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Abstract. Using a resolvent convergence result from [7] we prove Conley
index and index braid continuation results for reaction-diffusion equations

on singularly perturbed unbounded curved squeezed domains

1. Introduction

Let ω be an arbitrary domain in R`, bounded or not, with Lipschitz boundary.

We consider the following semilinear parabolic Neumann boundary problem

(1.1)
ũt = ∆ωũ+ G̃ω(x̃, ũ), t > 0, x̃ ∈ ω,

∂νωu = 0, t > 0, x̃ ∈ ∂ω,

on ω. Here, νω is the outer normal vector field to ∂ω and G̃ω:ω × R → R is

a suitable nonlinearity. Define the bilinear forms ãω and b̃ω by

ãω:H1(ω)×H1(ω)→ R, (ũ, ṽ) 7→
∫
ω

∇ũ(x) · ∇ṽ(x) dx;

b̃ω:L2(ω)× L2(ω)→ R, (ũ, ṽ) 7→
∫
ω

ũ(x)ṽ(x) dx.

Then the pair (ãω, b̃ω) generates a densely defined selfadjoint operator Bω on

L2(ω), which is commonly interpreted as the Laplace operator −∆ω on ω with

Neumann boundary condition.
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We are interested in the case ω = Ωε, where Ωε, for ε > 0 small, is ‘thin’ of

order ε. As ε → 0+, the domain Ωε ‘degenerates’ to some limit set, which may

no longer be a domain in R`.
More specifically, let M⊂ R` be a smooth k-dimensional submanifold of R`

and U ⊃M be a normal (tubular) neighbourhood ofM with normal projection

φ. For ε ∈ [0, 1] define the squeezing operator Γε:U → U by x 7→ εx+(1−ε)φ(x).

For any domain Ω in R` with Lipschitz boundary and Cl Ω ⊂ U we set Ωε =

Γε(Ω) and Bε = BΩε for ε ∈ ]0, 1]. A particular case is the flat squeezing case

in which, writing R` = Rk × R`−k, x = (x1, x2), we set M = Rk × {0}, U = R`

and φ(x) = (x1, 0).

We also consider a family Gε:U ×R→ R of suitable nonlinearities, ε ∈ [0, 1]

and, for ε ∈ ]0, 1], set G̃Ωε := Gε|Ωε × R.

Equation (1.1) can be written abstractly as

(1.2) ˙̃u = −Bεũ+ f̃ε(ũ)

on H1(Ωε) where f̃ε is the Nemitski operator from H1(Ωε) to L2(Ωε) defined by

G̃Ωε : Ωε × R→ R.

Now using the change of variables defined by Γε we may pull Bε back to

L2(Ω) and thus obtain the densely defined selfadjoint operator Aε in L2(Ω)

given by:

(a) ũ ∈ D(Bε) if and only if u = ũ ◦ Γε ∈ D(Aε);

(b) Aε(u) = (Bεũ) ◦ Γε for ũ ∈ D(Bε).

Equation (1.2) can then be pulled back to yield the equation

(1.3) u̇ = −Aεu+ fε(u)

on H1(Ω). Here, fε:H
1(Ω)→ L2(Ω) is defined by

fε(ũ ◦ Γε) = f̃ε(ũ) ◦ Γε, ũ ∈ H1(Ωε).

More explicitly,

fε(u)(x) = Gε(Γε(x), u(x))

for u ∈ H1(Ω) and x ∈ Ω.

If Ω is bounded, then there is a closed linear subspace L2
s(Ω) of L2(Ω) and

a densely defined selfadjoint operator A0 on L2
s(Ω) such that, as ε → 0+, the

eigenvalues and eigenfunctions of Aε converge, in some sense, to the eigenvalues

and eigenfunctions of A0, cf. [10], [13].

This spectral convergence theorem implies various Trotter-Kato-like linear

convergence theorems of the C0-semigroups e−tAε to e−tA0 , cf. [10], [2], [13],

which are used to prove attractor semicontinuity and Conley index continua-

tion results for reaction-diffusion equations with nonlinearities satisfying certain

growth assumptions, cf. [10], [13], [2], [3], [16].
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If Ω is unbounded, then, in general, the operators Aε do not have compact

resolvents and so spectral convergence results in the above form are not expected

to hold. However, as shown in [1] in the flat squeezing case, there is again a closed

linear subspace L2
s(Ω) of L2(Ω) and a densely defined selfadjoint operator A0 on

L2
s(Ω) such that the resolvents of Aε converge in some sense to the resolvents

of A0. It turns out that this is sufficient for the validity of a corresponding linear

convergence result.

In the recent paper [7] the above results from [1] were extended to the curved

squeezing case provided the manifold M has bounded normal curvature. This

condition is trivially satisfied in the flat squeezing case (the normal curvature of

M = Rk × {0} being zero) and for compact manifolds M. A simple example

of a noncompact manifold with bounded normal curvature is provided by the

graph of the exponential function exp:R → R, while the graph of the function

g: ]0,∞[→ R, x 7→ sin(1/x), is a manifold with unbounded normal curvature.

Using the results from [7] we will obtain in this paper Conley index contin-

uation results for problem (1.3) as ε→ 0.

This paper is organized as follows.

In Section 2 we introduce an abstract linear convergence concept (Lin) and

relate it to resolvent convergence concept from [7]. We then define a nonlin-

ear convergence concept (Conv) and establish some abstract nonlinear singular

convergence results. Finally, we define the concept of singular Hε-admissibility

and show that this seemingly weaker concept actually implies the usual singular

admissibility as defined in [4]. This implies various Conley index continuation

results.

In Section 3 we will apply these abstract results to reaction-diffusion equa-

tions on singularly perturbed unbounded domains.

Some results on attractors on singularly perturbed unbounded domains are

contained in [17].

2. An abstract singular convergence result

Definition 2.1. We say that the family (Hε, 〈 · , · 〉Hε , Aε)ε∈[0,ε] satisfies

condition (Lin) if the following properties are satisfied:

(a) ε ∈ ]0,∞[ and for every ε ∈ [0, ε], (Hε, 〈 · , · 〉Hε) is a Hilbert space and

Aε:D(Aε) ⊂ Hε → Hε is a densely defined nonnegative self-adjoint op-

erator on (Hε, 〈 · , · 〉Hε). For α ∈ [0,∞[ write Hε
α := D((Aε + Iε)

α/2),

where Iε = IdHε , and 〈 · , · 〉Hεα := 〈 · , · 〉(Aε+Iε)α/2 with the correspond-

ing norm | · |Hεα . In particular, Hε
0 = Hε;

(b) for each ε ∈ ]0, ε], H0 is a linear subspace of Hε and H0
1 is a linear

subspace of Hε
1 ;
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(c) there exists a constant C ∈ ]1,∞[ such that, for ε ∈ ]0, ε],

|u|Hε1 ≤ C|u|H0
1

and |u|H0
1
≤ C|u|Hε1 , whenever u ∈ H0

1 ;

(d) If u0 ∈ H0 and (un)n is a sequence such that un ∈ Hεn for each n and

|un − u0|Hεn → 0 as n → ∞, and if (εn)n is a sequence in ]0, ε] with

εn → 0 then

|e−tAεnun − e−tA0u0|Hεn1
→ 0 as n→∞,

uniformly on compact intervals in ]0,∞[.

(e) If u0 ∈ H0
1 and (un)n is a sequence such that un ∈ Hεn

1 for each n and

|un − u0|Hεn1
→ 0 as n → ∞, and if (εn)n is a sequence in ]0, ε] with

εn → 0 then

|e−tAεnun − e−tA0u0|Hεn1
→ 0 as n→∞,

uniformly on compact intervals in [0,∞[.

Proposition 2.2. If (Hε, 〈 · , · 〉Hε , Aε)ε∈[0,ε] satisfy condition (Lin), then

for every ε ∈ ]0, ε], the subspace H0
1 is closed in (Hε

1 , | · |Hε1 ). Let Qε:H
ε
1 → Hε

1

be the Hε
1 -orthogonal projection of Hε

1 onto H0
1 . �

Definition 2.3. We say that the family (Hε, 〈 · , · 〉Hε , Aε)ε∈[0,ε] satisfies

condition (Res) if the following properties are satisfied:

(a) ε ∈ ]0,∞[ and for every ε ∈ [0, ε], (Hε, 〈 · , · 〉Hε) is a Hilbert space and

Aε:D(Aε) ⊂ Hε → Hε is a densely defined nonnegative self-adjoint op-

erator on (Hε, 〈 · , · 〉Hε). For α ∈ [0,∞[ write Hε
α := D((Aε + Iε)

α/2),

where Iε = IdHε , and 〈 · , · 〉Hεα := 〈 · , · 〉(Aε+Iε)α/2 with the correspond-

ing norm | · |Hεα . In particular, Hε
0 = Hε;

(b) for each ε ∈ ]0, ε], H0 is a linear subspace of Hε and H0
1 is a linear

subspace of Hε
1 ;

(c) there exists a constant C ∈ ]1,∞[ such that, for ε ∈ ]0, ε],

|u|Hε1 ≤ C|u|H0
1

and |u|H0
1
≤ C|u|Hε1 , whenever u ∈ H0

1 ;

and

|u|Hε ≤ C|u|H0 and |u|H0 ≤ C|u|Hε , whenever u ∈ H0;

(d) whenever (εn)n is a sequence in ]0, ε] converging to zero, w ∈ H0 and

(wn)n is a sequence in H0 with |wn − w|H0 → 0 as n → ∞, then

|(Aεn + Iεn)−1wn − (A0 + I0)−1w|Hεn1
→ 0 as n→∞.

