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A PARTIAL POSITIVE SOLUTION

TO A CONJECTURE OF RICCERI

Francisco J. Garćıa-Pacheco — Justin R. Hill

Abstract. In this manuscript we introduce a new class of convex sets

called quasi-absolutely convex and show that a Hausdorff locally convex
topological vector space satisfies the weak anti-proximinal property if and

only if every totally anti-proximinal quasi-absolutely convex subset is not

rare. This improves results from [7] and provides a partial positive solution
to a Ricceri’s Conjectured posed in [9] with many applications to the theory

of partial differential equations. We also study the intrinsic structure of to-

tally anti-proximinal convex subsets proving, among other things, that the
absolutely convex hull of a linearly bounded totally anti-proximinal convex

set must be finitely open. Finally, a new characterization of barrelledness

in terms of comparison of norms is provided.

1. Introduction

In [9] Ricceri establishes the notion of total anti-proximinality and poses

a conjecture on the topological structure of such sets.

Definition 1.1 (Ricceri, [9]).

(a) Let E be a metric space. A non-empty proper subset A of E is called

anti-proximinal exactly when for every element e ∈ E \ A the distance

from e to A, d(e,A), is never attained at any a ∈ A.
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(b) Let E be a vector space. A non-empty proper subset A of E is called

totally anti-proximinal exactly when A is anti-proximinal for every norm

on E.

(c) A Hausdorff locally convex topological vector space E is said to have the

anti-proximinal property if every totally anti-proximinal convex subset

is not rare.

(d) A Hausdorff locally convex topological vector space E is said to have the

weak anti-proximinal property if every totally anti-proximinal absolutely

convex subset is not rare.

Concerning the existence of bounded convex anti-proximinal sets in Banach

spaces see the papers [2], [4]. We remind the reader that a subset of a topological

space is said to be rare exactly when its closure has empty interior.

Conjecture 1.2 (Ricceri’s Conjecture, [9]). There exists a non-complete

normed space enjoying the anti-proximinal property.

In [7] it is shown, among other things, that:

• a Hausdorff locally convex topological vector space satisfies the weak

anti-proximinal property if and only if it is barrelled;

• there exists a non-complete normed space enjoying the weak anti-proxi-

minal property.

In the further sections we aim at finding the tools that allow us to improve the

above results. In order to finish this introduction we will introduce the proper

notation that we will make use of throughout this manuscript.

• Given a vector space X, the linear span or vector subspace generated by

a subset A of X will be denoted by span(A).

• If X is now a topological space and A is a subset of X, then int(A) and

cl(A) will denote the topological interior and the topological closure of

A, respectively.

• Given a normed space X, the open unit ball of X will be denoted by

UX , the closed unit ball or simply the unit ball of X will be denoted by

BX , and the unit sphere of X is SX .

2. Quasi-absolutely convex sets

We will introduce here a new class of convex sets called the “quasi-absolutely

convex sets”, which contains the absolutely convex sets as expected.

Definition 2.1. Let X be a vector space. Let A be a non-empty subset

of X.

(a) We will say that A is quasi-balanced if there exist a ∈ A and ε ∈ (0, 1)

such that a− εA ⊆ A.
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(b) We will say that A is quasi-absolutely convex if it is convex, quasi-

balanced, and 0 ∈ A.

Remark 2.2. Let X be a vector space and consider a non-empty subset A

of X:

(a) If A is convex and 0 ∈ A, then [0, 1]A ⊆ A and A+A = 2A.

(b) If A is absolutely convex, then A is quasi-absolutely convex. Indeed, A

is convex and [−1, 1]A ⊆ A, therefore 0− εA ⊆ A for all ε ∈ (0, 1).

The reader may find easy to construct quasi-absolutely convex sets which are

not absolutely convex. The next theorem justifies why we consider the quasi-

absolutely convex sets in lieu of the absolutely convex ones.

Theorem 2.3. Let X be a vector space and consider a quasi-absolutely convex

subset A of X. If the absolutely convex hull of A is not rare, then A is not rare

either.

