposition 2.1.

Corollary 2.3. For a given group presentation P = 〈x1, . . . , xn | r1, . . . , rm〉,
the condition H2(KP) = 0 implies m = n− β1(KP). So H2(KP) 6= 0 if m > n.

Obviously, the reciprocal implications of the statements in Proposition 2.1

and Corollary 2.3 are not true. However, for model two-complexes, we have

an interesting characterization of the nullity of the second cohomology group.

By the way, this characterization implies Corollary 2.3. We show: let KP be

the model two-complex of the group presentation P = 〈x1, . . . , xn | r1, . . . , rm〉.
Consider all the relators writing in its generic form

r1 =
(
x
δ
(1)
11

1 . . . x
δ
(1)
1n
n ) . . . (x

δ
(k1)
11

1 . . . x
δ
(k1)
1n
n

)
;

...

rm =
(
x
δ
(1)
m1

1 . . . x
δ(1)mn
n ) . . . (x

δ
(km)
m1

1 . . . x
δ(km)
mn
n

)
.

For each 1 ≤ i ≤ m and 1 ≤ j ≤ n, we define the integer δij =
ki∑
λ=1

δ
(λ)
ij , the

sum of all powers of the letter xj in the relator word ri, and we consider the

integer matrix ∆P = (δij)m×n. The Main Theorem in [5] states that a cellular

map f : KP → S2 is homotopic to a constant map if and only if the diophantine

linear system ∆PY = deg(f) has an integer solution, where deg(f) ∈ Zm is the

so called vector-degree of the map f . Additionally, again by [5], every integer-

vector d ∈ Zm is the vector-degree of some cellular map fd : KP → S2. Using

these facts and the Hopf’s Theorem [6, Theorem 11.5, p. 224], we conclude:

Proposition 2.4 ([5, Proposition 3.1]). A model two-complex KP has trivial

second cohomology group if and only if the linear system ∆PY = d has an integer
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solution for all integer-vector d of appropriated dimension. In particular, for

a group presentation P with n generators and m relators:

(a) If m > n, then H2(KP) 6= 0.

(b) If m = n, then H2(KP) = 0 if and only if det(∆P) = ±1.

(c) If m < n, then it may occur H2(KP) = 0 or H2(KP) 6= 0.

Assertion (b) of the Main Theorem relates to the following definition:

Definition 2.5. A model two-complex KP is called a balanced model two-

complex if it has the same number of cells of dimension one and two. It is

equivalent to say that KP is induced by a group presentation P = 〈x | r〉 having

the same number of generators and relators, case in which we say that P is

a balanced presentation.

We finish this section proving the equivalences (b)⇔ (c)⇔ (d) proposed in

the Main Theorem. First we prove the equivalence (b) ⇔ (c) independently on

the assumption on the nullity of the second cohomology group and next we use

the characterization of this nullity to prove the equivalence (c)⇔ (d).

Proof of the Equivalence (b) ⇔ (c). Let K be a finite and connected

two-complex. By Proposition 2.2, there exists a group presentation P = 〈x | r〉
such that (K,K1) is homotopy equivalent to (KP ,K

1
P). In particular,

#r = #2(KP) = rankH2(KP ,K
1
P) = rankH2(K,K1) = #2(K),

and

#x = β1(K1
P) = β1(K1).

It follows that the number of 2-cells of K is equal to β1(K1) if and only if the

group presentation P is balanced (that is, #x = #r). �

Proof of the equivalence (c) ⇔ (d). Let K be a finite and connected

two-complex with trivial second cohomology group. By Proposition 2.1,

#2(K) = β1(K1)− β1(K).

Since H2(K) = 0 and H1(K) is torsion free, K is acyclic if and only if β1(K) = 0,

what in turn happens if and only if #2(K) = β1(K1). �

Obviously, assertion (d) is impossible without the assumption H2(K) = 0.

On the other hand, assertions (b) and (c) are possible with H2(K) 6= 0, for exam-

ple, consider K = S1 ∨ S2 with its minimal cellular decomposition. This shows

that the assumption H2(K)=0 is essential for the equivalences (b)–(c)⇔(d).



610 M.C. Fenille

3. Proof of the equivalence (a)⇔ (b)

In this section, we present a proof for the equivalence (a)⇔ (b) proposed in

the Main Theorem. We start with two key lemmas.

