
Topological Methods in Nonlinear Analysis
Volume 46, No. 1, 2015, 29–43

c© 2015 Juliusz Schauder Centre for Nonlinear Studies
Nicolaus Copernicus University

ANALYTIC INVARIANT MANIFOLDS

FOR NONAUTONOMOUS EQUATIONS

Luis Barreira — Claudia Valls

Abstract. We construct real analytic stable invariant manifolds for suf-

ficiently small perturbations of a linear equation v′ = A(t)v admitting
a nonuniform exponential dichotomy. As a byproduct of our approach we

obtain an exponential control not only of the trajectories on the invariant

manifolds, but also of all their derivatives.

1. Introduction

We establish the existence of real analytic stable invariant manifolds for the

equation

(1.1) v′ = A(t)v + f(t, v),

assuming that the linear equation v′ = A(t)v admits a nonuniform exponen-

tial dichotomy, and that the perturbation f has an appropriate extension to

the complex domain and is sufficiently small (essentially we require that it de-

cays exponentially with a speed related to the nonuniformity of the exponential

behavior).

Our work naturally belongs to the theory of nonuniformly hyperbolic dy-

namics, and in a certain sense this is the weakest possible setting in which one

can construct (analytic) stable invariant manifolds. We refer to [1] for a detailed

exposition of the theory. The classical notion of exponential dichotomy is very
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stringent for the dynamics and it is of interest to look for more general types

of hyperbolic behavior, that can be much more typical. This is precisely what

happens with the notion of nonuniform exponential dichotomy. Stable invari-

ant manifolds for nonuniformly hyperbolic trajectories were first constructed by

Pesin in [6].

In the case of a nonuniformly hyperbolic holomorphic dynamics in Cn, the

existence of invariant stable complex manifolds was announced by Wu in [7]

while referring to his doctoral thesis. In the case of polynomial automorphisms

of C2 it was shown independently by Wu in [7] and Bedford, Lyubich and Smil-

lie in [3] (both developing the approach of Pesin in the “classical” nonuniform

hyperbolicity theory) that with respect to the unique measure µ of maximal en-

tropy, the stable manifold of almost every point is conformally equivalent to the

complex plane. The measure µ was introduced by Bedford, Smillie and Sibony

(see [4]) and it was shown to be the unique measure of maximal entropy in [3].

The more general case of arbitrary holomorphic diffeomorphisms of a complex

manifold was considered by Jonsson and Varolin in [5], where they showed that

for each Lyapunov regular trajectory the stable manifolds are biholomorphic to

a complex Euclidean space.

Here we consider instead the case of a real analytic dynamics, mimicking to

the possible extent our work in [2] in the case of discrete time. To the best of our

knowledge, it exists nowhere in the literature an analytic stable manifold theorem

for nonautonomous differential equations in the nonuniformly hyperbolic setting.

One could try to establish the existence of invariant manifolds using the results

described above for holomorphic dynamics, but the fact that a given real analytic

map may have singularities arbitrarily close the real Euclidean space in which

it is defined prevents us to proceed in this manner, at least without further

hypotheses or modifications.

2. Stable manifold theorem

2.1. Setup. Let A(t) be k×k matrices varying continuously with t in some

open neighbourhood of R+
0 .

Given s ≥ 0 and vs ∈ Rk, thesolution of the initial value problem

(2.1) v′ = A(t)v, v(s) = vs

is defined for all t ≥ 0, and we it in the form v(t) = T (t, s)vs, where T (t, s)

is the associated linear evolution operator. We say that equation (2.1) admits

a (strong) nonuniform exponential dichotomy if there exist projections P (t) vary-

ing continuously with t ≥ 0, such that

P (t)T (t, s) = T (t, s)P (s) for every t, s ≥ 0,
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and there exist constants

a ≤ a < 0 ≤ b ≤ b, ε ≥ 0 and D > 0

such that for every t ≥ s ≥ 0 we have

(2.2) ‖T (t, s)P (s)‖ ≤ Dea(t−s)+εs, ‖T (t, s)−1P (t)‖ ≤ De−a(t−s)+εt,

and

(2.3) ‖T (t, s)Q(s)‖ ≤ Deb(t−s)+εs, ‖T (t, s)−1Q(t)‖ ≤ De−b(t−s)+εt,

where Q(t) = Id− P (t) is the complementary projection of P (t) for each t ≥ 0.

Then the stable and unstable subspaces at time t are defined by

E(t) = P (t)(Rk) and F (t) = Q(t)(Rk).

We also consider a continuous function f : R+
0 ×Rk → Rk such that f(t, · ) : Rk →

Rk is analytic and f(t, 0) = 0 for each t ≥ 0. Given s ≥ 0 and vs = (ξ, η) ∈
E(s)× F (s) we denote by

(x(t), y(t)) = (x(t, s, vs), y(t, s, vs)) ∈ E(t)× F (t)

the unique solution of equation (1.1) with v(s) = vs, or equivalently of the system

x(t) = T (t, s)P (s)ξ +

∫ t

s

T (t, τ)P (τ)f(τ, x(τ), y(τ)) dτ,

y(t) = T (t, s)Q(s)η +

∫ t

s

T (t, τ)Q(τ)f(τ, x(τ), y(τ)) dτ.

The semiflow generated by equation (1.1) given by

(2.4) Ψτ (s, ξ, η) = (s+ τ, x(s+ τ, ξ, η), y(s+ τ, ξ, η)), τ ≥ 0.