Proof. By hypothesis we may consider a ∈ A and ε ∈ (0, 1) such that

a− εA ⊆ A. We will follow several steps:

• In the first place, we will prove that a+ ε ∈ co(A∪−A) ⊆ A+A. Indeed,

let b, c ∈ A and t ∈ [0, 1]. Notice that

a+ ε(tb+ (1− t)(−c)) = (εt)b+ (a+ ε(1− t)(−c)) ∈ A+A

in virtue of (a) in Remark 2.2.

• In the second and last place, observe that A + A is not rare (in virtue of

the previous point) and A+ A = 2A (in virtue of (1) in Remark 2.2), therefore

2A is non-rare and so is A. �

As an immediate consequence of the previous result we have the following

corrollary, which constitutes the main result in this section and one of the main

results in the paper.

Corollary 2.4. Let X be a vector space. Then X satisfies the weak anti-

proximinal property if and only if every totally anti-proximinal quasi-absolutely

convex subset of X is not rare.

Proof. • If every totally anti-proximinal quasi-absolutely convex subset of

X is not rare, then X satisfies the weak anti-proximinal property since (2) of

Remark 2.2 assures that every absolutely convex subset of X is quasi-absolutely

convex.

• Conversely, assume that X has the weak anti-proximinal property and

consider any totally anti-proximinal quasi-absolutely convex subset A of X. We

may assume without any loss of generality that 0 ∈ A in virtue of (2) of [7, Re-

mark 3.1]. By applying (3) of [7, Remark 3.7] we have that the absolutely convex
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hull of A is totally anti-proximinal, therefore it will be not rare by hypothesis.

Finally, Theorem 2.3 allows us to deduce that A is not rare either. �

The reader may notice that the previous corollary constitutes a partial pos-

itive solution to Ricceri’s Conjecture 1.2 in the following sense:

Remark 2.5 (Partial Positive Solution to Ricceri’s Conjecture 1.2). If every

totally anti-proximinal convex set containing 0 is quasi-absolutely convex, then

Ricceri’s Conjecture 1.2 holds true. Indeed, if every totally anti-proximinal con-

vex set containing 0 is quasi-absolutely convex, then the weak anti-proximinal

property and the anti-proximinal property are equivalent, and according to

[7, Theorem 1.3] there exists a non-complete normed space enjoying the anti-

proximinal property.

The previous remark arises the question whether every totally anti-proximinal

convex set containing 0 is quasi-absolutely convex. In a very recent paper (see [8,

Example 3.6]), the authors of this manuscript have found an example of a con-

vex set containing 0 which is not quasi-absolutely convex. To finish this section,

we will show that in finite dimensional normed spaces the bounded, convex sets

containing 0 are always quasi-absolutely convex.

Theorem 2.6. Let X be a finite dimensional normed space. If A is a bounded

convex subset of X containing 0, then A is quasi-absolutely convex.

Proof. Let Y := span(A). In accordance to [6, Theorem 2.1] we deduce

that intY (A) 6= ∅. Let a ∈ A and ε, τ > 0 such that BY (a, ε) ⊆ A ⊆ BY (a, τ).

Finally, it suffices to notice that

a− ε

τ + ε
A ⊆ a− ε

τ + ε
BY (a, τ) = a− ε

τ + ε
(a+ τBY ) =

τ

τ + ε
a− ετ

τ + ε
BY

=
τ

τ + ε
(a− εBY ) =

τ

τ + ε
BY (a, ε) ⊆ τ

τ + ε
A ⊆ A

if we take into consideration (a) of Remark 2.2. �

3. Intrinsic structure of totally anti-proximinal convex sets

This section is divided into four subsections. The first one is on the possi-

ble relationship between finitely open sets and totally anti-proximinal sets; the

second one is on the hereditary properties of totally anti-proximinal convex sets

when intersected with proper vector subspaces; the third one is on the absorbing

properties of totally anti-proximinal convex subsets; and the fourth and last one

is on the semi-norms generated by totally anti-proximinal sets.