The following result is a rewording of [7, Theorem 3.4].
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Theorem 2.4. A family (Hε, 〈 · , · 〉Hε , Aε)ε∈[0,ε] satisfying condition (Res)

satisfies condition (Lin).

Definition 2.5. Let ε ∈ ]0,∞[ be arbitrary and (Hε, 〈 · , · 〉Hε , Aε)ε∈[0,ε] be

a family satisfying condition (Lin). We say that the family (fε)ε∈[0,ε] of maps

satisfies condition (Conv) if the following properties are satisfied:

(a) fε:H
ε
1 → Hε for every ε ∈ [0, ε].

(b) lim
ε→0+

|e−tAεfε(u) − e−tA0f0(u)|Hε1 = 0 for every u ∈ H0
1 and every t ∈

]0,∞[.

(c) For every M ∈ [0,∞[ there is an L = LM ∈ [0,∞[ such that

|fε(u)− fε(v)|Hε ≤ L|u− v|Hε1
for all ε ∈ [0, ε] and u, v ∈ Hε

1 satisfying |u|Hε1 , |v|Hε1 ≤M .

(d) For every u ∈ H0
1 there is an ε′0 ∈ ]0, ε] such that

sup
ε∈[0,ε′0]

|fε(u)|Hε <∞.

Remark 2.6. Note that, for α, t ∈ ]0,∞[ and λ ∈ [0,∞[

λαe−λt ≤ C(α)t−α with C(α) = (α/e)α.

Let (Hε, 〈 · , · 〉Hε , Aε)ε∈[0,ε] satisfy condition (Lin). Let ε ∈ [0, ε] and r ∈ ]0,∞[.

Using the Stone-Neumann operational calculus together with the above estimate

with α = 1/2 we obtain the estimates

(2.1) |e−Aεru|Hε ≤ |u|Hε , u ∈ Hε

and

(2.2) |e−Aεru|Hε1 ≤ C0r
−1/2er|u|Hε , u ∈ Hε

where C0 = C(1/2).

The next result shows that the above condition (b) is valid uniformly for t

lying in compact subsets of ]0,∞[.

Proposition 2.7. Assume condition (Conv) and let β, γ ∈ ]0,∞] be arbi-

trary with β < γ. Then, for every u ∈ H0
1 ,

lim
ε→0+

sup
t∈[β,γ]

|e−tAεfε(u)− e−tA0f0(u)|Hε1 = 0

Proof. Let v = e−βA0f0(u) ∈ H0
1 . For every t ∈ [β, γ] we have

|e−tAεfε(u)− e−tA0f0(u)|Hε1
≤ |e−(t−β)Aε(e−βAεfε(u)− e−βA0f0(u))|Hε1 + |e−(t−β)Aεv − e−(t−β)A0v|Hε1
≤ |e−βAεfε(u)− e−βA0f0(u)|Hε1 + |e−(t−β)Aεv − e−(t−β)A0v|Hε1
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Here we have used (2.1). Since, by part (e) of condition (Lin)

lim
ε→0

sup
s∈[0,γ−β]

|e−sAεv − e−sA0v|Hε1 = 0,

the assertion follows from condition (Conv) part (b) (with t = β). �

For the rest of the paper, if (Hε, 〈 · , · 〉Hε , Aε)ε∈[0,ε] satisfies condition (Lin)

and (fε)ε∈[0,ε] satisfies condition (Conv) then we will write, for every ε ∈ [0, ε],

πε := πAε,fε to denote the local semiflow on Hε
1 generated by the abstract

parabolic equation

(2.3) u̇ = −Aεu+ fε(u).

Lemma 2.8. Suppose that (Hε, 〈 · , · 〉Hε , Aε)ε∈[0,ε] satisfies condition (Lin)

and (fε)ε∈[0,ε] satisfies condition (Conv). Let ε′0 ∈ ]0, ε] be such that

sup
ε∈[0,ε′0]

|fε(0)|Hε <∞.

(ε′0 exists in view of condition (Conv).) For every R ∈ ]0,∞[ there exists a τ =

τR ∈ ]0,∞[ such that for every ε ∈ [0, ε′0] and every a ∈ Hε
1 with |a|Hε1 ≤ R, aπεt

is defined and |aπεt|Hε1 ≤ 4R for all t ∈ [0, τ ].

Proof. Let C be as in part (c) of condition (Lin), set

(2.4) M ′ := 4R

and let L := LM ′ be as in Condition (Conv) with M replaced by M ′. Set

(2.5) C1 = 3R and C2 = sup
ε∈[0,ε′0]

|fε(0)|Hε <∞.

Now choose τ ∈ ]0,∞[ with

(2.6) 2C0Lτ
1/2eτ ≤ 1/2,

(2.7) 2C0τ
1/2eτ (2LC1 + C2) ≤ C1/4,

where the constant C0 is as in Remark 2.6. For every ε ∈ [0, ε′0] and a ∈ Hε
1 with

(2.8) |a|Hε1 ≤ R,

define Sε,a := {u | u: [0, τ ] → Hε
1 is continuous and |u(t) − a|Hε1 ≤ C1 for all

t ∈ [0, τ ]}.
For u ∈ Sε,a define the map Tε,a(u): [0, τ ]→ Hε

1 by

Tε,a(u)(t) : = e−tAεa+

∫ t

0

e−(t−s)Aεfε(u(s)) ds.

The map Tε,a(u) is continuous. Moreover, by (2.4), whenever u ∈ Sε,a, then for

all t ∈ [0, τ ]

|u(t)|Hε1 ≤ C1 + |a|Hε1 ≤ 4R = M ′,
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Thus for all u, v ∈ Sε,a and for all t ∈ [0, τ ], we have, by (2.2) and (2.6),

|Tε,a(u)(t)− Tε,a(v)(t)|Hε1(2.9)

=

∣∣∣∣∫ t

0

e−(t−s)Aε(fε(u(s))− fε(v(s))) ds

∣∣∣∣
Hε1

≤ C0

∫ t

0

(t− s)−1/2et−s|fε(u(s))− fε(v(s))|Hε ds

≤ C0Le
τ

∫ t

0

(t− s)−1/2 ds sup
s∈[0,τ ]

|u(s)− v(s)|Hε1

= 2C0Lτ
1/2eτ sup

s∈[0,τ ]

|u(s)− v(s)|Hε1

≤ 1/2 sup
s∈[0,τ ]

|u(s)− v(s)|Hε1 .

Moreover, for all u ∈ Sε,a and t ∈ [0, τ ],

|Tε,a(u)(t)− a|Hε1 ≤ |e
−tAεa− a|Hε1 +

∣∣∣∣∫ t

0

e−(t−s)Aεfε(u(s)) ds

∣∣∣∣
Hε1

.

Since for ε ∈ [0, ε′0] and s ∈ [0, τ ] we have

|fε(u(s))|Hε ≤ |fε(u(s))− fε(a)|Hε + |fε(a)|Hε

≤ L|u(s)− a|Hε1 + |fε(a)− fε(0)|Hε + |fε(0)|Hε

≤ LC1 + LC1 + C2 = 2LC1 + C2,

we obtain, by (2.7),∣∣∣∣∫ t

0

e−(t−s)Aεfε(u(s)) ds

∣∣∣∣
Hε1

≤ C0

∫ t

0

(t− s)−1/2e(t−s)|fε(u(s))|Hε ds

≤ 2C0τ
1/2eτ (2LC1 + C2) ≤ C1/4 = 3R/4.

Moreover, |e−tAεa− a|Hε1 ≤ |e
−tAεa|Hε1 + |a|Hε1 ≤ |a|Hε1 + |a|Hε1 ≤ 2R by (2.1).

Altogether, we obtain

|Tε,a(u)(t)− a|H0
1
≤ 2R+ 3R/4 ≤ 3R = C1 for all t ∈ [0, τ ].

Hence we conclude that Tε,a(Sε,a) ⊂ Sε,a and so, by (2.9) and Banach Fixed

Point Theorem, there is a unique fixed point of Tε,a in Sε,a. In particular aπεt

and is defined and |aπεt|Hε1 ≤ 4R for all t ∈ [0, τ ]. The lemma is proved. �

We can now state our first singular convergence result for semiflows.

Theorem 2.9. Suppose that the family (Hε, 〈 · , · 〉Hε , Aε)ε∈[0,ε] satisfies con-

dition (Lin), and the family (fε)ε∈[0,ε] satisfies condition (Conv). Let ε0 ∈ [0, ε]

and (εn)n be a sequence in [0, ε] with εn → ε0. We assume that either εn = ε0
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for all n ∈ N or else ε0 = 0 and εn > 0 for all n ∈ N. Let u0 ∈ Hε0
1 and (un)n

be a sequence with un ∈ Hεn
1 for every n ∈ N and

|un − u0|Hεn → 0 as n→∞.

Let b ∈ ]0,∞[ and suppose that unπεnt and u0πε0t are defined for all n ∈ N and

t ∈ [0, b]. Moreover, suppose there exists an M ′ ∈ [0,∞[ such that |unπεns|Hεn1
≤

M ′ for all n ∈ N and for all s ∈ [0, b]. Then for every t ∈ ]0, b] and every sequence

(tn)n in ]0, b] converging to t

|unπεntn − u0πε0tn|Hεn1
→ 0 as n→∞.

Proof. Notice that M̃ := sup
s∈[0,b]

|uε0πε0s|H0
1
< ∞. Hence |uε0πε0s|Hεn1

≤

CM̃ for all s ∈ [0, b]. Set M ′′ := max{M ′, CM̃} and let L := LM ′′ be as in

condition (Conv) with M replaced by M ′′.