2.2. Lyapunov norms. Due to the nonuniform exponential behavior in

(2.2) and (2.3), we introduce appropriate Lyapunov norms with respect to which

the exponential behavior becomes uniform.

Let us fix % > 0 and ζ ∈ (0,−a/2) such that

a− b+ 2ζ < 0 and b− b+ ζ 6= 0.

Given t > % and (u, v) ∈ E(t)× F (t) we define new norms by

‖u‖′t =

∫ ∞
t

‖T (σ, t)P (t)u‖e−(a+ζ)(σ−t) dσ,

‖v‖′t =

∫ t

t−%
‖T (t, σ)−1Q(t)v‖e−(b+ζ)(t−σ) dσ,

(2.5)

and

‖(u, v)‖′t = max{‖u‖′t, ‖v‖′t}.

By (2.2) the first integral in (2.5) is finite.
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Lemma 2.1. There exists a constant C ≥ 1 such that for every t > % and

(u, v) ∈ E(t)× F (t) we have

(2.6) C−1e−εt‖u‖ ≤ ‖u‖′t ≤ Ceεt‖u‖, C−1e−εt‖v‖ ≤ ‖v‖′t ≤ Ceεt‖v‖.

Proof. By (2.5) we have

‖u‖′t ≤
∫ ∞
t

Dea(σ−t)+εt‖u‖e−(a+ζ)(σ−t) dσ

= Deεt‖u‖
∫ ∞
t

e−ζ(σ−t) dσ =
D

ζ
eεt‖u‖.

For the inequality in the left we note that

‖u‖′t ≥
∫ ∞
t

‖T (σ, t)−1P (σ)‖−1‖u‖e−(a+ζ)(σ−t) dσ

≥
∫ ∞
t

D−1ea(σ−t)−εσ‖u‖e−(a+ζ)(σ−t) dσ

= D−1‖u‖e−(a−a−ζ)t
∫ ∞
t

e(a−a−ζ−ε)σ dσ =
1

D|a− a− ζ − ε|
e−εt‖u‖

(notice that a− a− ζ − ε < 0). In a similar manner, we have

‖v‖′t ≤
∫ t

t−%
De−b(t−σ)+εt‖v‖e−(b+ζ)(t−σ) dσ

= Deεt‖v‖
∫ t

t−%
e−ζ(t−σ) dσ ≤ D

ζ
(1− e−ζ%)eεt‖v‖,

and for the last inequality we note that

‖v‖′t ≥
∫ t

t−%
‖T (t, σ)−1Q(t)‖−1‖v‖e−(b+ζ)(t−σ) dσ

≥
∫ t

t−%
D−1e−b(σ−t)−εt‖v‖e−(b+ζ)(t−σ) dσ

= D−1‖v‖e−(b−b+ζ+ε)t
∫ t

t−%
e(b−b+ζ)σ dσ

=
1

D(b− b+ ζ)
(1− e−(b−b+ζ)%)e−εt‖v‖.

This completes the proof of the lemma. �

2.3. Stable manifold theorem. Given a subspace F ⊂ Rk, we write

(2.7) Bt(F ) = {x ∈ F : ‖x‖′t ≤ 1}, ∆t(F ) = {z ∈ F̃ : ‖z‖′t ≤ 1},

where F̃ is the complexification of F . Now we consider the space H of all

continuous functions f : R+
0 × Rk → Rk with

f(t, 0) = 0 and (∂f/∂v)(t, 0) = 0 for t ∈ R+
0 ,
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such that f(t, · )|B(Rk) has a holomorphic extension f̃(t, · ) to the interior of the

polydisk

∆t(Rk) = {(z1, . . . , zk) ∈ Ck : ‖zi‖′t ≤ 1 for i = 1, . . . , k}

which is continuous on ∆t(Rk). We assume that there is a constant δ ∈ (0, 1)

such that

(2.8) sup

{
‖f̃(t, u)− f̃(t, v)‖′t

‖u− v‖′t
: u, v ∈ ∆t(Rk) with u 6= v

}
≤ δe−2εt

for t ∈ R+
0 . Let also X be the space of all continuous functions

ϕ : {(t, ξ) ∈ (%,+∞)× Rk : ξ ∈ Bt(E(t))} → Rk

such that:

(1) ϕ(t, Bt(E(t))) ⊂ F (t), with each map ϕ(t, · )|Bt(E(t)) having a holo-

morphic extension ϕ̃(t, · ) to the interior of ∆t(E(t)) (see (2.7)) which is

continuous on ∆t(E(t));

(2) for every t > % we have ϕ(t, 0) = 0, (∂ϕ/∂v)(t, 0) = 0, and

(2.9) sup

{
‖ϕ̃(t, ξ)− ϕ̃(t, ξ)‖′t

‖ξ − ξ‖′t
: ξ, ξ ∈ ∆t(E(t)) with ξ 6= ξ

}
≤ 1.

Setting ξ = 0 in (2.9), we obtain ‖ϕ̃(t, ξ)‖′t ≤ ‖ξ‖′t and hence,

(2.10) ϕ(t, Bt(E(t))) ⊂ Bt(F (t)) and ϕ̃(t,∆t(E(t))) ⊂ ∆t(F (t)).

In particular this implies that

(ξ, ϕ̃(t, ξ)) ∈ ∆t(Rk) for every ξ ∈ ∆t(E(t)).

Given a function ϕ ∈ X, for each t > % we consider the graph

Vt = {(ξ, ϕ(t, ξ)) : ξ ∈ Bt(E(t))} ⊂ Rk.

