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ABSTRACT. Using a resolvent convergence result from [7] we prove Conley
index and index braid continuation results for reaction-diffusion equations
on singularly perturbed unbounded curved squeezed domains

1. Introduction

Let w be an arbitrary domain in R¢, bounded or not, with Lipschitz boundary.
We consider the following semilinear parabolic Neumann boundary problem
U = A+ Go(Z,w), t>0, 7 €w,

(1.1)

Oy, u=0, t>0, T € dw,

on w. Here, v, is the outer normal vector field to dw and éw:w xR — Ris
a suitable nonlinearity. Define the bilinear forms a,, and b, by

o HY(w) x HY(w) > R, (1,7) > / Vi) - Vi(e) da;

b L2(w) X L2(w) 5 R, (1,7) — / i(2)0(z) da.

Then the pair (’dw,gw) generates a densely defined selfadjoint operator B, on
L?(w), which is commonly interpreted as the Laplace operator —A,, on w with
Neumann boundary condition.
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We are interested in the case w = ., where )., for ¢ > 0 small, is ‘thin’ of
order €. As e — 07, the domain ), ‘degenerates’ to some limit set, which may
no longer be a domain in R.

More specifically, let M C R’ be a smooth k-dimensional submanifold of R*
and U D M be a normal (tubular) neighbourhood of M with normal projection
¢. For € € [0,1] define the squeezing operator Te:U — U by x +— ex+(1—¢)p(x).
For any domain  in R with Lipschitz boundary and Cl Q C U we set . =
I'.(Q) and B, = Bq_ for € €]0,1]. A particular case is the flat squeezing case
in which, writing R = R¥ x R/~% 2 = (21, 29), we set M = Rk x {0}, U = R*
and ¢(x) = (1, 0).

We also consider a family G.:U x R — R of suitable nonlinearities, ¢ € [0, 1]
and, for € €10,1], set Gq. := G| x R.

Equation (1.1) can be written abstractly as

(1.2) i = —B.ii + f.(1)

on H'(£).) where f. is the Nemitski operator from H*(£.) to L2(€2.) defined by
Gq.: Q2 xR = R.

Now using the change of variables defined by I'. we may pull B, back to
L?(Q2) and thus obtain the densely defined selfadjoint operator A. in L?(Q)
given by:

(a) we D(B,) if and only if u =uoT. € D(A,);
(b) A.(u) = (B.u) oI, for u € D(B,).
Equation (1.2) can then be pulled back to yield the equation

(1.3) i =—Acu+ fe(u)
on HY(Q). Here, f.: HY(2) — L?(Q) is defined by
fe(@oT.) = fo(@W) o T, e H'Y(Q).

More explicitly,

for u € H*(Q) and z € Q.

If © is bounded, then there is a closed linear subspace L2() of L?(2) and
a densely defined selfadjoint operator Ay on L%(Q) such that, as ¢ — 0T, the
eigenvalues and eigenfunctions of A. converge, in some sense, to the eigenvalues
and eigenfunctions of Ay, cf. [10], [13].

This spectral convergence theorem implies various Trotter-Kato-like linear
convergence theorems of the CO-semigroups e~ A< to e~tAo  cf. [10], [2], [13],
which are used to prove attractor semicontinuity and Conley index continua-
tion results for reaction-diffusion equations with nonlinearities satisfying certain
growth assumptions, cf. [10], [13], [2], [3], [16].
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If © is unbounded, then, in general, the operators A, do not have compact
resolvents and so spectral convergence results in the above form are not expected
to hold. However, as shown in [1] in the flat squeezing case, there is again a closed
linear subspace L2(2) of L?(Q2) and a densely defined selfadjoint operator A on
L2(€2) such that the resolvents of A. converge in some sense to the resolvents
of Ay. It turns out that this is sufficient for the validity of a corresponding linear
convergence result.

In the recent paper [7] the above results from [1] were extended to the curved
squeezing case provided the manifold M has bounded normal curvature. This
condition is trivially satisfied in the flat squeezing case (the normal curvature of
M = R¥ x {0} being zero) and for compact manifolds M. A simple example
of a noncompact manifold with bounded normal curvature is provided by the
graph of the exponential function exp: R — R, while the graph of the function
9:10,00[ = R, z — sin(1/z), is a manifold with unbounded normal curvature.