By the variation-of-constants formula we have, for all n ∈ N and all t ∈ [0, b],

unπεnt − u0πε0t = e−tAεnun − e−tAε0u0(2.10)

+

∫ t

0

e−(t−s)Aεn (fεn(unπεns)− fεn(u0πε0s)) ds

+

∫ t

0

(e−(t−s)Aεn fεn(u0πε0s)− e−(t−s)Aε0 fε0(u0πε0s)) ds.

Define the function gn: [0, b]× [0, b]→ R as follows: If 0 < s < t then set

gn(t, s) = |e−(t−s)Aεn fεn(u0πε0s)− e−(t−s)Aε0 fε0(u0πε0s)|Hεn1

and set gn(t, s) = 0 otherwise. The function gn restricted to the set of (s, t) with

0 < s < t is continuous. Thus gn is measurable on [0, b] × [0, b]. By Fubini’s

theorem the function

cn(t) :=

∫ b

0

gn(t, s) ds =

∫ t

0

gn(t, s) ds

is almost everywhere defined and measurable on [0, b]. Moreover, we obtain for

0 < s < t

(2.11) |gn(t, s)| ≤ C2C0e
b(t− s)−1/2 + CC2C0e

b(t− s)−1/2 =: C3(t− s)−1/2,

where

C2 := max

{
sup
s∈[0,b]

sup
n∈N
|fεn(u0π0s)|Hεn , sup

s∈[0,b]

|fε0(u0πε0s)|H0

}
.

Notice that condition (Conv) implies that C2 < ∞. Let (tn)n be any sequence

in ]0, b] converging to some t ∈ ]0, b]. If 0 < s < t then, then 0 < s < tn for all

large n and so Proposition 2.7 implies that gn(tn, s)→ 0 as n→∞. If 0 < t < s,

then 0 < tn < s for all large n and so again gn(tn, s)→ 0 as n→∞. It follows
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from (2.11) and the dominated convergence theorem that cn(tn)→ 0 as n→∞.

Now (2.10) implies for all r ∈ ]0, b]

|unπεnr − u0πε0r|Hεn1
≤ |e−rAεnun − e−rAε0u0|Hεn1

+ cn(r)

+ C0e
bLM ′′

∫ r

0

(r − s)−1/2|unπεns− u0πε0s|Hεn1
ds.

For n ∈ N and r ∈ ]0, b] set

an(r) = |e−rAεnun − e−rAε0u0|Hεn1
+ cn(r).

It follows that an is measurable and bounded on ]0, b]. Using condition (Lin) we

obtain that

(2.12) an(tn)→ 0 as n→∞.

An application of Henry’s Inequality [8, Lemma 7.1.1] now implies that

|unπεntn − u0πε0tn|Hεn1
≤ an(tn) +

∫ tn

0

ρ(tn − s)an(s) ds,

where

ρ(x) :=

∞∑
n=1

(C0e
bLM ′′Γ(β))n

Γ(nβ)
xnβ−1

with β := 1/2.

The function ρ: ]0,∞[→ ]0,∞[ is well defined and continuous on ]0,∞[ and

it satisfies the estimate

ρ(x) ≤ C4x
−1/2 + C4 for x ∈ ]0, b].

Fix a δ0 ∈ ]0, t[ and let δ ∈ ]0, δ0/2[ be arbitrary. There is an n0 = n0(δ) ∈ N
such that |tn−t| < δ for n ≥ n0. Therefore for all such n ∈ N and all s ∈ [0, t−2δ]

it follows that tn − s > δ so ρ(tn − s) ≤ C4δ
−1/2 + C4. Thus

ρ(tn − s)an(s) ≤ C5 for s ∈ ]0, t− 2δ].

Therefore (2.12) and the dominated convergence theorem show that∫ t−2δ

0

ρ(tn − s)an(s) ds→ 0 as n→∞.

On the other hand, ∫ tn

t−2δ

ρ(tn − s)an(s) ds ≤ C6(δ1/2 + δ).

Since δ ∈ ]0, δ0/2[ is arbitrary, it follows that∫ tn

0

ρ(tn − s)an(s) ds→ 0 as n→∞.

Consequently, |unπεntn − u0πε0tn|Hεn1
→ 0 as n→∞. �
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Lemma 2.10. Suppose that the family (Hε, 〈 · , · 〉Hε , Aε)ε∈[0,ε] satisfies con-

dition (Lin) and the family (fε)ε∈[0,ε] satisfies condition (Conv). Then for every

R̃ ∈ ]0,∞[ there is a τ̃ = τ̃R̃ ∈ ]0,∞[ such that whenever u0 ∈ H0
1 is such that

|u0|H0
1
≤ R̃, (εn)n is a sequence in ]0, ε] with εn → 0 and (un)n is a sequence

with un ∈ Hεn
1 for every n ∈ N and

|un − u0|Hεn1
→ 0 as n→∞,

then there exist an n0 ∈ N such that u0π0t and unπεnt are defined for all n ≥ n0

and t ∈ [0, τ̃ ] and

sup
t∈[0,τ̃ ]

|unπεnt− u0π0t|Hεn1
→ 0 as n→∞.

Proof. Let ε′0 be as in Lemma 2.8 and R̃ ∈ ]0,∞[ be arbitrary. Define

R = (1 + C)R̃ and τ̃ = τR, where τR be as in Lemma 2.8. Let u0 ∈ H0
1 be

arbitrary such that |u0|H0
1
≤ R̃. Moreover, let (εn)n be a sequence in ]0, ε] with

εn → 0 and (un)n be a sequence with un ∈ Hεn
1 for every n ∈ N and such that

|un − u0|Hεn1
→ 0 as n → ∞. Then there is an n0 ∈ N such that, εn ≤ ε′0 and

|un − u0|Hεn1
≤ R̃ for n ≥ n0. Thus, for all such n

|un|Hεn1
≤ |un − u0|Hεn1

+ |u0|Hεn1
≤ |un − u0|Hεn1

+ C|u0|H0
1
≤ R.

If follows from Lemma 2.8 that u0π0s and unπεns are defined for n ≥ n0 and

s ∈ [0, τ̃ ] and |unπ0s|H0
1
≤ C1 and |unπεns|Hεn1

≤ C1 for n ≥ n0 and s ∈ [0, τ̃ ].

Here, C1 = 4R.

If the lemma does not hold then, taking subsequences if necessary, we may

assume that there is a sequence (tn)n∈N in [0, τ̃ ] converging to some t0 ∈ [0, τ̃ ]

and there is a δ ∈ ]0,∞[ such that

(2.13) |unπεntn − u0π0tn|Hεn1
≥ δ, n ≥ n0.

If t0 > 0, then (2.13) contradicts Theorem 2.9. Therefore t0 = 0. For every

t ∈ [0, τ ] we have

unπεnt− u0 = e−tAεnun − u0 +

∫ t

0

e−(t−s)Aεn fεn(unπεns) ds.

Note that |u0π0s|Hεn1
≤ CC1 for all s ∈ [0, τ ]. Let L := LM be as in (Conv) with

M = CC1. It follows that for all n ≥ n0 and for every s ∈ [0, τ ]

|fεn(unπεns)|Hεn ≤ |fεn(unπεns)− fεn(u0)|Hεn + |fεn(u0)|Hεn
≤ L|unπεns− u0|Hεn1

+ |fεn(u0)|Hεn
≤ L(C1 + C|u0|H0

1
) + |fεn(u0)|Hεn .

Part (d) of condition (Conv) now implies

|fεn(unπεns)|Hεn ≤ C̃, for all s ∈ [0, τ ] and for all n ≥ n0,
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for some C̃ ∈ ]0,∞[. Therefore for all n ≥ n0

|unπεntn − u0π0tn|Hεn1
≤ |unπεntn − u0|Hεn1

+ C|u0π0tn − u0|H0
1

≤ |e−tnAεnun − e−tnA0u0|Hεn1
+ C|e−tnA0u0 − u0|H0

1

+ C0C̃

∫ tn

0

(tn − s)−1/2 ds+ C|u0π0tn − u0|H0
1
.

Since |e−tnA0u0−u0|H0
1
→ 0 and |u0π0tn−u0|H0

1
→ 0 as n→∞, condition (Lin)

implies that |unπεntn − u0π0tn|Hεn1
→ 0 as n →∞, but this contradicts (2.13).

The lemma is proved. �

We conclude this section proving our main convergence result for semiflows.

Theorem 2.11. Suppose the family (Hε, 〈 · , · 〉Hε , Aε)ε∈[0,ε] satisfies condi-

tion (Lin) and the family (fε)ε∈[0,ε] satisfy condition (Conv). Let (εn)n be a se-

quence in ]0, ε] with εn → 0 and let (tn)n be a sequence in [0,∞[ with tn → t0,

for some t0 ∈ [0,∞[. Let u0 ∈ H0
1 and (un)n be a sequence with un ∈ Hεn

1 for

every n ∈ N and

|un − u0|Hεn1
→ 0 as n→∞.

Assume u0π0t0 is defined. Then there exists an n0 ∈ N such that unπεntn is

defined for all n ≥ n0 and

|unπεntn − u0π0t0|Hεn1
→ 0 as n→∞.

Proof. Since u0π0t0 is defined, there is a b > t0, b ∈ ]0,∞[, such that u0π0t

is defined for all t ∈ [0, b[. Define

I :=

{
t ∈ [0, b[

∣∣∣∣ there exists an n0 ∈ N such that unπεnt is defined for n ≥ n0

and sup
s∈[0,t]

|unπεns− u0π0s|Hεn1
→ 0 as n→∞

}
.

It is clear that 0 ∈ I. Furthermore if 0 ≤ t′ < t and t ∈ I, then t′ ∈ I. Let

t := sup I.