The following is our stable manifold theorem.

Theorem 2.2. Assume that equation (2.1) admits a nonuniform exponential

dichotomy and take f ∈ H. Provided that δ in (2.8) is sufficiently small, there

exists a unique ϕ ∈ X such that

(2.11) Ψτ (Vs) ⊂ Vτ+s for every τ ≥ 0, s > %.

Moreover:

(a) Vt is an analytic manifold, 0 ∈ Vt, and T0Vt = E(t) for every t ∈ R+
0 ;

(b) for every sufficiently small α > 0, there exists K > 0 such that

‖Ψτ (s, ξ, ϕ(s, ξ))−Ψτ (s, ξ, ϕ(s, ξ))‖ ≤ Ke(a+α+ε)(t−s)+2εs‖ξ − ξ‖

for every t ≥ s > % and ξ, ξ ∈ Bs(E(s)).
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3. Proof of Theorem 2.2

3.1. Function spaces. In view of the desired property (2.11), given s > %

and ξ ∈ Bs(E(s)), and setting v(s) = (ξ, ϕ(s, ξ)) ∈ Vs, we must have

Ψt−s(s, ξ, ϕ(s, ξ)) = (x(t, ξ), ϕ(t, x(t, ξ))), t ≥ s

for some x(t, ξ) ∈ E(t). Therefore, equation (1.1) can be written in the form

x(t, ξ) =T (t, s)P (s)ξ +

∫ t

s

T (t, τ)P (τ)f(τ, x(τ, ξ), ϕ(τ, x(τ, ξ))) dτ

ϕ(t, x(t, ξ)) =T (t, s)Q(s)ϕ(s, ξ)

+

∫ t

s

T (t, τ)Q(τ)f(τ, x(τ, ξ), ϕ(τ, x(τ, ξ))) dτ

(3.1)

for t ≥ s. Now we equip the space X with the norm

(3.2) |||ϕ||| = sup{‖ϕ̃(t, x)‖′t/‖x‖′t : t > % and x ∈ ∆t(E(t)) \ {0}}.

One can easily verify that X is a complete metric space with this norm.

For a fixed s > %, given t ≥ s we set

(3.3) ρ(t, s) = (a+ 2ζ)(t− s).

Let also B be the space of all continuous functions

x : {(t, ξ) ∈ [s,+∞)× Rk : ξ ∈ Bs(E(s))} → Rk

such that:

(1) x(t, Bs(E(s))) ⊂ E(t) for each t ≥ s, which each map x(t, · )|Bs(E(s))

having a holomorphic extension x̃(t, · ) to the interior of ∆s(E(s)) which

is continuous on ∆s(E(s));

(2) x(s, ξ) = ξ for each ξ ∈ Bs(E(s)), and

(3.4) ‖x‖′ := sup

{
‖x̃(t, ξ)‖′te−ρ(t,s)

‖ξ‖′s
: t ≥ s and ξ ∈ ∆s(E(s)) \ {0}

}
≤ 1.

It follows from (3.4) and (3.3) that

(3.5) x(t, Bs(E(s))) ⊂ Bt(E(t)), x̃(t,∆s(E(s))) ⊂ ∆t(E(t)).

One can also verify that B is a complete metric space with the norm in (3.4).

3.2. Solution on the stable direction. Now we establish the existence

of solutions of the first equation in (3.1) in the space B.

Lemma 3.1. Provided that δ is sufficiently small, for each ϕ ∈ X and s > ρ

there is a unique xϕ ∈ B satisfying the first equation in (3.1) for every t ≥ s.
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Proof. Given x ∈ B, we define

(Jx)(t, ξ) = T (t, s)P (s)ξ +

∫ t

s

T (t, τ)P (τ)f(τ, x(τ, ξ), ϕ(τ, x(τ, ξ))) dτ

for each t ≥ s and ξ ∈ Bs(E(s)). When ξ ∈ ∆s(E(s)) we have

(x̃(τ, ξ), ϕ̃(τ, x̃(τ, ξ))) ∈ ∆τ (Rk)

(see (2.10) and (3.5)). Thus, each map (Jx)(t, · ) admits a holomorphic extension

to the interior of ∆s(E(s)), which we continue to denote by (Jx)(t, · ), and it is

given by

(Jx)(t, ξ) = T (t, s)P (s)ξ +

∫ t

s

T (t, τ)P (τ)f̃(τ, x̃(τ, ξ), ϕ̃(τ, x̃(τ, ξ))) dτ.

Furthermore, (Jx)(s, ξ) = ξ and (Jx)(t, · ) is continuous on ∆s(E(s)).

Now we show that ‖(Jx)(t, · )‖′t ≤ 1 for each t ≥ s (when t = s this is

immediate from the definitions). Setting

(3.6) g∗(τ, ξ) := P (τ)f̃(τ, x̃(τ, ξ), ϕ̃(τ, x̃(τ, ξ))),

and using (2.6), (2.8), (2.9), and (3.4), we obtain

‖g∗(τ, ξ)‖ ≤ Ceετ‖g∗(τ, s)‖′τ(3.7)

≤ Cδe−ετ max{‖x̃(τ, ξ)‖′τ , ‖ϕ̃(τ, x̃(τ, ξ))‖′τ}

≤ Cδe−ετ‖x̃(τ, ξ)‖′τ ≤ Cδe−ετeρ(τ,s)‖ξ‖′s.