Using the results from [7] we will obtain in this paper Conley index contin-
uation results for problem (1.3) as e — 0.

This paper is organized as follows.

In Section 2 we introduce an abstract linear convergence concept (Lin) and
relate it to resolvent convergence concept from [7]. We then define a nonlin-
ear convergence concept (Conv) and establish some abstract nonlinear singular
convergence results. Finally, we define the concept of singular H¢-admissibility
and show that this seemingly weaker concept actually implies the usual singular
admissibility as defined in [4]. This implies various Conley index continuation
results.

In Section 3 we will apply these abstract results to reaction-diffusion equa-
tions on singularly perturbed unbounded domains.

Some results on attractors on singularly perturbed unbounded domains are
contained in [17].

2. An abstract singular convergence result

DEFINITION 2.1. We say that the family (H®, (-, -)n-, Ac)ecpoz satisfies
condition (Lin) if the following properties are satisfied:

(a) € €]0,00[ and for every € € [0,2], (H®, (-, - Yp<) is a Hilbert space and
A.:D(A.) C H® — HE¢ is a densely defined nonnegative self-adjoint op-
erator on (H®, (-, -)pg-). For a € [0, 00[ write HE := D((A. + I.)*/?),
where I. = Idge, and (-, -)gs == (-, +)(a.11.)o/2 With the correspond-
ing norm | - [g<. In particular, Hj = H®;

(b) for each e € ]0,g], H® is a linear subspace of H® and HY is a linear
subspace of Hf;
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(c) there exists a constant C' € |1, co[ such that, for e € ]0,2],
lulps < Clulgo  and  |u[go < Clu|ps, whenever u € HY;

(d) If up € H° and (uy,), is a sequence such that u,, € H» for each n and
|, — ug|lgren — 0 as n — oo, and if (e,), is a sequence in ]0,g] with
€n — 0 then

letAeny,, — e_tA°u0|Hlsn — 0 asn — oo,
uniformly on compact intervals in ]0, col.
(e) If ug € HY and (uy,), is a sequence such that u,, € Hi" for each n and
|ter, — U0|Hf" — 0 as n — oo, and if (g,), is a sequence in ]0,g] with
€n — 0 then

le=tAenq,, — e*tA°u0|Hlsn —0 asn— oo,

uniformly on compact intervals in [0, col.

PROPOSITION 2.2. If (H®,(-, - )ue-, Ac)ecjo,z) satisfy condition (Lin), then
for every e €10,2], the subspace HY is closed in (Hf, |- |u:). Let Qc: Hf — Hf
be the Hs-orthogonal projection of H§ onto HY. O

DEFINITION 2.3. We say that the family (H®, (-, -)n-, Ac)ecpo,z satisfies
condition (Res) if the following properties are satisfied:
(a) € €]0,00[ and for every € € [0,2], (H®, (-, - Yp<) is a Hilbert space and
A.:D(A.) C H® — HE¢ is a densely defined nonnegative self-adjoint op-
erator on (H®, (-, -)pg:). For a € [0, 00[ write H := D((A. + I.)*/?),
where I = Idge, and (-, -)gs == (*, ) (a.11.)o/2 With the correspond-
ing norm | - [g<. In particular, H§j = H¢;
(b) for each £ € ]0,2], HY is a linear subspace of H® and HY is a linear
subspace of Hf;
(c) there exists a constant C' € |1, co[ such that, for e € ]0,2],

lulps < Clulgo  and  |u|ge < Clu[gg, whenever u € HY;
and
|u|pre < Clu|go and  |u|go < Clu|g-, whenever u € HY,

(d) whenever (g,), is a sequence in ]0,&] converging to zero, w € H® and
(wn)n is a sequence in H® with |w, — w|go — 0 as n — oo, then
|(Ae, + I, )~ tw, — (Ag + IO)_lw\Hlsn —0asn— oo.