It follows that t ≤ b and so
[
0, t
[
⊂ I. An application of Lemma 2.10 with an

arbitrary R̃0 ∈ ]0,∞[ with |u0|H0
1
≤ R̃0 and a corresponding τ̃0 = τ̃R̃0

shows

that t > τ̃0 > 0. We claim that t = b. Suppose, on the contrary, that t < b. It

follows that u0π0t is defined. Let R̃1 ∈ ]0,∞[ be arbitrary with |u0π0t|H0
1
< R̃1

and τ̃1 = τ̃R̃1
be as in Lemma 2.10 . By continuity of π0 there is a t ∈ R with

0 < t < t < t + τ̃1 and |u0π0t|H0
1
< R̃1. We have that t ∈ I so there exists an

n0 ∈ N such that unπεnt is defined for all n ≥ n0 and

(2.14) sup
s∈[0,t]

|unπεns− u0π0s|Hεn1
→ 0 as n→∞.
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Lemma 2.10 implies that there is an n1 ∈ N with n1 ≥ n0 such that (u0π0t)π0s

and (unπεnt)πεns are defined for all n ≥ n1 and s ∈ [0, τ̃1] and

(2.15) sup
s∈[0,τ̃1]

|(unπεnt)πεns− (u0π0t)π0s|Hεn1
→ 0 as n→∞.

Formulas (2.14) and (2.15) imply that u0π0(t + τ̃1) is defined, unπεn(t + τ̃1) is

also defined for all n ≥ n1 and

sup
s∈[0,t+τ̃1]

|unπεns− u0π0s|Hεn1
→ 0 as n→∞.

Thus t+ τ̃1 ∈ I, but t+ τ̃1 > t, a contradiction, which proves that t = b.

Since t0 ∈ [0, b[, it follows that there is a t ∈ [0, b[ with t0 < t and tn < t for

all n large enough. In particular u0π0tn and unπεntn are defined for all n large

enough and

|unπεntn − u0π0tn|Hεn1
→ 0 as n→∞.

Since

|u0π0tn − u0π0t0|Hεn1
≤ C|u0π0tn − u0π0t0|H0

1

and |u0π0tn − u0π0t0|H0
1
→ 0 as n→∞, the theorem follows. �

Definition 2.12. Suppose that the family (Hε, 〈·, ·〉Hε , Aε)ε∈[0,ε] satisfies

condition (Lin) and the family (fε)ε∈[0,ε] satisfies condition (Conv). Let β ∈
]0,∞[ and N be a closed subset of H0

1 . For ε ∈ [0, ε] set

Nε,β = N, if ε = 0,

Nε,β = {u ∈ Hε
1 | Qεu ∈ N and |(IdHε1 −Qε)u|Hε1 ≤ β }, if ε > 0.

We say that N is strongly admissible rel. to β and the family (Hε
1 , πε)ε∈[0,ε],

(resp. the family (Hε, πε)ε∈[0,ε] ) if the following conditions are satisfied:

(a) for each ε ∈ [0, ε] the local semiflow πε does not explode in Nε,β ;

(b) whenever ε0 ∈ [0, ε], (εn)n is a sequence in [0, ε], (tn)n is a sequence in

]0,∞[ and (un)n is a sequence such that

tn →∞ as n→∞,

either εn = ε0 for all n ∈ N or else ε0 = 0 and εn → ε0 for n→∞, and,

for each n ∈ N, un ∈ Hεn
1 and unπεn [0, tn] ⊂ Nεn,β , then there exist

a v ∈ Hε0
1 and a subsequence of the sequence (unπεntn)n∈N, denoted

again by (unπεntn)n∈N, such that

|unπεntn − v|Hεn1
→ 0 as n→∞.

(resp. |unπεntn − v|Hεn → 0 as n→∞.)

Remark 2.13. If N is strongly admissible rel. to β and (Hε
1 , πε)ε∈[0,ε] and

v is as in (b) of Definition 2.12, then, as is easily seen, v ∈ Nε0,β .



Tail estimates 711

Theorem 2.14. Suppose that the family (Hε, 〈 · , · 〉Hε , Aε)ε∈[0,ε] satisfies

condition (Lin) and the family (fε)ε∈[0,ε] satisfies condition (Conv). Let β ∈
]0,∞[ and N be a closed bounded subset of H0

1 . Suppose N is strongly admissi-

ble rel. to β and the family (Hε, πε)ε∈[0,ε]. Then N is strongly admissible rel. to

β and the family (Hε
1 , πε)ε∈[0,ε].

Proof. There is an M ∈ [0,∞[ such that |w|H0
1
≤ M so |w|Hε1 ≤ CM for

all w ∈ N .

Let ε0 ∈ [0, ε], (εn)n be a sequence in [0, ε], (tn)n be a sequence in ]0,∞[ and

(un)n be a sequence such that

tn →∞ as n→∞,

either εn = ε0 for all n ∈ N or else ε0 = 0 and εn → ε0 for n→∞,

and, for each n ∈ N, un ∈ Hεn
1 and unπεn [0, tn] ⊂ Nεn,β . There is an n0 ∈ N

such that tn ≥ 1 for all n ≥ n0. Set t′n = tn − 1 for all n ≥ n0. By hypothesis

there is a v ∈ Nε0,β and a subsequence of the endpoint sequence (unπεnt
′
n)n≥n0

,

denoted again by (unπεnt
′
n)n≥n0

, such that

|unπεnt′n − v|Hεn → 0 as n→∞.

Let vn = unπεnt
′
n, n ≥ n0. Then, for all n ≥ n0 and s ∈ [0, 1], vnπεns is defined

and vnπεns ∈ Nεn,β so

|vnπεns|Hεn1
≤ |Qεn(vnπεns)|Hεn1

+ |(IdHε1 −Qε)(vnπεns)|Hεn1
≤ CM + β,

so

(2.16) |vnπεns|Hεn1
≤ CM + β, n ≥ n0, s ∈ [0, 1] .

There is an s1 ∈ ]0, 1[ such that vπε0s1 is defined. Therefore, the estimate (2.16)

together with Theorem 2.9 show that

|wn − w|Hεn1
→ 0, as n→∞

where w = vπε0s1 and wn = vnπεns1 for n ≥ n0. If εn = ε0 for all n ≥ n0,

then this implies that w ∈ Nε0,β . If ε0 = 0 and εn → ε0 as n → ∞, then, as

Qεnwn ∈ N for all n ≥ n0 and Qεw = w for all ε ∈ ]0, ε], we obtain from the

estimates

|Qεnwn − w|H0
1

= |Qεn(wn − w)|H0
1
≤ C|Qεn(wn − w)|Hεn1

≤ C|wn − w|Hεn1

that w ∈ N = Nε0,β . Thus w ∈ Nε0,β in both cases. We claim that wπε0(1− s1)

is defined. If not, then the fact that πε0 does not explode in Nε0,β implies that

there is some s2 ∈ ]0, 1− s1[ such that wπε0s2 is defined and wπε0s2 /∈ Nε0,β . If

εn = ε0 for all n ≥ n0, then continuity of πε0 implies that wnπεns2 /∈ Nεn,β , for

all n large enough, which contradicts the fact that wnπεns2 = vnπεn(s1 + s2) for
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all n ≥ n0 and s1 +s2 < 1. If ε0 = 0 and εn → ε0 as n→∞, then an application

of Theorem 2.11 shows that

|w′n − w′|Hεn1
→ 0, as n→∞

where w′ = wπε0s2 and w′n = wnπεns2 for n ≥ n0. As above this implies that

w′ ∈ Nε0,β , a contradiction. This proves that wπε0(1 − s1) is defined so vπε0s

is defined for all s ∈ [0, 1]. Thus the estimate (2.16) together with Theorem 2.9

show that

|unπεntn − vπε01|Hεn1
= |vnπεn1− vπε01|Hεn1

→ 0, as n→∞.

The theorem is proved. �

Let the family (Hε, 〈·, ·〉Hε , Aε)ε∈[0,ε] satisfy condition (Lin) and the family

(fε)ε∈[0,ε] satisfy condition (Conv).

Set X0 := H0
1 . For every ε ∈ ]0, ε0], define Yε := (I − Qε)Hε

1 and endow

Yε with the norm | · |Hε1 restricted to Yε. Define on Zε = X0 × Yε the following

norm:

||(u, v)||ε := max{ |u|H0
1
, |v|Hε1 } for (u, v) ∈ Zε.

We will denote by Γ̃ε the metric on Zε induced by the norm || · ||ε. For each

ε ∈ ]0, ε0], define θε := 0.

Let Ψε:H
ε
1 → Zε be the linear map defined by

Ψε(w) := (Qεw, (I −Qε)w) for w ∈ Hε
1 .

It follows that Ψε is a bijective linear map and its inverse map is given by

Ψε
−1(u, v) = u+ v for (u, v) ∈ Zε.

Moreover, both Ψε and Ψε
−1 are continuous maps. This fact is a consequence

of the following inequalities:

‖Ψε(w)‖ε ≤ C|w|Hε1 for w ∈ Hε
1 ,(2.17)

|Ψε
−1(u, v)|Hε1 ≤ (1 + C2)1/2||(u, v)||ε for (u, v) ∈ Zε,(2.18)

where the constant C ∈ ]1,∞[ was defined in hypothesis (Lin).