By (2.5) and (2.2), since T (σ, t)T (t, s) = T (σ, s) for each σ ≥ t ≥ s, we obtain

‖(Jx)(t, ξ)‖′t =

∫ ∞
t

‖T (σ, t)(Jx)(t, ξ)‖e−(a+ζ)(σ−t) dσ(3.8)

≤
∫ ∞
t

‖T (σ, t)T (t, s)P (s)ξ‖e−(a+ζ)(σ−t) dσ

+

∫ t

s

∫ ∞
t

‖T (σ, t)T (t, τ)P (τ)g∗(τ, ξ)‖e−(a+ζ)(σ−t) dσ dτ

≤ e(a+ζ)(t−s)
∫ ∞
t

‖T (σ, s)P (s)ξ‖e−(a+ζ)(σ−s) dσ

+

∫ t

s

∫ ∞
t

‖T (σ, τ)P (τ)‖ · ‖g∗(τ, ξ)‖e−(a+ζ)(σ−t) dσ dτ

≤ e(a+ζ)(t−s)‖ξ‖′s + CδD‖ξ‖′s
∫ t

s

∫ ∞
t

eρ(τ,s)ea(t−τ)e−ζ(σ−t) dσ dτ

≤ e(a+ζ)(t−s)‖ξ‖′s + CδD‖ξ‖′sea(t−s)
∫ t

s

∫ ∞
t

e2ζ(τ−s)e−ζ(σ−t) dσ dτ

≤ e(a+ζ)(t−s)‖ξ‖′s + CδD‖ξ‖′seρ(t,s)
∫ t

s

∫ ∞
t

e2ζ(τ−t)e−ζ(σ−t) dσ dτ

≤ e(a+ζ)(t−s)‖ξ‖′s + CδD‖ξ‖′seρ(t,s)
∫ t

s

∫ ∞
t

eζ(τ−σ)eζ(τ−t) dσ dτ
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≤ e(a+ζ)(t−s)‖ξ‖′s +
CδD

ζ
‖ξ‖′seρ(t,s)

∫ t

s

eζ(τ−t) dτ

≤ e(a+ζ)(t−s)‖ξ‖′s +
CδD

ζ2
(1− e−ζ(t−s))‖ξ‖′seρ(t,s)

=

(
e−ζ(t−s) +

CδD

ζ2
(1− e−ζ(t−s))

)
eρ(t,s)‖ξ‖′s.

Setting

F (r) = e−ζr +
CδD

ζ2
(1− e−ζr)

we obtain

F ′(r) =

(
− ζ +

CδD

ζ
e−ζr

)
e−ζr < 0

for δ sufficiently small. Since F (0) = 1, for t− s > 0 we have F (t− s) < 1, i.e.

‖(Jx)(t, ξ)‖′t ≤ eρ(t,s)‖ξ‖′s and ‖Jx‖′ ≤ 1.

Hence, Jx ∈ B, and we obtain a well-defined operator J : B→ B.

Now we show that J is a contraction. Given x, y ∈ B and τ ≥ s, proceeding

in a similar manner to that in (3.7), and setting

L(τ) = P (τ)[f̃(τ, x̃(τ, ξ), ϕ̃(τ, x̃(τ, ξ)))− f̃(τ, ỹ(τ, ξ), ϕ̃(τ, ỹ(τ, ξ)))],

we obtain ‖L(τ)‖ ≤ Cδe−ετeρ(τ,s)‖ξ‖′s‖x− y‖′, and hence,

‖(Jx)(t, ξ)− (Jy)(t, ξ)‖′t ≤
∫ t

s

∫ ∞
t

‖T (σ, τ)P (τ)‖ · ‖L(τ)‖e−(a+ζ)(σ−t) dσ dτ

≤ CδD

ζ2
(1− e−ζ(t−s))‖ξ‖′seρ(t,s)‖x− y‖′ ≤

CδD

ζ2
‖ξ‖′seρ(t,s)‖x− y‖′.

Therefore,

‖Jx− Jy‖′ ≤ CδD

ζ2
‖x− y‖′.

Provided that δ is sufficiently small, we have CδD/ζ2 < 1 and hence J is a con-

traction. Thus, there exists a unique x = xϕ ∈ B such that Jx = x. This

completes the proof of the lemma. �

We note that in view of (3.4) each function xt,ϕ in Lemma 3.1 satisfies

(3.9) ‖xϕ(t, ξ)‖′t ≤ eρ(t,s)‖ξ‖′s for t ≥ s.

3.3. Auxiliary bounds.

Lemma 3.2. Provided that δ is sufficiently small, for each ϕ ∈ X, s > %, and

ξ, ξ ∈ ∆s(E(s)) we have

(3.10) ‖x̃ϕ(t, ξ)− x̃ϕ(t, ξ)‖′t ≤ 2‖ξ − ξ‖′seρ(t,s), t ≥ s.
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Proof. Take τ ≥ s. Using the notation in (3.6) and proceeding as in (3.7),

we obtain

‖g∗(τ, ξ)− g∗(τ, ξ)‖ ≤ Cδe−ετ‖x̃(τ, ξ)− x̃(τ, ξ)‖′τ .
Set

z(τ) = ‖x̃ϕ(τ, ξ)− x̃ϕ(τ, ξ)‖′τ and S(τ) = e−ρ(τ,s)z(τ)

for each τ ≥ s. Proceeding as in (3.8), we obtain

z(t) ≤
∫ ∞
t

‖T (σ, s)P (s)(ξ − ξ)‖e−(a+ζ)(σ−t) dσ(3.11)