In the first one, we establish a relationship between H2(K) and [K;RP2]∗ in

terms of the nullity of the group Hom(Π;Z2), where Π is the fundamental group

of the two-complex K. In the second one, we build, for model two-complexes, an

isomorphism between Hom(Π;Z2) and the addictive group of all solutions of a

specific homogeneous linear system induced by the complex. This isomorphism

makes it easier to check the possible nullity of Hom(Π;Z2).

Lemma 3.1. Let K be a finite and connected two-complex with fundamen-

tal group Π. There exists a one-to-one correspondence between H2(K) and

[K;RP2]∗ if and only if Hom(Π;Z2) = 0. Else, there exists a strictly injection

from H2(K) into [K;RP2]∗.

Proof. Let p : S2 → RP2 be the double covering map. The proof follows

from a simple analysis of the diagram

S2

p

��

K //

==

RP2

By the homotopy lifting property and the unique lifting property, the corre-

spondence [ϕ] 7→ [p ◦ ϕ] gives an injection [K;S2]∗ ↪→ [K;RP2]∗.

If Hom(Π;Z2) = 0, then every based map f : K → RP2 lifts through p to

a based map f̃ : K → S2 and so [f ] 7→ [f̃ ] in an inverse correspondence to

[ϕ] 7→ [p ◦ ϕ].

If Hom(Π;Z2) 6= 0, there exists a based map f : K → RP2 which does not

lift through p and so [f ] is not in the image of the correspondence [ϕ] 7→ [p ◦ϕ].

The proof follows from the Hopf–Whitney Classification Theorem. �

In the next lemma, we use the following notation: Given a model two-complex

KP of a presentation P = 〈x1, . . . , xn | r1, . . . , rm〉, we consider the matrix ∆P ∈
Mm×n(Z), as in Section 2, and take its mod 2 quotient ∆P = ∆P mod 2, the

m × n matrix ∆P = (δij) ∈ Mm×n(Z2), in which the bar indicates the integer

mod 2 in the additive notation.

Lemma 3.2. Let KP be a model two-complex with fundamental group Π. The

abelian group Hom(Π;Z2) is isomorphic to the additive group SP of all solutions

of the homogeneous linear system ∆PY = 0 over the field Z2.

Proof. Let P = 〈x1, . . . , xn | r1, . . . , rm〉 be the group presentation of KP ,

so that, in particular, P is a presentation for the group Π. Denote F =
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F (x1, . . . , xn) the free group generated by x1, . . . , xn and let Ω: F → Π be

the obvious epimorphism.

It is well known that the homomorphisms τ : Π → Z2 are in one-to-one

correspondence, via the relation τ ◦Ω = h, with the homomorphisms h : F → Z2

which map all the relators r1, . . . , rn to 0. Let Hom(F ;Z2| r) be the group of such

homomorphisms. We prove that Hom(F ;Z2| r) is in one-to-one correspondence

with the solutions of the linear system ∆PY = 0 over Z2. Let us suppose that

h : F → Z2 belongs to Hom(F ;Z2| r). Since Z2 is abelian, for each 1 ≤ i ≤ m,

we have

h(ri) = δi1h(x1) + . . .+ δinh(xn).

So the condition h(ri) = 0 for all 1 ≤ i ≤ m implies that the vector

h = (h(x1), . . . , h(xn)) ∈ Zn2

satisfies the equation ∆Ph = 0 over Z2. Of course, associated to different homo-

morphisms h1 and h2 in Hom(F ;Z2| r), we have different solutions h1 and h2 for

∆PY = 0, since a homomorphism from a free group is uniquely defined by its val-

ues on the generators. Conversely, given a solution y = (y1, . . . , yn) for ∆PY = 0

over Z2, associated to it we have a unique homomorphism h ∈ Hom(F ;Z2| r)

given by h(xi) = yi for all 1 ≤ i ≤ m. Moreover, for different solutions we have

different homomorphisms.

We have provided a bijection Ψ: Hom(Π;Z2) ≈ Hom(F ;Z2| r) ≈ SP by defin-

ing Ψ(τ) = ((τ ◦Ω)(x1), . . . , (τ ◦Ω)(xn)), in which each intermediate one-to-one

correspondence is a group isomorphism. Therefore, Ψ is a group isomorphism.�

Proposition 3.3. Let KP be a balanced model two-complex with fundamental

group Π. If H2(KP) = 0, then Hom(Π;Z2) = 0. The converse is not true.

Proof. The proof of the first statement follows directly from Lemma 3.2

and from the fact that H2(KP) = 0 implies det ∆P = 1, by Proposition 2.4.

In this case, since Z2 is a field, the linear system ∆PY = 0 has only the trivial

solution, so that Hom(Π;Z2) ≈ SP = 0.