3.1. Finitely open sets. We remind the reader that the Euclidean topol-

ogy on a finite dimensional vector space is the unique Hausdorff vector topology

on it (which turns out to be normable).
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Definition 3.1. Let E be a vector space. A subset A of E is said to be

finitely open if for every finite dimensional vector subspace F of E, the set A∩F
is open in the Euclidean topology of F .

The first result in this subsection assures that the finitely open sets coincide

exactly with the linearly open sets, that is, the sets composed only of internal

points (see [3]).

Theorem 3.2. Let E be a vector space. A non-empty subset A of E is finitely

open if and only if A = inter(A).

Proof. If A = inter(A), then by definition A is open in the finest locally

convex vector topology on X. Since this topology turns out to be Hausdorff,

we have that the corresponding relative topology on every finite dimensional

vector subspace of E is indeed the Euclidean topology. As a consequence, A is

finitely open. Conversely, assume that A is finetely open. Let a ∈ A and con-

sider a straight line passing through a. Consider the now the finite dimensional

subspace F generated by that straight line. By hypothesis, A ∩ F is open in

the Euclidean topology of F , therefore there must exist a small interval of the

straight line around a entirely contained in A∩F . This shows that a ∈ inter(A).�

As a consequence, we find a different proof of the fact that every set composed

only of internal points is totally anti-proximinal (see [7, Theorem 4.1 (1)]).

Corollary 3.3. Let E be a vector space. Let A be a non-empty subset of

E such that A = inter(A). Then A is totally anti-proximinal.

Proof. Suppose to the contrary that A is not totally anti-proximinal. There

exist a norm ‖ · ‖ on E and two elements e ∈ E \ A and a ∈ A such that

d(e,A) = ‖e − a‖. Consider the finite dimensional subspace F := span{e, a}.
Observe then that e ∈ F \ (A ∩ F ), a ∈ A ∩ F , and

‖e− a‖ = d(e,A) ≤ d(e,A ∩ F ) ≤ ‖e− a‖,

which implies among other things that A ∩ F is not totally anti-proximinal

in F . By bearing in mind Theorem 3.2 we deduce that A ∩ F is open in the

Euclidean topology of F . However, open subsets in the Euclidean topology of

finite dimensional vector spaces are well-known to be totally anti-proximinal. �

It is well known that the union of any family of finitely open sets is finitely

open. The end of this subsection is aimed at showing that the totally anti-

proximinal sets also share this property.

Theorem 3.4. Let X be a normed space. Let {Ai}i∈I be a family of anti-

proximinal subsets of X. If
⋃
i∈I

Ai 6= X, then
⋃
i∈I

Ai is anti-proximinal.
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Proof. Let x ∈ X \
⋃
i∈I

Ai and c ∈
⋃
i∈I

Ai such that d
(
x,
⋃
i∈I

Ai

)
= ‖x− c‖.

There exists j ∈ I such that c ∈ Aj . Observe now that x /∈ Aj and

‖x− c‖ = d

(
x,
⋃
i∈I

Ai

)
≤ d(x,Aj) ≤ ‖x− c‖,

which means that Aj is not anti-proximinal. �

Corollary 3.5. Let X be a vector space. Let {Ai}i∈I be a family of to-

tally anti-proximinal subsets of X. If
⋃
i∈I

Ai 6= X, then
⋃
i∈I

Ai is totally anti-

proximinal.

3.2. Inheritance of total anti-proximinality. Observe that the proof of

Corollary 3.3 can be adapted to show the following.

Theorem 3.6. Let E be a normed space. Let A be a non-empty subset of X.

If A ∩ F is anti-proximinal in F for every finite dimensional subspace F of E,

then A is anti-proximinal in E.