+

∫ t

s

∫ ∞
t

‖T (σ, τ)P (τ)‖ · ‖g∗(τ, ξ)− g∗(τ, ξ)‖e−(a+ζ)(σ−t) dσ dτ

≤ e(a+ζ)(t−s)‖ξ − ξ‖′s + CδD

∫ t

s

∫ ∞
t

ea(t−τ)e−ζ(σ−t)z(τ) dσ dτ

≤ eρ(t,s)−ζ(t−s)‖ξ − ξ‖′s

+ CδDea(t−s)
∫ t

s

∫ ∞
t

ea(s−τ)z(τ)e−ζ(σ−t) dσ dτ

= eρ(t,s)−ζ(t−s)‖ξ − ξ‖′s +
CδD

ζ
eρ(t,s)

∫ t

s

e2ζ(τ−t)S(τ) dτ

≤ eρ(t,s)
[
e−ζ(t−s)‖ξ − ξ‖′s +

CδD

ζ

∫ t

s

e2ζ(τ−t)S(τ) dτ

]
,

which yields

S(t) ≤ e−ζ(t−s)‖ξ − ξ‖′s +
CδD

ζ

∫ t

s

e2ζ(τ−t)S(τ) dτ

≤ ‖ξ − ξ‖′s +
CδD

ζ

∫ t

s

e2ζ(τ−t)S(τ) dτ.

Applying Gronwall’s lemma we obtain

S(t) ≤ ‖ξ − ξ‖′se(CδD/ζ)
∫ t
s
e2ζ(τ−t) dτ ≤ eCδD/(2ζ

2)‖ξ − ξ‖′s,

and hence,

‖x̃ϕ(t, ξ)− x̃ϕ(t, ξ)‖′t ≤ eCδD/(2ζ
2)‖ξ − ξ‖′seρ(t,s).

Taking δ sufficiently small, this yields inequality (3.10). �

Lemma 3.3. Provided that δ is sufficiently small, for each ϕ, ψ ∈ X, s > %,

and ξ ∈ ∆s(E(s)) we have

(3.12) ‖x̃ϕ(t, ξ)− x̃ψ(t, ξ)‖′t ≤ ‖ξ‖′s|||ϕ− ψ|||eρ(t,s), t ≥ s.

Proof. Take τ ≥ s. Proceeding as in (3.7) and using (3.2) and (3.9) we

obtain

a(τ) := ‖g̃(τ, x̃ϕ(τ, ξ), ϕ̃(τ, x̃ϕ(τ, ξ)))− g̃(τ, x̃ψ(τ, ξ), ψ̃(τ, x̃ψ(τ, ξ)))‖(3.13)

≤Cδe−ετ‖(x̃ϕ(τ, ξ)− x̃ψ(τ, ξ), ϕ̃(τ, x̃ϕ(τ, ξ))− ψ̃(τ, x̃ψ(τ, ξ)))‖′τ
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≤Cδe−ετ (‖x̃ϕ(τ, ξ)‖′τ · |||ϕ− ψ|||+ 2‖x̃ϕ(τ, ξ)− x̃ψ(τ, ξ)‖′τ )

≤Cδe−ετeρ(τ,s)‖ξ‖′s|||ϕ− ψ|||+ 2Cδe−ετ‖x̃ϕ(τ, ξ)− x̃ψ(τ, ξ)‖′τ .

Set

ρ(τ) = ‖x̃ϕ(τ, ξ)− x̃ψ(τ, ξ)‖′τ and T (τ) = e−ρ(τ,s)ρ(τ)

for each τ ≥ s. Proceeding as in (3.11) (see also (3.7) and (3.8)) we obtain

ρ(t) ≤
∫ t

s

∫ ∞
t

‖T (σ, τ)P (τ)‖a(τ)e−(a+ζ)(σ−t) dσ dτ

=CδD‖ξ‖′s|||ϕ− ψ|||
∫ t

s

∫ ∞
t

ea(σ−τ)eρ(τ,s)e−(a+ζ)(σ−t) dσ dτ

+ 2CDδ

∫ t

s

∫ ∞
t

ea(σ−τ)ρ(τ)e−(a+ζ)(σ−t) dσ dτ

=CδD‖ξ‖′s|||ϕ− ψ|||ea(t−s)
∫ t

s

∫ ∞
t

e2ζ(τ−s)e−ζ(σ−t) dσ dτ

+ 2CDδ

∫ t

s

∫ ∞
t

ea(t−τ)e−ζ(σ−t)ρ(τ) dσ dτ

=CδD‖ξ‖′s|||ϕ− ψ|||eρ(t,s)
∫ t

s

∫ ∞
t

e2ζ(τ−t)e−ζ(σ−t) dσ dτ

+ 2CDδeρ(t,s)
∫ t

s

∫ ∞
t

e2ζ(τ−t)e−ζ(σ−t)T (τ) dσ dτ

=
CδD

2ζ2
‖ξ‖′s|||ϕ− ψ|||eρ(t,s) +

2CDδ

ζ
eρ(t,s)

∫ t

s

e2ζ(τ−t)T (τ) dτ,

and thus,

T (t) ≤ CδD

2ζ2
‖ξ‖′s|||ϕ− ψ|||+

2CDδ

ζ

∫ t

s

e2ζ(τ−t)T (τ) dτ.