Given (u, v) ∈ Zε and t ∈ [0,∞[ define

(u, v)π̃εt := Ψε(Ψε
−1(u, v)πεt)

whenever Ψε
−1(u, v)πεt is defined. It follows that π̃ε is a local semiflow on Zε,

the conjugate to πε via Ψε. Theorem 2.11 and inequalities (2.17) and (2.18)

immediately imply the following
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Corollary 2.15. Under the above hypotheses the family (π̃ε)ε∈]0,ε0] con-

verges singularly to π0. �

Theorem 2.14, Remark 2.13 and inequalities (2.17) and (2.18) imply the

following:

Corollary 2.16. Under the above hypotheses let β ∈ ]0,∞[ and N be

a closed bounded subset of H0
1 . If N is strongly admissible rel. to β and the

family (Hε, πε)ε∈[0,ε], then N is singularly strongly admissible with respect to β

and the family (π̃ε)ε∈[0,ε], where π̃0 = π0.

We can now state the following Conley index continuation principle for sin-

gular families of abstract parabolic equations:

Theorem 2.17. Suppose that the family (Hε, 〈 · , · 〉Hε , Aε)ε∈[0,ε] satisfies

condition (Lin) and the family (fε)ε∈[0,ε] satisfies condition (Conv). Let β ∈
]0,∞[ and N be a closed bounded subset of H0

1 . Suppose N is strongly admis-

sible rel. to β and the family (Hε, πε)ε∈[0,ε]. Finally, assume N is an isolating

neighbourhood of an invariant set K0 relative to π0. For ε ∈ ]0, ε0] and for every

η ∈ ]0,∞[ set

Nε,η := {u ∈ Hε
1 | Qεu ∈ N and |(Iε −Qε)u|Hε1 ≤ η}

and Kε,η := Invπε(Nε,η) i.e. Kε,η is the largest πε-invariant set in Nε,η. Then for

every η ∈ ]0, β] there exists an εc = εc(η) ∈ ]0, ε0] such that for every ε ∈ ]0, εc]

the set Nε,η is a strongly admissible isolating neighbourhood of Kε,η relative to

πε and

h(πε,Kε,η) = h(π0,K0).

Furthermore, for every η > 0, the family (Kε,η)ε∈[0,εc(η)] of invariant sets, where

K0,η = K0, is upper semicontinuous at ε = 0 with respect to the family | · |Hε1 of

norms i.e.

lim
ε→0+

sup
w∈Kε,η

inf
u∈K0

|w − u|Hε1 = 0.

Proof. The isomorphism Ψε conjugates the local semiflow πε to the local

semiflow π̃ε. Thus whenever S is a strongly admissible isolating neighbourhood

with respect to πε, then Ψε(S) is a strongly admissible isolating neighbourhood

with respect to π̃ε and

h(πε, S) = h(π̃ε,Ψε(S)).

Corollaries 2.15 and 2.16 imply that the family of semiflows (π̃ε)ε∈[0,ε0] and the

set N satisfy the hypotheses of [4, Theorem 4.1]. Notice also that any closed ball

in Yε is contractible. Hence [4, Theorem 4.1] and [4, Corollary 4.11] completes

the proof. �
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Remark. The family (Kε,η)ε∈]0,εc(η)] is asymptotically independent of η i.e.

whenever η1 and η2 ∈ ]0,∞[ then there is an ε′ ∈ ]0,min(εc(η1), εc(η2))] such

that Kε,η1 = Kε,η2 for ε ∈ ]0, ε′].

We also state the following (co)homology index continuation principle:

Theorem 2.18. Assume the hypotheses of Theorem 2.17 and for every η ∈
]0,∞[ let εc(η) ∈ ]0, ε0] be as in that theorem. Let (P,≺) be a finite poset. Let

(Mp,0)p∈P be a ≺-ordered Morse decomposition of K0 relative to π0. For each

p ∈ P , let Vp ⊂ N be closed in X0 and such that Mp,0 = Invπ0
(Vp) ⊂ IntH0

1
(Vp).

(Such sets Vp, p ∈ P , exist.) For ε ∈ ]0, ε0], for every η ∈ ]0,∞[ and p ∈ P set

Mp,ε,η := Invπε(Vp,ε,η), where

Vp,ε,η := {u ∈ Hε
1 | Qεu ∈ Vp and |(I −Qε)u|Hε1 ≤ η}.

Then for every η ∈ ]0,∞[ there is an ε̃ = ε̃(η) ∈ ]0, εc(η)] such that for every

ε ∈ ]0, ε̃] and p ∈ P , Mp,ε,η ⊂ IntHε1 (Vp,ε,η) and the family (Mp,ε,η)p∈P is

a ≺-ordered Morse decomposition of Kε,η relative to πε and the (co)homology

index braids of (π0,K0, (Mp,0)p∈P ) and (πε,Kε,η, (Mp,ε,η)p∈P )), ε ∈ ]0, ε̃], are

isomorphic and so they determine the same collection of C-connection matrices.

Proof. Since the isomorphism Ψε conjugates the local semiflow πε to the lo-

cal semiflow π̃ε, using [6, Proposition 2.7], it follows that whenever S is a strongly

admissible isolating neighbourhood with respect to πε and (Mp)p∈P is a ≺-

ordered Morse decomposition of S relative to πε, then Ψε(S) is a strongly admis-

sible isolating neighbourhood with respect to π̃ε and (Ψε(Mp))p∈P is a ≺-ordered

Morse decomposition of S relative to π̃ε and the (co)homology index braids of

(πε, S, (Mp)p∈P ) and (π̃ε,Ψε(S), (Ψε(Mp))p∈P )), ε ∈ ]0, ε0], are isomorphic.

Corollaries 2.15 and 2.16 imply that the family of semiflows (π̃ε)ε∈[0,ε0] and

the set N satisfy the hypotheses of [5, Theorem 3.10]. Since any closed ball in Yε

is contractible, an application of [5, Theorem 3.10] completes the proof. �

Remark. Again, for each p ∈ P , the family (Mp,ε,η)ε∈[0,ε̃(η)], whereMp,0,η =

Mp,0 is upper semicontinuous at ε = 0 with respect to the family | · |Hε1 of norms

and the family (Mp,ε,η)ε∈]0,ε̃(η)] is asymptotically independent of η.

3. Applications to curved squeezing on unbounded domains

We will now apply the previous results to singularly perturbed equations on

curvedly squeezed unbounded domains. We assume the reader’s familiarity with

the paper [7] and only recall some necessary definitions.

Let `, k and r be positive integers with r ≥ 2, ` ≥ 2 and k < `. Let 〈 · , · 〉
be an inner product on R` and ‖ · ‖ be the corresponding Euclidean norm.

Let M⊂ R` be a k-dimensional submanifold of R` of class Cr.
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For p ∈ M let Q(p):R` → R` be the orthogonal projection of R` onto

the tangent space Tp(M) to M at p and P (p):R` → R` be the orthogonal

projection of R` onto the orthogonal complement T⊥p (M) of Tp(M) in R`. We

have P (p) = IdR` −Q(p).

The map Q:M→ L(R`,R`) is of class Cr−1.

Moreover, (DQ(p)a)b ∈ T⊥p (M) for each p ∈ M and all a, b ∈ Tp(M) and

the map

IIp:Tp(M)× Tp(M)→ T⊥p (M), (a, b) 7→ (DQ(p)a)b

is bilinear and symmetric. The map IIp is called the second fundamental form

of M at p.

We say that M has bounded second fundamental form if

sup{‖IIp(a, b)‖ | p ∈M, (a, b) ∈ Tp(M)× Tp(M), ‖a‖ ≤ 1, ‖b‖ ≤ 1} <∞.

This is equivalent to the requirement that

sup{‖(DQ(p)a)c‖ | p ∈M, (a, c) ∈ Tp(M)× T⊥p (M), ‖a‖ ≤ 1, ‖c‖ ≤ 1} <∞.

Definition 3.1. An open set U in R` with M ⊂ U is called a normal

neighbourhood (or normal strip) of M if there is a map φ:U → M of class

Cr−1, called an orthogonal projection of U onto M and a continuous function

δ:M→ ]0,∞], called the thickness of U such that:

(a) whenever x ∈ U and p ∈ M then φ(x) = p if and only if the vector

x− p ∈ T⊥p M and ‖x− p‖ < δ(p);

(b) εx+ (1− ε)φ(x) ∈ U for all x ∈ U and all ε ∈ [0, 1].

For the rest of this paper assume that M has bounded second fundamental

form choose M ∈ ]0,∞[ arbitrarily with

sup
{
‖(DQ(p)a)c‖ | (p, a, c) ∈M× Tp(M)× T⊥p (M), ‖a‖ ≤ 1, ‖c‖ ≤ 1

}
≤M.

Proposition 3.2. Let q0 ∈ ]0, 1[ be arbitrary. There is a normal neighbour-

hood U of M with normal projection φ and thickness δ such that Mδ(p) ≤ q0 for

all p ∈M.

For the rest of this paper we fix a q0 ∈ ]0, 1[ and a normal neighbourhood

U with normal projection φ and thickness δ such that the assertions of Proposi-

tion 3.2 are satisfied.

For ε ∈ [0, 1] define the maps:

• Γε:U → U by x 7→ φ(x) + ε(x− φ(x)),

• Jε:U → R by Jε(x) = |det(DΓε(x)|Tφ(x)(M))|, x ∈ U , and

• Sε:U → L(R`,R`) by

(3.1) Sε(x)h = Dφ(Γε(x))h− (DQ(φ(x))(Dφ(Γε(x))h))(x− φ(x))
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for x ∈ U and h ∈ R`.

In the sequel, given a linear map B:R` → R` we denote by BT the adjoint

of B relative to the scalar product 〈 · , · 〉.
For the rest of this paper we will assume that

(3.2) Ω is open in R` with Cl(Ω) ⊂ U . For ε ∈ ]0, 1], we write Ωε = Γε(Ω).