Proof. Suppose to the contrary that A is not anti-proximinal. There exist

two elements e ∈ E \ A and a ∈ A such that d(e,A) = ‖e − a‖. Consider the

finite dimensional subspace F := span{e, a}. Observe then that e ∈ F \ (A∩F ),

a ∈ A ∩ F , and

‖e− a‖ = d(e,A) ≤ d(e,A ∩ F ) ≤ ‖e− a‖,

which implies that A ∩ F is not anti-proximinal in F .

As a corollary we obtain the version of the previous theorem for totally anti-

proximinal sets.

Corollary 3.7. Let E be a vector space. Let A be a non-empty subset of X.

If A ∩ F is totally anti-proximinal in F for every finite dimensional subspace F

of E, then A is totally anti-proximinal in E.

The previous result somehow highlights the inheritance properties of totally

anti-proximinal sets. By means of the remark we pretend to show that in order

to accomplish the converse to the previous corollary half-lines are not suitable

to use.

Remark 3.8. Consider a subset A of a normed space X. The metric pro-

jection of A is defined as

PA : X → P(A), x 7→ PA(x) := {a ∈ A : d(x,A) = ‖x− a‖}

where P(A) denotes the power set of A. Well known properties related to the

metric projections are the following. Let x ∈ X \A and a ∈ PA(x):

(a) (a, x) ∩A = ∅.
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(b) a ∈ PA(a+ t(x− a)) for all t ∈ (0, 1).

(c) If A is convex, then A is a sun.

On the other hand, A is said to be

• a sun provided that for every x ∈ X \ A there exists a point a ∈ PA(x)

such that a ∈ PA(a+ t(x− a)) for all t > 0.

• a strict sun provided that A is proximinal and for every x ∈ X \ A and

every a ∈ PA(x), a ∈ PA(a+ t(x− a)) for all t > 0.

• an α-sun provided that for every x ∈ X \A there exists a ray ` starting

from x such that d(z,A) = ‖z − x‖+ d(x,A) for every z ∈ `.
In general, every strict sun is a sun and every sun is an α-sun. In [5, Chapter 12]

the notion of sun is considered only for Chebyshev sets, when all the three notions

above agree. For the convexity of Chebyshev sets and suns in normed spaces see,

for instance, the survey paper [1].

We are particulary interested in showing that totally anti-proximinality is an

hereditary property to vector subspaces at least for convex sets. So assume that

X is a normed space, A is a convex subset of X, and F is a vector subspace

of X. If A ∩ F is not anti-proximinal in F , then we can find f ∈ F \ (A ∩ F )

and a ∈ PA∩F (f). At this stage, it would be interesting to prove that a ∈ PA(f)

and this way A is not anti-proximinal in X. If a /∈ PA(f), then by the previous

remark we have that a /∈ PA(a + t(f − a)) for any t > 0, and so half-lines are

not suitable to show that A is not anti-proximinal in X.

3.3. Absorbing properties of totally anti-proximinal convex sets.

We recall the reader that a subset A of a vector space X is said to be a generator

system provided that its linear span is the whole of X, in order words, span(A) =

X. In [6, Lemma 2.4] it is shown that in a topological vector space an absolutely

convex subset is absorbing if and only if it is a generator system. A slighter

version of this is presented in the following sense: if a convex set contains 0 and

is a generator system, then it “absorbs” all the “positive” vectors (relative to

a given Hamel basis). In an more precise language:

Lemma 3.9. Let X be a real vector space. Let A be a convex subset of X

containing 0 which is also a generator system of X. Let {ei : i ∈ I} be a Hamel

basis of X contained in A. Let x ∈ X \ {0} such that x = λ1ei1 + . . . + λpeip
with min{λi : i ∈ {1, . . . , p}} > 0. Then there exists λ ≥ 0 such that γx ∈ A for

all 0 ≤ γ ≤ λ.

Proof. In virtue of Remark 2.2 it suffices to consider λ=1/(λ1 + . . .+ λp).�

Remark 3.10. Let X be a real vector space. Let A be a convex subset of X

containing 0 which is also a generator system of X. Let {ei : i ∈ I} be a Hamel
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basis of X contained in A. As indicated in the statement of the previous lemma,

the convex cone of “positive” vectors of X relative to {ei : i ∈ I} is given by

P := {λ1ei1 + . . .+ λpeip : λij ≥ 0 for 1 ≤ j ≤ p}.