Applying Gronwall’s lemma we obtain

T (t) ≤ CδD

2ζ2
eCδD/ζ

2

‖ξ‖′s|||ϕ− ψ|||,

and taking δ sufficiently small yields inequality (3.12). �

3.4. Existence of the graph. Now we use the former lemmas to establish

the existence of a function ϕ ∈ X satisfying the second identity in (3.1). We

start with an auxiliary statement.

Lemma 3.4. Provided that δ is sufficiently small, there exists a unique ϕ ∈ X

such that for every s > % and ξ ∈ Bs(E(s)) we have

(3.14) ϕ(s, ξ) = −
∫ ∞
s

T (τ, s)−1Q(τ)f(τ, xϕ(τ, ξ), ϕ(τ, xϕ(τ, ξ))) dτ.
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Proof. We define an operator Φ in X by

(3.15) (Φϕ)(s, ξ) = −
∫ ∞
s

T (τ, s)−1Q(τ)f(τ, xϕ(τ, ξ), ϕ(τ, xϕ(τ, ξ))) dτ

for s > % and ξ ∈ Bs(E(s)), where xϕ is the unique function given by Lemma 3.1.

We first show that the integral in (3.15) (or more precisely its extension to the

complex domain) converges uniformly on ∆s(E(s)). Indeed, by (3.9) and (2.6),

writing

h∗(τ, ξ) = Q(τ)f̃(τ, x̃ϕ(τ, ξ), ϕ̃(τ, x̃ϕ(τ, ξ)))

and proceeding as in (3.7), we obtain

‖h∗(τ, ξ)‖ ≤ Cδe−ετ‖x(τ, ξ)‖′τ ≤ Cδe−ετeρ(τ,s)‖ξ‖′s.

By the second inequality in (2.3), for every r ≥ s we have

‖T (τ, s)−1Q(τ)‖ · ‖h∗(τ, ξ)‖ ≤ DCδ‖ξ‖′se−b(τ−s)+ετe−ετe(a+2ζ)(τ−s)(3.16)

= DCδe(a−b+2ζ)(τ−s),

where a− b+ 2ζ < 0. This shows that the integral in (3.15) converges uniformly

on ∆s(E(s)), and hence the right-hand side of (3.15) defines a holomorphic ex-

tension of (Φϕ)(s, · ) to the interior of ∆s(E(s)) which is continuous on ∆s(E(s))

(we continue to denote the extension by (Φϕ)(s, · )). Since xϕ(τ, 0) = 0 for eve-

ry ϕ ∈ X and τ ≥ s (see (3.9)), it follows from (3.15) that (Φϕ)(s, 0) = 0 for

every s > %. Furthermore, also by (3.15) and since (∂f/∂v)(t, 0) = 0, we have

∂(Φϕ/∂v)(s, 0) = 0 for every s > %.

By (2.6), (3.9) and (3.10), proceeding as in (3.7) we obtain

b(τ) := ‖h∗(τ, ξ)− h∗(τ, ξ)‖

≤Cδe−ετ‖x(τ, ξ)− x(τ, ξ)‖′τ ≤ 2Cδe−ετeρ(τ,s)‖ξ − ξ‖′s.

In an analogous manner to that in (3.16) we also have

‖(Φϕ)(s, ξ)− (Φϕ)(s, ξ)‖′s(3.17)

≤
∫ s

s−%

∫ ∞
s

‖T (τ, σ)−1Q(τ)‖b(τ)e−(b+ζ)(σ−s) dτ dσ

≤ 2CDδ‖ξ − ξ‖′s
∫ ∞
s

∫ s

s−%
e−b(τ−σ)e(a+2ζ)(τ−s)e−(b+ζ)(σ−s) dσ dτ

≤ 2CDδ‖ξ − ξ‖′s
∫ ∞
s

∫ s

s−%
e(a−b+2ζ)(τ−s)e−ζ(σ−s) dσ dτ

=
2CDδ(e%ζ − 1)

ζ|a− b+ 2ζ|
‖ξ − ξ‖′s.

Taking δ sufficiently small we have Φ(X) ⊂ X and the operator Φ: X → X is

well-defined.
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Now we show that Φ: X→ X is a contraction with the norm in (3.2). Given

ϕ,ψ ∈ X and s > %, let xϕ and xψ be the unique functions given by Lemma 3.1.

Proceeding as in (3.13), and using Lemma 3.3, (3.9), and (2.6), we obtain

c(τ) :=
∥∥Q(τ)[f̃(τ, x̃ϕ(τ, ξ), ϕ̃(τ, x̃ϕ(τ, ξ)))− f̃(τ, x̃ψ(τ, ξ), ψ̃(τ, x̃ψ(τ, ξ)))]

∥∥
≤Cδe−ετ [eρ(τ,s)‖ξ‖′s · |||ϕ− ψ|||+ 2‖xϕ(τ, ξ)− xψ(τ, ξ)‖′τ ]

≤ 3Cδe−ετeρ(τ,s)‖ξ‖′s · |||ϕ− ψ|||.

In an analogous manner to that in (3.17) we conclude that

‖(Φϕ)(s, ξ) − (Φψ)(s, ξ)‖′s

≤
∫ s

s−%

∫ ∞
s

‖T (τ, σ)−1Q(τ)‖c(τ)e−(b+ζ)(σ−s) dτ dσ

≤ 3CδD‖ξ‖′s · |||ϕ− ψ|||
∫ ∞
s

∫ s

s−%
e(a−b+2ζ)(τ−s)e−ζ(σ−s) dσ dτ

=
3CδD(eζ% − 1)

ζ|a− b+ 2ζ|
‖ξ‖′s · |||ϕ− ψ|||.