For ε ∈ ]0, 1] define the following bilinear forms:

ãε:H
1(Ωε)×H1(Ωε) → R, (ũ, ṽ) 7→

∫
Ωε

∇ũ(x) · ∇ṽ(x) dx;

b̃ε:L
2(Ωε)× L2(Ωε) → R, (ũ, ṽ) 7→

∫
Ωε

ũ(x)ṽ(x) dx;

and let aε:H
1(Ω)×H1(Ω)→ R be defined by

aε(u, v) =

∫
Ω

Jε(x)〈Sε(x)T∇u(x), Sε(x)T∇v(x)〉 dx

+
1

ε2

∫
Ω

Jε(x)〈P (x)∇u(x), P (x)∇v(x)〉 dx, u, v ∈ H1(Ω).

For ε ∈ [0, 1] define the bilinear form bε:L
2(Ω)× L2(Ω)→ R by

bε(u, v) =

∫
Ω

Jε(x)u(x)v(x) dx, u, v ∈ L2(Ω).

We have

(3.3) ãε(u, u) + b̃ε(u, u) = |u|2H1(Ωε)
, ε ∈ ]0, 1] , u ∈ H1(Ωε).

Let ε ∈ ]0, 1] be arbitrary. Then the pair (ãε, b̃ε) generates a densely de-

fined selfadjoint operator Bε in (L2(Ωε), b̃ε), which we interpret, as usual, as the

operator −∆ on Ωε with Neumann boundary condition on ∂Ωε.

Let us define the space

H1
s (Ω) := {u ∈ H1(Ω) | P (x)∇u(x) = 0 a.e. }.

Note that

(3.4)
u ∈ H1

s (Ω) iff u ∈ H1(Ω) and 〈∇u(x), ν〉 for a.a. x ∈ Ω and all

ν ∈ T⊥φ(x)(M).

This is a closed linear subspace of the Hilbert space H1(Ω). Now define the

‘limit’ bilinear form

a0:H1
s (Ω)×H1

s (Ω)→ R, (u, v) 7→
∫

Ω

J0(x)〈S0(x)T∇u(x), S0(x)T∇v(x)〉 dx.

Finally, let L2
s(Ω) be the closure of H1

s (Ω) in L2(Ω). L2
s(Ω) is a closed linear

subspace of the Hilbert space L2(Ω). For ε ∈ ]0, 1] and u, v ∈ L2(Ω) set

〈u, v〉ε := bε(u, v).
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For ε ∈ ]0, 1] and u, v ∈ H1(Ω) set

〈〈u, v〉〉ε := aε(u, v) + bε(u, v).

〈 · , · 〉ε (resp. 〈〈 · , · 〉〉ε) is a scalar product on Hε := L2(Ω) (resp. H1(Ω)). Let

| · |ε (resp. ‖ · ‖ε) be the Euclidean norm on L2(Ω) (resp. H1(Ω)) induced by

〈 · , · 〉ε (resp. 〈〈 · , · 〉〉ε). Furthermore, for u, v ∈ L2
s(Ω) set

〈u, v〉0 := b0(u, v).

Finally, for u, v ∈ H1
s (Ω) set

〈〈u, v〉〉0 := a0(u, v) + b0(u, v).

〈 · , · 〉0 (resp. 〈〈 · , · 〉〉0) is a scalar product on H0 := L2
s(Ω) (resp. H1

s (Ω)).

Let | · |0 (resp. ‖ ·‖0) be the Euclidean norm on L2
s(Ω) (resp. H1

s (Ω)) induced

by 〈 · , · 〉0 (resp. 〈〈 · , · 〉〉0).

For ε ∈ [0, 1], (Hε, 〈 · , · 〉ε) is a Hilbert space.

For ε ∈ [0, 1], the pair (aε, 〈 · , · 〉ε) generates a densely defined selfadjoint

operator Aε on (Hε, 〈 · , · 〉ε).
The (linear) operators Bε (resp. Aε) defined by (ãε, b̃ε) (resp. (aε, bε)) satisfy

the following properties:

(a) u ∈ D(Bε) if and only if u ◦ (Γε)|Ω ∈ D(Aε);

(b) Aε(u ◦ (Γε)|Ω) = (Bεu) ◦ (Γε)|Ω for u ∈ D(Bε).

The following result was proved in [7]

Proposition 3.3. [7, Corollary 4.5] The family (Hε, 〈 · , · 〉Hε ,Aε)ε∈[0,1] de-

fined in this section satisfies hypothesis (Res).

Now consider the following:

Assumption 3.4. G: [0, 1]× U × R→ R, (ε, y, s) 7→ G(ε, y, s) is continuous

and such that, for all (ε, y) ∈ [0, 1] × U , G(ε, y, · ) is continuously differentiable

in s. Moreover, for ε ∈ [0, 1], G(ε,Γε( · ), 0)|Ω ∈ L2(Ω) and G(ε,Γε( · ), 0)|Ω →
G(0, φ( · ), 0)|Ω in L2(Ω) as ε→ 0+. Furthermore, there is a constant CG ∈ [0,∞[

such that

|∂sG(ε,Γε(x), s)| ≤ CG(1 + |s|β)

for all (ε, x, s) ∈ [0, 1] × Ω × R, where β ∈ ]0,∞[ is arbitrary for ` = 2 and

β = 2/(`− 2) for ` ≥ 3.

Finally, the function G(0, · , · ) is continuously differentiable in (y, s).

Proposition 3.5. Given ε ∈ [0, 1] and u ∈ H1(Ω) define the function

fε(u): Ω→ R by

(3.5) fε(u)(x) = G(ε,Γε(x), u(x)), x ∈ Ω.
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For all ε ∈ [0, 1] the function fε(u) lies in Hε for u ∈ Hε
1 and the induced family

(fε)ε∈[0,1] satisfies condition (Conv).

Proof. Since there are continuous imbeddings from H1(Ω) to L2(Ω) and

from H1(Ω) to L2(β+1)(Ω), it follows that there is a constant C1 ∈ ]0,∞[ such

that for all ε ∈ [0, 1] and all u ∈ H1(Ω), fε(u) lies in L2(Ω) and

|fε(u)|L2(Ω) ≤ |G(ε,Γε(·), 0)|L2(Ω) + C1|u|β+1
H1(Ω),

and for all all u, v ∈ H1(Ω)

(3.6) |fε(u)− fε(v)|L2(Ω) ≤ C1(|u|βH1(Ω) + |v|βH1(Ω))|u− v|H1(Ω).

It follows that, for ε ∈ ]0, 1], formula (3.5) defines an operator fε:H
ε
1 → Hε. We

will now show that f0(u) ∈ H0 if u ∈ H0
1 . To prove this let (Uk)k∈N be a covering

of U by a sequence of open sets with ClUk ⊂ Uk+1 and ClUk compact for all k ∈
N. For k ∈ N let ξk:U×R→ R be a C∞-function with 0 ≤ ξk ≤ 1, ξk(y, t) = 1 for

(y, t) ∈ Sk := ClUk × [−k, k] and ξk(y, t) = 0 for (y, t) /∈ Uk+1 × ]−k − 1, k + 1[.

Since u ∈ H1(Ω), there is a sequence (un)n∈N in H1(Ω) ∩ C∞(Ω) with un → u

in H1(Ω). We may assume that un → u and ∂jun → ∂ju almost everywhere in

Ω for all j ∈ [1. . `]. Moreover, we may also assume that there is a v ∈ L2(Ω)

such that |un| ≤ v and |∂jun| ≤ v almost everywhere on Ω for all j ∈ [1. . `]. Let

k ∈ N be arbitrary. For n ∈ N let wk,n: Ω→ R be defined by

(3.7) wk,n(x) = ξk(φ(x), un(x)) ·G(0, φ(x), un(x)), x ∈ Ω

It follows that wk,n → wk almost everywhere in Ω as n→∞, where wk: Ω→ R
is defined by

(3.8) wk(x) = ξk(φ(x), u(x)) ·G(0, φ(x), u(x)), x ∈ Ω

Moreover, for x ∈ Ω we obtain

|wk,n(x)| = |ξk(φ(x), un(x)) ·G(0, φ(x), un(x))|(3.9)

≤ |ξk(φ(x), un(x))| sup
(y,s)∈Sk+1

|G(0, y, s)|

as ξk(φ(x), un(x)) ·G(0, φ(x), un(x)) = 0 if (φ(x), un(x)) /∈ Sk+1.

The function wk,n lies in C1(Ω) and using the product rule, we obtain for

x ∈ Ω and j ∈ [1. . `]

∂jwk,n(x) = ξk(φ(x), un(x))DyG(0, φ(x), un(x))∂jφ(x)

(3.10)

+ ξk(φ(x), un(x))∂sG(0, φ(x), un(x))∂jun(x)

+Dyξk(φ(x), un(x))∂jφ(x)G(0, φ(x), un(x))

+ ∂sξk(φ(x), un(x))∂jun(x)G(0, φ(x), un(x)).



Tail estimates 719

Thus ∂jwk,n → w
(j)
k almost everywhere in Ω as n → ∞, where w

(j)
k : Ω → R is

defined by

w
(j)
k (x) = ξk(φ(x), u(x))DyG(0, φ(x), u(x))∂jφ(x)(3.11)

+ ξk(φ(x), u(x))∂sG(0, φ(x), u(x))∂ju(x)

+Dyξk(φ(x), u(x))∂jφ(x)G(0, φ(x), u(x))

+ ∂sξk(φ(x), u(x))∂ju(x)G(0, φ(x), u(x)).