The previous lemma assures that

P =
⋃
n∈N

n(A ∩ P ),

which means, among other things, that if X is endowed with a vector topology

that makes P a Baire space, then A∩P is not rare in P . Nevertheless, in infinite

dimensional topological vector spaces the convex cone P has empty interior as

shown in the next result.

Theorem 3.11. Let X be a real topological vector space and consider a Hamel

basis {ei : i ∈ I} for X. Consider the convex cone of “positive” vectors of X

relative to {ei : i ∈ I}, that is, P := {λ1ei1 + . . .+λpeip : λij ≥ 0 for 1 ≤ j ≤ p}.
The following conditions are equivalent:

(a) X is finite dimensional.

(b) inter(P ) 6= ∅.

Proof. (a)⇒ (b). If X is finite dimensional, then it is enough to check that

inter(P ) = {λ1e1 + . . .+ λpep : λj > 0 for 1 ≤ j ≤ p}.

(b)⇒ (a). Assume that X is infinite dimensional. Let λ1ei1 + . . .+λpeip ∈P
with λij ≥ 0 for 1 ≤ j ≤ p. Since I is infinite, we can find i0 ∈ I \ {i1, . . . , ip}.
Notice now that if t < 0 then tei0 + (1− t)(λ1ei1 + . . .+ λpeip) /∈ P . �

In virtue of [7, Theorem 2.2] we deduce that the totally anti-proximinal

convex subsets that contain 0 “absorbs” all the “positive” vectors in the sense

of Lemma 3.9. The following lemma, which concludes this subsection and whose

proof we omit for being obvious, provides us with a possible way to show that

totally anti-proximinal convex subsets that contain 0 are actually absorbing.

Lemma 3.12. Let X be a vector space. Let A be a subset of X containing 0.

The following conditions are equivalent:

(a) A is absorbing.

(b) 0 ∈ inter(A).

3.4. Norms generated by totally anti-proximinal convex sets. In

this subsection we will consider totally anti-proximinal convex sets which are

“linearly bounded” and study the properties of the norm generated by their

absolutely convex hull. We will begin by the definition of “linearly bounded”.
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Definition 3.13. Let X be a vector space. A non-empty subset A of X is

said to be linearly bounded exactly when A does not contain any semi-straight

line, or equivalently, all the maximal segments of A are bounded.

The reader may notice that an absolutely convex set is linearly bounded if

and only if does not contain vector subspaces.

Remark 3.14. Let X be a normed space. If x ∈ X \ BX , then d(x,BX) =

‖x‖ − 1. Indeed,

d(x,BX) ≤ ‖x− x

‖x‖
‖ = ‖x‖ − 1,

and if y ∈ BX , then

‖x‖ − 1 ≤ ‖x‖ − ‖y‖ ≤ |‖x‖ − ‖y‖| ≤ ‖x− y‖.

Lemma 3.15. Let E be a vector space. Let A be a non-empty subset of E.

If A is totally anti-proximinal and is contained in the closed unit ball of a norm

on X, then A is actually contained in the open unit ball of that norm.

Proof. Let ‖ · ‖ be any norm on X whose closed unit ball B‖ · ‖ contains A.

Suppose to the contrary that there exists a ∈ A∩S‖ · ‖. By applying Remark 3.14

we have that

1 = ‖2a− a‖ ≥ d(2a,A) ≥ d(2a,B‖ · ‖) = ‖2a‖ − 1 = 1,

which means that A is not totally anti-proximinal. �

We will finish this subsection with the following result.

Theorem 3.16. Let X be a vector space. Suppose that A is a linearly

bounded, totally anti-proximinal convex subset of X. Then the absolutely convex

hull of A coincides with the open unit ball of the norm that it generates and hence

it is finitely open.