In order to exemplify that the reciprocal is not true, we consider the bal-

anced model two-complex KP of the presentation P = 〈x, y |x2y, xy2〉. We

have det ∆P = 3 and so det ∆P = 1. It follows that H2(KP) 6= 0 although

Hom(Π;Z2) = 0. �

Proposition 3.3 is not true for non-balanced model two-complexes; for exam-

ple, take P = 〈x, y | y〉 so that KP = S1 ∨D2.

The proof of Proposition 3.3 shows also that for a balanced model two-

complex KP with fundamental group Π, we have Hom(Π;Z2) = 0 if and only if

det ∆P is odd. In fact, if det ∆P is even, then det ∆P = 0 and so the system
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∆PY = 0 has more than one solution. Thus we have proved the following

corollary:

Corollary 3.4. Let KP be a balanced model two-complex. There exists

a one-to-one correspondence between H2(KP) and [KP ;RP2]∗ if and only if

det ∆P is odd.

Now we prove (a)⇔ (b) using the main results of Sections 2 and 3.

Proof of the Equivalence (a) ⇔ (b). Let K be a finite and connected

two-complex with fundamental group Π, with trivial second cohomology group

and such that the skeleton pair (K,K1) is homotopy equivalent to that of

a model two-complex KP . Let take the (unique) 0-cell e0 ∈ KP to be the

base point. Choose inverse homotopy equivalences ϕ : (KP ,K
1
P)→ (K,K1) and

ψ : (K,K1) → (KP ,K
1
P), according to [7, Theorem 1.9, p. 61], so that ψ cor-

responds to a 3-deformation which standardizes the one-skeleton of K to the

bouquet of circles corresponding to the one-skeleton K1
P . In particular, there

exists a 0-cell c0 ∈ K such that ψ(c0) = e0 and ϕ(e0) = c0. Let take c0 to be the

base point in K.

(b)⇒ (a). Suppose that KP is balanced. Then Proposition 2.4 implies that

det ∆P = ±1, since H2(KP) = 0 by assumption. By Corollary 3.4, we have

[KP ;RP2]∗ = 0. We will prove that also [K;RP2]∗ = 0. Let f : K → RP2 be

a based map. Then f ◦ ϕ : KP → RP2 is also a based map and so it is based

homotopic to the constant map at e0∗. Since ϕ ◦ ψ is homotopic to the identity

map of K, it follows that f is homotopic to the constant map at e0∗. It follows

by [4, Corollary 6.58] that f is based homotopic to the constant map at e0∗.

(a) ⇒ (b). Suppose that KP is not balanced. Since H2(KP) = 0, Corol-

lary 2.3 implies that β1(KP) 6= 0, so that H1(KP) is free and nontrivial. It

follows that Hom(H1(KP);Z2) 6= 0 and so also Hom(Π;Z2) 6= 0. By Lemma 3.1,

we have a strictly injection of H2(K) into [K;RP2]∗ and so [K;RP2]∗ 6= 0. �

Since assertion (a) is impossible without the assumption H2(K) = 0, but

(b) is possible (for example, K = S1 ∨ S2), such assumption is essential to the

equivalence (a)⇔ (b).

4. The equivalences with assertion (e)

As we have said in the introduction of the article, instead of using cohomo-

topy approach to prove the equivalences with assertion (e), we use simply the

asphericity of the circle. We prove all at once the equivalences of assertion (e)

with each of assertions (b)–(d).

Proof of the Equivalences (b)–(d) ⇔ (e). Let K be a finite and con-

nected two-complex with fundamental group Π and suppose that H2(K) = 0, so
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that H2(K) = 0 and H1(K) is torsion free. Since the circle S1 is aspherical, the

correspondence f 7→ f# induces a one-to-one correspondence between [K;S1]∗
and Hom(π1(K);π1(S1)) ≈ Hom(Π,Z). See [8, Theorem 4.3 on p. 225].

Since Z is abelian, the composition with the abelianization homomorphism

ρ : Π → H1(K) provides an isomorphism between the groups Hom(H1(K),Z)

and Hom(Π,Z). Thus, we have a one-to-one correspondence between the group

Hom(H1(K),Z) and the set [K;S1]∗. Since H1(K) is torsion free, we have

[K;S1]∗ = 0⇔ Hom(H1(K),Z) = 0⇔ H1(K) = 0⇔ β1(K) = 0.