Moreover, for x ∈ Ω,

(3.12) |∂jwk,n(x)| ≤ |ξk(φ(x), un(x))| sup
(y,s)∈Sk+1

|DyG(0, y, s)| sup
y∈U
|∂jφ(y)|

+ sup
(y,s)∈U×R

|ξk(y, s)| sup
(y,s)∈Sk+1

|∂sG(0, y, s)| · |∂jun(x)|

+ |Dyξk(φ(x), un(x))| sup
y∈U
|∂jφ(y)| sup

(y,s)∈Sk+1

|G(0, y, s)|

+ sup
(y,s)∈U×R

|∂sξk(y, s)| · |∂jun(x)| sup
(y,s)∈Sk+1

|G(0, y, s)|.

Now by the mean-value theorem we have, for all (x, s) ∈ Ω×R and all j ∈ [1. . `],

|ξk(φ(x), s)| ≤ |ξk(φ(x), 0)|+ sup
θ∈[0,1]

|∂sξk(φ(x), θs)| · |s|,

|Dyξk(φ(x), s)| ≤ |Dyξk(φ(x), 0)|+ sup
θ∈[0,1]

|∂sDyξk(φ(x), θs)| · |s|.

Note that sup
y∈U
|Dφ(y)| <∞ by [7, Lemma 4.4]. Consequently, there is a constant

C2(k) ∈ ]0,∞[ such that for all n ∈ N, all x ∈ Ω and all j ∈ [1. . `],

(3.13) |wk,n(x)| ≤ (|ξk(φ(x), 0)|+ C2(k)|un(x)|)C2(k)

and

|∂jwk,n(x)| ≤ (|ξk(φ(x), 0)|+ C2(k)|un(x)|)C2(k)(3.14)

+ C2(k)|∂jun(x)|
+ (|Dyξk(φ(x), 0)|+ C2(k)|un(x)|)C2(k)

+ C2(k)|∂jun(x)|.

By our choice of M and q0 (see Proposition 3.2) we see that the functions

|ξk(φ( · ), 0)| and |Dyξk(φ( · ), 0)| lie in L2(Ω), since they are continuous hence

measurable, bounded and their supports are subsets of the closed q0/M -neigh-

bourhood of ClUk+1.

By the dominated convergence theorem we now obtain that wk,n → wk and

for all j ∈ [1. . `], ∂jwk,n → w
(j)
k in L2(Ω) as n → ∞. Thus wk ∈ H1(Ω) and

∂jwk = w
(j)
k for all j ∈ [1. . `].
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Now, for all x ∈ U and all ν ∈ T⊥φ(x)(M),

∑̀
j=1

∂jφ(x)νj = Dφ(x).ν = 0.

Since u ∈ H1
s (Ω), we infer from (3.4) that

∑̀
j=1

∂ju(x)νj = 0 for almost all

x ∈ U and all ν ∈ T⊥φ(x)(M) . Consequently (3.11) implies that for almost all

x ∈ U and all ν ∈ T⊥φ(x)(M),
∑̀
j=1

∂jwk(x)νj = 0. Thus wk ∈ H1
s (Ω) for all k ∈ N.

Now wk → G(0, φ( · ), u( · )) almost everywhere in Ω as k →∞. Moreover, |wk| ≤
|G(0, φ( · ), u( · ))| almost everywhere in Ω. Since G(0, φ( · ), u( · )) ∈ L2(Ω), it

follows that wk → G(0, φ( · ), u( · )) in L2(Ω) as k →∞. Hence G(0, φ( · ), u( · )) ∈
L2
s(Ω). Our claim is proved. Thus part (a) of condition (Conv) holds with ε = 1.

Now (3.6) together with [7, Propositions 2.7 and 2.8] imply that part (c) of

condition (Conv) holds. Our assumptions together with dominated convergence

theorem imply that whenever u ∈ H1
s (Ω), then fε(u) → f0(u) in L2(Ω) as

ε→ 0. This together with Theorem 2.4 and [7, Proposition 2.7] shows that the

remaining parts (b) and (d) of condition (Conv) hold. �

We will now prove that under some additional hypotheses on (fε)ε∈[0,1],

whenever β ∈ ]0,∞[ and N is a closed bounded subset of H0
1 , then N is strongly

admissible rel. to β and the family (Hε, πε)ε∈[0,ε]. Here, for ε ∈ [0, 1], πε is the

local semiflow generated on H1
ε by the semilinear differential equation

u̇ = −Aεu+ fε(u).

Our guiding principle is the method of tail estimates, cf. [18], [9], [1], [12], which

we adapt to the present situation.

Define the function λ: Ω→ R by

λ(x) = 〈φ(x), φ(x)〉, x ∈ Ω.

Moreover, let ϑ:R→ R be a C∞-function such that 0 ≤ ϑ ≤ 1, ϑ = 0 on ]−∞, 1]

and ϑ = 1 on [2,∞[. For k ∈ N define the function θk: Ω→ R by

θk(x) = ϑ(λ(x)/k2), x ∈ Ω.

Then θk is a C1-function and for all x ∈ Ω and all ν ∈ R`,

〈∇θk(x), ν〉 = Dθk(x).ν = (2/k2)ϑ′(λ(x)/k2)〈Dφ(x).ν, φ(x)〉.

In particular,

(3.15) 〈∇θk(x), ν〉 = 0, x ∈ Ω, ν ∈ T⊥φ(x)(M).
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Now, if u ∈ H1(Ω), then θk ·u ∈ H1(Ω). For almost all x ∈ Ω, νx = P (x)∇u(x) ∈
T⊥φ(x)(M) so

(3.16) 〈P (x)∇θk(x), P (x)∇u(x)〉 = 0.

Now let ε ∈ [0, 1] and u ∈ Hε
1 be arbitrary. If ε > 0, then we obtain from (3.16)

−aε(θk · u, u) = −
∫

Ω

Jε(x)θk(x)〈Sε(x)T∇u(x), Sε(x)T∇u(x)〉 dx

−
∫

Ω

Jε(x)u(x)〈Sε(x)T∇θk(x), Sε(x)T∇u(x)〉 dx

− 1

ε2

∫
Ω

Jε(x)θk〈P (x)∇u(x), P (x)∇u(x)〉 dx

− 1

ε2

∫
Ω

Jε(x)u(x)〈P (x)∇θk(x), P (x)∇u(x)〉 dx

≤ −
∫

Ω

Jε(x)u(x)〈Sε(x)T∇θk(x), Sε(x)T∇u(x)〉 dx.

If ε = 0 and u ∈ H1
s (Ω) then, by (3.4) and (3.15), θk · u ∈ H1

s (Ω) and we obtain

−aε(θk · u, u) = −
∫

Ω

Jε(x)θk(x)〈Sε(x)T∇u(x), Sε(x)T∇u(x)〉 dx

−
∫

Ω

Jε(x)u(x)〈Sε(x)T∇θk(x), Sε(x)T∇u(x)〉 dx

≤ −
∫

Ω

Jε(x)u(x)〈Sε(x)T∇θk(x), Sε(x)T∇u(x)〉 dx.

Thus, whenever ε ∈ [0, 1] and u ∈ Hε
1 then θk · u ∈ Hε

1 and

(3.17) −aε(θk · u, u) ≤ −
∫

Ω

Jε(x)u(x)〈Sε(x)T∇θk(x), Sε(x)T∇u(x)〉 dx.

Now, setting h(x) = S(x)ST (x)∇u(x) we see that

〈Sε(x)T∇θk(x), Sε(x)T∇u(x)〉 = Dθk(x).h(x)

= (2/k2)ϑ′(λ(x)/k2)〈φ(x), Dφ(x).h(x)〉.

Thus, using (3.17) and letting Ωk be the set of all x ∈ Ω with k2 ≤ λ(x) ≤ 2k2

we see that

−aε(θk · u, u) ≤ (2/k2)C ′
∫

Ωk

|u(x)| sup
y∈Ωk

|φ(y)| |∇u(x)| dx

where

C ′ = sup
ε∈[0,1],y∈U

Jε(y) sup
s∈R
|ϑ′(s)| sup

y∈U
|Dφ(y)| sup

ε∈[0,1],y∈U
|Sε(y)STε (y)|.

Our choice of ϑ and [7, Lemma 4.4] imply that C ′ <∞. Thus

−aε(θk · u, u) ≤ (C1/k)

∫
Ω

|u(x)| |∇u(x)| dx ≤ (C11/k)|u|2H1(Ω).
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Here, C1 = 2
√

2C ′. We thus obtain

Lemma 3.6. There is a constant C1 ∈ ]0,∞[ such that for all k ∈ N, all

ε ∈ [0, 1] and all u ∈ Hε
1 we have θk · u ∈ Hε

1 and

−aε(θk · u, u) ≤ (C1/k)|u|2H1(Ω).

Lemma 3.7. Let ε ∈ [0, 1], k ∈ N and T ∈ ]0,∞[ be arbitrary and u: [0, T ]→
Hε

1 be a solution of

u̇ = −Aεu+ fε(u).

Then the function ζ: [0, T ] → R, t 7→ bε(θk · u(t), u(t)) is continuously differen-

tiable on [0, T ] and

ζ ′(t) = ξ(t) := −2aε(θk · u(t), u(t)) + 2bε(θk · u(t), fε(u(t))), t ∈ [0, T ] .

For every µ ∈ ]0,∞[

(3.18) ζ(t) = e−2µtζ(0) +

∫ t

0

e−2µ(t−s)ξµ(s) ds, t ∈ [0, T ] ,

where ξµ: [0, T ]→ R is defined by

ξµ(t) = −2aε(θk · u(t), u(t)) + 2bε(θk · u(t), fε(u(t)) + µu(t)), t ∈ [0, T ] .