Proof. It is well known that in this case and sinceA is convex, the absolutely

convex hull of A is given by co(A∪−A). In the first place, we have that span(A) =

X in virtue of [7, Theorem 3.2]. As a consequence, co(A∪−A) is also a generator

system of X. Now we apply [6, Lemma 2.4] to conclude that co(A ∪ −A) is

absorbing. Denote by ‖ · ‖ the norm generated by the absolutely convex hull

of A. Since

A ⊆ co(A ∪ −A) ⊆ B‖ · ‖,

by applying Lemma 3.15 we deduce that A ⊆ U‖ · ‖, which automatically implies

in virtue of the triangular inequality that co(A ∪ −A) = U‖ · ‖. �

The reader may note that the previous result is an improvement of (3) of [7,

Remark 3.7].
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4. Comparison of norms and barrelledness

In this section we provide a characterization of barrelledness in terms of

comparison of norms.

Remark 4.1. Let X be a vector space and consider two norms | · | and ‖ · ‖
on X. It is well known that the following four assertions are equivalent:

(a) There exists K > 0 such that | · | ≤ K‖ · ‖.
(b) The topology induced by | · | is contained in the topology induced by ‖·‖.
(c) The unit ball of ‖ · ‖, B‖ · ‖, is bounded in (X, | · |).
(d) B| · | has non-empty interior in (X, ‖ · ‖).

In particular, any of the conditions above implies that B| · | is closed in (X, ‖ · ‖).
We will show now that this last assertion is equivalent to all four points above

only when X is barrelled.

Remark 4.2. Let X be a vector space. Let A be a non-empty subset of X.

Note that if A is absorbing, then the Minkowski functional on A, φA, is well

defined. Recall that φA(x) := inf{λ > 0 : x ∈ λA} for all x ∈ X. If, in

addition, A is absolutely convex, then φA is a semi-norm on X which verifies

that UφA
⊆ A ⊆ BφA

. Finally, if, on top of everything else, A is linearly bounded,

then φA is a norm on X.

Lemma 4.3. Let X be a topological vector space. Let A be a barrel of X and

denote by | · | the semi-norm on X given by the Minkowski functional of A. Then

A = B| · |.

Proof. By Remark 4.2 we have that U| · | ⊆ A ⊆ B| · |. Let x ∈ B| · | and

consider any u ∈ U| · |. It is well known that [u, x) ⊂ U| · |, therefore (u/n+ (1−
1/n)x)n∈N is a sequence in A which converges to x in the original vector topology

of X. Since A is closed in that vector topology, we deduce that x ∈ A. �

We will conclude this manuscript by providing a characterization of bar-

relledness in terms of comparison of norms.

Theorem 4.4. Let X be a normed space with norm ‖ · ‖. The following

conditions are equivalent:

(a) X is barrelled.

(b) If | · | is a norm on X whose unit ball is closed in the topology induced

by ‖ · ‖, then there exists K > 0 such that | · | ≤ K‖ · ‖.

Proof. (a) ⇒ (b). Assume that X is barrelled and let | · | be a norm on X

whose unit ball, B| · |, is closed in the topology induced by ‖ · ‖. Notice then that

B| · | is a barrel of X and thus it has non-empty interior. It is sufficient now to

apply Remark 4.1.



A Partial Positive Solution to a Conjecture of Ricceri 67

(b) ⇒ (a). Let A be any barrel of X. Notice that we may assume without

any loss of generality that A is bounded since we can intersect it with the unit

ball of X. So, let us suppose that A is bounded. Denote by | · | the norm on

X given by the Minkowski functional of A. Since A is closed in (X, ‖ · ‖), by

Lemma 4.3 we have that A = B| · | and hence B| · | is closed in (X‖ · ‖). By

hypothesis, there exists K > 0 such that | · | ≤ K‖ · ‖, which means that A is

a neighbourhood of 0 in (X‖ · ‖) by bearing in mind Remark 4.1. �
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