The equivalence (d) ⇔ (e) follows, since H2(K) = 0 by assumption. Further-

more, the equivalences (b)⇔ (e) and (c)⇔ (e) follow from Proposition 2.1. �

We remark that the assumption on the nullity of the second cohomology

group of K is essential for the equivalences between each of (b)–(d) and (e).

Regarding the equivalence (d)⇔ (e), this is obvious, since (d) implies H2(K) =

0, but (e) does not; for example, take K = S2.

As for the equivalences (b)–(c) ⇔ (e), note that for K = S2, assertion (e)

holds true but (b) and (c) do not. On the other hand, for K = S1∨S2 assertions

(b) and (c) hold true, but (e) does not.

We note that we have concluded the proof of the Main Theorem; in fact, we

have proved the link of equivalences (a)⇔ (b)⇔ (c)⇔ (d)⇔ (e). However, we

consider interesting to present a direct proof of the implication (e)⇒ (a). Next

we present such a proof in which we use the following simple algebraic fact:

Lemma 4.1. For a group Π with abelianization Πab, we have Hom(Π;Z2) = 0

if 2Πab = Πab.

Proof. Since Z2 is abelian, given h ∈ Hom(Π;Z2), there exists a (unique)

homomorphism h : Πab → Z2 such that h = h ◦ q, where q : Π → Πab is the

abelianization homomorphism. We have obviously 2Πab ⊂ kerh, so that the

assumption 2Πab = Πab implies that h, and so h, is the trivial homomorphism.�

Proof of the Implication (e) ⇒ (a). Let K be a finite and connected

two-complex with fundamental group Π and trivial second cohomology group.

Then Πab ≈ H1(K) is torsion free and so H1(K) ≈ H1(K) ≈ Πab. Since [K;S1]∗
is in one-to-one correspondence with H1(K), assertion (5) implies that Πab = 0.

By Lemma 4.1 we have Hom(Π;Z2) = 0 and so [K;RP2]∗ = 0 by Lemma 3.1.�

The last two proofs show also that:

Corollary 4.2. For a finite and connected two-complex K with fundamen-

tal group Π and trivial second cohomology group, we have Hom(Π;Z2) = 0 if

Hom(Π;Z) = 0.
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An interesting example might be obtained considering a finite and connected

two-complex K with trivial second cohomology group and finite fundamen-

tal group Π. For such a two-complex we have Hom(Π;Z) = 0, so that also

Hom(Π;Z2) = 0, by Corollary 4.2, and all the assertions (a)–(e) in the Main

Theorem hold true. This happens, for instance, with the balanced model two-

complex induced by the group presentation P = 〈x, y |x3y−5, (xy)2y−5〉 of the

Poincaré’s binary icosahedral group.

Two-complexes with finite fundamental group are really specially interest-

ing in the approach of the Main Theorem. In fact, for such a two-complex,

assertion (e) is trivial and so, if we assume the nullity of the second cohomol-

ogy group, then we conclude all the assertions (a)–(e). The curios here is that,

as assertion (e), also assertion (b) might be concluded easily for a (finite and

connected) two-complex with finite fundamental group and trivial second co-

homology group. Indeed, this conclusion follows from Proposition 2.4 and the

algebraic fact that every presentation of a finite group has number of relators

greater than or equal to the number of generators. In fact: consider a presenta-

tion P = 〈x1, . . . , xn | r1, . . . , rm〉 of a given group Π, so that the abelianization

Πab of Π is presented by

Pab = 〈x1, . . . , xn | r1, . . . , rm, [xj , xk], 1 ≤ j, k ≤ n〉.

For each 1 ≤ i ≤ m, let si be the reduced word obtained from ri by commuting

all the letters x1, . . . , xn. Then each relation si = 11 is a consequence of the

relations ri = 11 and [xj , xk] = 11 for all 1 ≤ j, k ≤ n. On the other hand, each

relation ri = 11 is a consequence of the relations si = 11 and [xj , xk] = 11 for

all 1 ≤ j, k ≤ n. Hence, a sequence of m Tietze transformation of the type I

followed by m Tietze tranformation of type I ′ (we use terminology and notation

of [3, Chapter IV]) provides an equivalence between the presentation Pab and

the presentation

P ′ab = 〈x1, . . . , xn | s1, . . . , sm, [xj , xk], 1 ≤ j, k ≤ n〉.

Thus, the group Πab is isomorphic to

Zn/〈q(s1), . . . , q(sm)〉, where q : F (x1, . . . , xn)→ Zn

is the abelianization homomorphism. Therefore, Πab and so Π is infinite ifm < n.
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