If R ∈ [0,∞[ is such that |u(t)|H1(Ω) ≤ R for all t ∈ [0, T ] then

(3.19) |θk · u(t)|2L2(Ω) ≤ C
−1
3 (e−2µtC2R

2 + (C1R
2/(µk)) + (Mk(R)/µ))

where C2 = sup
ε∈[0,1]

sup
x∈U

Jε(x) <∞, C3 = inf
ε∈[0,1]

sup
x∈U

Jε(x) > 0 and

Mk(R) = sup
ε∈[0,1], u∈Hε1 , |u|H1(Ω)≤R

bε(θk · u, fε(u) + µu).

Proof. Since the map H1(Ω) → H1(Ω), v 7→ θk · v is linear and bounded

and since the norm | · |Hε1 is equivalent (with bounds depending on ε) to the

(restriction of the) norm of H1(Ω), it follows that the map Hε
1 → Hε

1 , v 7→ θk · v
is well-defined, linear and bounded. Since u is continuous (into Hε

1) and the

restriction of u to ]0, T ] is differentiable into Hε, it follows that ζ and ξ are

continuous on [0, T ]. Moreover, ζ differentiable on ]0, T ] and, for t ∈ ]0, T ],

ζ ′(t) = bε(θk · u′(t), u(t)) + bε(θk · u(t), u′(t))

= 2bε(θk · u(t), u′(t)) = 2bε(θε · u(t),−Aεu(t) + fε(u(t))).

Since, for w ∈ Hε
1 and v ∈ D(Aε),

bε(w,Aεv) = aε(w, v),

it follows that ζ is differentiable on ]0, T ] and ζ ′(t) = ξ(t) for t ∈ ]0, T ]. Since ξ

is continuous at t = 0 it follows that ζ is differentiable at t = 0 and ζ ′(0) = ξ(0).
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We now conclude that, given µ ∈ ]0,∞[

ζ ′(t) = −2µζ(t) + ξµ(t), t ∈ [0, T ] .

Now the variation-of-constants formula proves (3.18).

To prove (3.19), note, that formula (3.18), Lemma 3.6 and the fact that

0 ≤ θk ≤ 1 imply

C3|θk · u(t)|L2(Ω) ≤ ζ(t) ≤ e−2µtζ(0) + (1/2µ)
(
2(C1/k)R2 + 2Mk(R)

)
.

Since ζ(0) ≤ C2|u(0)|2L2(Ω) ≤ C2R
2, estimate (3.19) follows. �

Let us call the family (fε)ε∈[0,1] tail admissible if there is a µ ∈ ]0,∞[ such

that for every k ∈ N and every R ∈ ]0,∞[

Mk(R) = sup
ε∈[0,1], u∈Hε1 , |u|H1(Ω)≤R

bε(θk · u, fε(u) + µu)→ 0, as k →∞.

The following sufficient conditions for tail admissibility are due to Prizzi [9] in

the context of reaction-diffusion equations on R`.

Lemma 3.8. Assume there are numbers µ ∈ ]0,∞[, q ∈ [2,∞[ and p ∈ ]1,∞]

and functions c ∈ L1(Ω), e ∈ Lp(Ω) such that

(a) s ·G(ε,Γε(x), s) ≤ −µ|s|2 + e(x)|s|q + c(x) for all ε ∈ [0, 1], s ∈ R and

a.a. x ∈ Ω.

(b) If ` = 2 and p =∞, then |θk · e|L∞(Ω) → 0 as k →∞.

(c) For ` ≥ 3 either q < 2`/(`− 2) and 2`/(2`− q(`− 2)) ≤ p <∞ or else

q ≤ 2`/(`− 2), p =∞ and |θk · e|L∞(Ω) → 0 as k →∞.

Then (fε)ε∈[0,1] is tail admissible.

Proof. Let r = p/(p − 1) for p < ∞ and r = 1 for p = ∞. For ε ∈ [0, 1],

k ∈ N and u ∈ Hε
1 we have, by Hölder inequality,

bε(θk · u, fε(u) + µu) =

∫
Ω

Jε(x)θk(x)u(x)(G(ε,Γε(x), u(x)) + µu(x)) dx

≤
∫

Ω

Jε(x)θk(x)(e(x)|u(x)|q + c(x)) dx

≤ C2(|θk · e|Lp(Ω) |u|qLqr(Ω) + |θk · c|L1(Ω))

where, as before, C2 = sup
ε∈[0,1]

sup
x∈U

Jε(x) < ∞. By our assumptions there is

a bounded imbedding from H1(Ω) to Lqr(Ω). Thus there is a constant C4 ∈
]0,∞[, such that for all ε ∈ [0, 1], all k ∈ N and all u ∈ Hε

1

(3.20) bε(θk · u, fε(u) + µu) ≤ C2(C4|θk · e|Lp(Ω) |u|qH1(Ω) + |θk · c|L1(Ω)).

By the properties of ϑ and the dominated convergence theorem we obtain that

|θk · c|L1(Ω) → 0 and |θk · e|Lp(Ω) → 0 (for p < ∞) for k → ∞. But by our



724 K.P. Rybakowski

assumption, the latter convergence also holds for p = ∞. Together with (3.20),

this implies the lemma. �

We can now state the following

Theorem 3.9. If (fε)ε∈[0,1] is tail admissible, β ∈ ]0,∞[ and N is a closed

bounded subset of H0
1 , then N is strongly admissible rel. to β and the family

(Hε, πε)ε∈[0,ε].

Proof. Since for each ε ∈ [0, 1] the map fε maps bounded subsets of Hε
1 to

bounded subsets of Hε, it follows that πε does not explode in Nε,β . There is a

bound R ∈ ]0,∞[ such that |u|H1(Ω) ≤ R for all ε ∈ [0, 1] and u ∈ Nε,β .

Let ε0 ∈ [0, 1], (εn)n be a sequence in [0, ε], (tn)n be a sequence in ]0,∞[ and

(un)n be a sequence such that

tn →∞ as n→∞,

either εn = ε0 for all n ∈ N or else ε0 = 0 and εn → ε0 for n→∞,

and, for each n ∈ N, un ∈ Hεn
1 and unπεn [0, tn] ⊂ Nεn,β .

If εn = ε0 for all n ∈ N, then (unπε0tn)n is bounded in the Hilbert space Hε0
1 ,

so there is a v ∈ Hε0
1 ⊂ H1(Ω) and a subsequence of (unπε0tn)n, again denoted

by (unπε0tn)n, such that (unπε0tn)n converges weakly in Hε0
1 , hence in H1(Ω)

to v. If ε0 = 0 and εn → ε0 for n → ∞, then (unπεntn)n is bounded in the

Hilbert space H1(Ω), so there is a v ∈ H1(Ω) and a subsequence of (unπεntn)n,

again denoted by (unπεntn)n, such that (unπεntn)n converges weakly in H1(Ω)

to v. Thus (P (, · )∇(unπεntn))n converges weakly in L2(Ω,R`) to P ( · )∇v.

From the definition of aε it follows that |P ( · )∇(unπεntn)|L2(Ω,R`) → 0. Thus

(P ( · )∇(unπεntn))n converges to 0 strongly hence weakly in L2(Ω,R`). This

shows that P ( · )∇v = 0 almost everywhere in Ω, i.e. v ∈ H1
s (Ω) = Hε0

1 .

The proof will be completed if we can show that there is a subsequence of

(unπεntn)n, again denoted by (unπεntn)n, such that |unπεntn − v|Hεn → 0 as

n → ∞, i.e. equivalently, that |unπεntn − v|L2(Ω) → 0 as n → ∞. By the

uniqueness of weak limits we thus have to show that the sequence (unπεntn)n

is precompact in L2(Ω), i.e. that α
(
{unπεntn | n ∈ N }

)
= 0, where α is the

Kuratowski measure of noncompactness on L2(Ω). We have for every k ∈ N

α({unπεntn | n ∈ N}) ≤α({θk · (unπεntn) | n ∈ N})
+ α({(1− θk) · (unπεntn) | n ∈ N}).

Let δ ∈ ]0,∞[ be arbitrary. Then (3.19) together with tail admissibility imply

that there is a k ∈ N and an n0 ∈ N such that |θk · (unπεntn)|L2(Ω) < δ for all

n ≥ n0. Thus

α({θk · (unπεntn) | n ∈ N} ≤ 2δ.
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Now define Vk to be the set of all x ∈ Ω with ‖x‖ < (q0/M) + k
√

2. Let

S = {(1 − θk) · (unπεntn) | n ∈ N} and (wm)m be any sequence in S. For each

m ∈ N let w̃m be the restriction of wm to the open set Vk. Then w̃m ∈ H1(Vk)

and |w̃m|H1(Vk) ≤ R. Since Vk is bounded, Rellich theorem implies that there is

a subsequence (w̃m`)` of (w̃m)m converging in L2(Vk) to some w̃ ∈ L2(Vk). Our

choice of ϑ implies that wm(x) = 0, whenever m ∈ N, x ∈ Ω and x /∈ Vk. Thus

(wm`)` converges in L2(Ω) to the function w: Ω → R defined by w(x) = w̃(x)

if x ∈ Vk and w(x) = 0 otherwise. Altogether we see that every sequence

in S has a subsequence which converges in L2(Ω). Thus α(S) = 0 and so

α({unπεntn | n ∈ N}) ≤ 2δ. Since δ ∈ ]0,∞[ is arbitrary, it follows that

α({unπεntn | n ∈ N}) = 0. This completes the proof of the theorem. �

We thus obtain the following result.

Theorem 3.10. For (Hε, 〈 · , · 〉Hε ,Aε)ε∈[0,1] and (fε)ε∈[0,1] defined in this

section, if (fε)ε∈[0,1] is tail admissible, then the assumptions and hence the con-

clusions of the Conley index continuation results Theorems 2.17 and 2.18 hold

(together with the corresponding remarks).
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