Thus, taking δ sufficiently small, the operator Φ: X→ X is a contraction in the

complete metric space X. Hence, there exists a unique ϕ ∈ X satisfying Φϕ = ϕ.

This completes the proof of the lemma. �

We can now establish Theorem 2.2.

Proof of Theorem 2.2. Consider the unique function ϕ ∈ X given by

Lemma 3.4. Since T (t, s)T (τ, s)−1 = T (t, τ), for every ξ ∈ Bs(E(s)) and t ≥ s

it follows from (3.14) that

(3.18) T (t, s)Q(s)ϕ(s, ξ) +

∫ t

s

T (t, τ)Q(τ)f(τ, x(τ, ξ), ϕ(τ, x(τ, ξ))) dτ

= −
∫ ∞
t

T (τ, t)−1Q(τ)f(τ, x(τ, ξ), ϕ(τ, x(τ, ξ))) dτ.

We know from (3.5) that x(t, ξ) ∈ Bt(E(t)), and hence it follows from (3.14)

that the right-hand side of (3.18) is equal to ϕ(t, x(t, ξ)). This establishes pro-

perty (2.11).

It follows from the mean value theorem together with Lemmas 3.2 and 2.1,

that for every t ≥ s and ξ, ξ ∈ Bs(E(s)) we have (see (2.4))

‖Ψt−s(s, ξ, ϕ(s, ξ))−Ψt−s(s, ξ, ϕ(s, ξ))‖

= ‖x(t, ξ)− x(t, ξ)‖+ ‖ϕ(t, x(t, ξ))− ϕ(t, x(t, ξ))‖

≤ eεt[C‖x(t, ξ)− x(t, ξ)‖′t + C‖ϕ(t, x(t, ξ))− ϕ(t, x(t, ξ))‖′t]

≤ 2Ceεt‖x(t, ξ)− x(t, ξ)‖′t ≤ 4Ceεteρ(t,s)‖ξ − ξ‖′s

≤ 4CD

ζ
eε(t+s)eρ(t,s)‖ξ − ξ‖ ≤ 4CD

ζ
e(a+2ζ+ε)(t−s)+2εs‖ξ − ξ‖. �



Analytic Invariant Manifolds 41

4. Decay of derivatives along the stable manifold

We show in this section that the derivatives of the functions

ξ 7→ Ψt−s(s, ξ, ϕ(s, ξ))

also exhibit an exponential decay.

Theorem 4.1. Under the assumptions in Theorem 2.2, for the unique ϕ ∈ X

there exists κ > 1 such that given j ∈ N, t ≥ s > %, and ξ, ξ ∈ E(s) with

‖ξ‖, ‖ξ‖ ≤ C−1e−εs we have∥∥∥∥ ∂j∂ξj Ψt−s(s, ξ, ϕ(s, ξ))− ∂j

∂ξj
Ψt−s(s, ξ, ϕ(s, ξ))

∥∥∥∥
≤ κje(a+α+3ε)(t−s)+ε(j+4)s‖ξ − ξ‖.

Proof. Given σ ∈ (0, 1] we set

(4.1) ∆(σ) =
{
z = (z1, . . . , zk) ∈ Ck : |zi| ≤ σ for i = 1, . . . , k

}
.

Lemma 4.2 (see [2, Lemma 5]). If f : int ∆(σ) → C is holomorphic, then

there exists d = d(k) > 0 such that

sup
z∈∆(σe−ρ)

∣∣∣∣ ∂f∂zj (z)

∣∣∣∣ ≤ d

σρk+1
sup

z∈∆(σ)

|f(z)|

for every ρ ∈ (0, 1] and j = 1, . . . , k.

We consider a sequence (σj)j∈N0
satisfying σj = σj−1e

−1/j2 for j ≥ 1, and

we set

T (j) =


1, j = 2,
j−2∏
l=1

l∏
i=1

e1/i2 , j ≥ 3.

We have

(4.2) σl = σ0

l∏
r=1

e−1/r2 and lim
l→∞

σl = σ0e
−π2/6.

Now we set ϕ∗(t, ξ) = ϕ̃(t, x̃(t, ξ)). By the chain rule,∥∥∥∥(∂ϕ∗∂ξ
)

(t, ξ)

∥∥∥∥ ≤ ∥∥∥∥(∂ϕ̃∂x
)

(t, x̃(t, ξ))

∥∥∥∥ · ∥∥∥∥(∂x̃∂ξ
)

(t, ξ)

∥∥∥∥.
For each x̃ = x̃(t, ξ), using Lemma 2.1 we obtain∥∥∥∥(∂ϕ̃∂x

)
(t, x̃)

∥∥∥∥ ≤ sup

{
‖ϕ̃(t, x+ h)− ϕ̃(t, x)‖

‖h‖
: x+ h ∈ ∆t(E(t)), h 6= 0

}
≤ C2e2εt sup

{
‖ϕ̃(t, x+ h)− ϕ̃(t, x)‖′t

‖h‖′t
: x+ h ∈ ∆t(E(t)), h 6= 0

}
≤ C2e2εt.
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Thus, setting σ0 = C−1e−εs (for each fixed s) and a1 = sup{‖(∂x̃/∂ξ)(t, ξ)‖ :

ξ ∈ ∆(σ0)}, with Ck replaced by E(s) in (4.1), we have

b1 := sup

{∥∥∥∥(∂ϕ∗∂ξ
)

(t, ξ)

∥∥∥∥ : ξ ∈ ∆(σ0)

}
≤ C2e2εta1 =: ã1.(4.3)

We claim that, for each j ≥ 2,

(4.4) aj := sup

{∥∥∥∥(∂j x̃∂ξj
)

(t, ξ)

∥∥∥∥ : ξ ∈ ∆(σj−1)

}
≤ T (j)

σj−1
0

j−1∏
l=1

(de(k+1)/l2)a1,

and

(4.5) bj := sup

{∥∥∥∥(∂jϕ∗∂ξj

)
(t, ξ)

∥∥∥∥ : ξ ∈ ∆(σj−1)

}
≤ T (j)

σj−1
0

j−1∏
l=1

(de(k+1)/l2)ã1.

For j = 2, by Lemma 4.2 and (4.3) we have

a2 ≤
dek+1

σ0
a1 and b2 ≤

dek+1

σ0
b1 ≤

dek+1

σ0
ã1.

This proves (4.4) and (4.5) for j = 2. Now we assume that (4.4) and (4.5) hold

for j = l − 1 (l ≥ 3). Then, by Lemma 4.2,

(4.6) al ≤
de(k+1)/(l−1)2

σl−2
al−1 ≤

T (l − 1)

σl−2σ
l−2
0

l−1∏
j=1

(de(k+1)/j2)a1.

By (4.2) we have

σ0
T (l − 1)

σl−2
=

l−3∏
j=1

j∏
i=1

e1/i2
l−2∏
r=1

e1/r2 =

l−2∏
j=1

j∏
i=1

e1/i2 = T (l),

and we conclude from (4.6) that

al ≤
T (l)

σl−1
0

l−1∏
j=1

(de(k+1)/j2)a1.

This shows that (4.4) holds for j = l. One can show in a similar manner that (4.5)

holds for j = l.

Now we establish the statement in the theorem. By Lemmas 2.1 and 3.2 we

obtain

a1 ≤ sup

{
‖x̃(t, ξ + h)− x̃(t, ξ)‖

‖h‖
: ξ, ξ + h ∈ ∆s(E(s)), h 6= 0

}
≤ C2eε(t+s) sup

{
‖x̃(t, ξ + h)− x̃(t, ξ)‖′t

‖h‖′s
: ξ, ξ + h ∈ ∆s(E(s)), h 6= 0

}
≤ 2C2eε(t+s)eρ(t,s) = 2C2e(a+2ζ+ε)(t−s)+2εs,

and thus,

ã1 ≤ 2C4e2εte(a+2ζ+ε)(t−s)+2εs = 2C4e(a+2ζ+3ε)(t−s)+4εs.
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By the mean value theorem, (4.4), and (4.5), for each j ≥ 1 and ξ, ξ ∈ E(s) with

‖ξ‖, ‖ξ‖ ≤ C−1e−εs we obtain∥∥∥∥ ∂j∂ξj Ψt−s(s, ξ, ϕ(s, ξ))− ∂j

∂ξj
Ψt−s(s, ξ, ϕ(s, ξ))

∥∥∥∥
=

∥∥∥∥ ∂j∂ξj x̃(t, ξ)− ∂j

∂ξj
x̃(t, ξ)

∥∥∥∥+

∥∥∥∥ ∂j∂ξj ϕ∗(t, ξ)− ∂j

∂ξj
ϕ∗(t, ξ)

∥∥∥∥
≤ (aj+1 + bj+1)‖ξ − ξ‖

≤ 2C4+je(a+2ζ+3ε)(t−s)+ε(j+4)sT (j + 1)

j∏
l=1

(de(k+1)/l2)‖ξ − ξ‖

≤ 2C4(dC)je(k+1)π2/6e(a+2ζ+3ε)(t−s)+ε(j+4)sT (j + 1)‖ξ − ξ‖.

Noticing that

log T (j + 1) =

j−1∑
l=1

l∑
i=1

1

i2
=

j−1∑
i=1

j − i
i2
≤ j π

2

6
,

we obtain the desired statement taking κ > dCeπ
2/6. �

References

[1] L. Barreira and Ya. Pesin, Nonuniform Hyperbolicity, Encyclopedia Math. Appl. 115,

Cambridge Univ. Press, 2007.

[2] L. Barreira and C. Valls, Analytic invariant manifolds for sequences of diffeomor-

phisms, J. Differential Equations 245 (2008), 80–101.

[3] E. Bedford, M. Lyubich and J. Smillie, Polynomial diffeomorphisms of C2. IV: the

measure of maximal entropy and laminar currents, Invent. Math. 112 (1993), 77–125.

[4] E. Bedford and J. Smillie, Polynomial diffeomorphisms of C2 : currents, equilibrium

measure and hyperbolicity, Invent. Math. 103 (1991), 69–99.

[5] M. Jonsson and D. Varolin, Stable manifolds of holomorphic diffeomorphisms, Invent.

Math. 149 (2002), 409–430.

[6] Ya. Pesin, Families of invariant manifolds corresponding to nonzero characteristic expo-

nents, Math. USSR Izv. 10 (1976), 1261–1305.

[7] H. Wu, Complex stable manifolds of holomorphic diffeomorphisms, Indiana Univ. Math. J.

42 (1993), 1349–1358.

Manuscript received July 28, 2012

Luis Barreira and Claudia Valls
Departamento de Matemática
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