The following result is a rewording of [7, Theorem 3.4].
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THEOREM 2.4. A family (H®, (-, - )<, Ac)eelo,z] satisfying condition (Res)
satisfies condition (Lin).
DEFINITION 2.5. Let € € ]0, 00| be arbitrary and (H*, (-, -)u<, Ac):cjo,5) be
a family satisfying condition (Lin). We say that the family (f:)-cpo,z) of maps
satisfies condition (Conv) if the following properties are satisfied:
(a) fe:Hf — HE for every € € [0,2].
(b) lim le™t 4 fo(u) — e fo(u)| e = 0 for every u € HY and every ¢ €
e—0
10, oo.
(c) For every M € [0, 00[ there is an L = Lj; € [0, 00 such that

|fo(u) — fe(v)|m= < Llu — v|u;

for all € € [0,2] and u, v € HY satisfying |u|gz, [v|g: < M.
(d) For every u € HY there is an &f, € ]0,&] such that

sup |fe(u)|me < 0.
e€[0,e]

REMARK 2.6. Note that, for «, ¢t € ]0,00[ and X € [0, 0]
Ae M < Cla)t™  with Ca) = (a/e)”.

Let (H®, (-, -)ue, Ac)=c[o,7) satisfy condition (Lin). Let € € [0,2] and r € ]0, ool.
Using the Stone-Neumann operational calculus together with the above estimate
with a = 1/2 we obtain the estimates

(2.1) le= A u|ge < |u|lge, ue HE
and
(2.2) |67A5ru|Hle < Cor Y2 u|ge, we H®

where Cy = C(1/2).
The next result shows that the above condition (b) is valid uniformly for ¢

lying in compact subsets of |0, ool.

PROPOSITION 2.7. Assume condition (Conv) and let 8, v € ]0,00] be arbi-
trary with 3 < . Then, for every u € HY,

lim sup |e” "< f.(u) — e_tAOfO(U”Hf =0
e=0% (8,9

PROOF. Let v = e #4o fy(u) € HY. For every t € [3,7] we have
et o) — e fo(w) g
< Jo =P (oA ) — 0 fo () + e ey — D oy

< e () = P o) g + fem Ay — e Ay
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Here we have used (2.1). Since, by part (e) of condition (Lin)

—sA —sAp

lim sup e *%v—e 11|Hla =0,
70 s€[0,7-p]
the assertion follows from condition (Conv) part (b) (with ¢t = 3). O

For the rest of the paper, if (H®, (-, -)n<, Ac)-[o,7) satisfies condition (Lin)
and (f:)ze[o,z) satisfies condition (Conv) then we will write, for every e € [0,Z],
Te = ma_,. to denote the local semiflow on Hj generated by the abstract
parabolic equation

(2.3) = —Au+ fo(u).

LEMMA 2.8. Suppose that (H®,(-, -)ue, Ac)zclo7 satisfies condition (Lin)
and (f:)eepo,7) satisfies condition (Conv). Let e, € ]0,2] be such that

sup | f:(0)| e < oo.
e€[0,e(]

(ef, emists in view of condition (Conv).) For every R € ]0,00[ there exists a T =
Tr € |0, 00[ such that for every e € [0, 0] and every a € Hf with |a|g: < R, am.t
is defined and |am t|g: < 4R for all t € [0, 7].

PROOF. Let C be as in part (c) of condition (Lin), set
(2.4) M':=4R
and let L := Ljp be as in Condition (Conv) with M replaced by M’. Set

(2.5) Ci=3R and Cy= sup |f:(0)|m- < oo.

e€[0,e(]

Now choose T € ]0, oco[ with

(2.6) 2C,Lr'/%e™ < 1/2,

(2.7) 2CoT/%e™ (2LC, + Cy) < Cy/4,

where the constant Cj is as in Remark 2.6. For every € € [0,¢(] and a € Hf with

(2.8) lalg; < R,
define S. o := {u | u:[0,7] — Hf is continuous and |u(t) — aly: < C; for all
te0,7]}.

For u € S, , define the map T} ,(u): [0, 7] — HS by

¢
Teo(u)(t) : = e ea —|—/ e~ =94 1 (u(s)) ds.
0

The map T ,(u) is continuous. Moreover, by (2.4), whenever u € S 4, then for
all t € [0,7]
|u(t)|Hf <Ci;+ |a|H15 <4R = M/,
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Thus for all u,v € S; , and for all ¢ € [0, 7], we have, by (2.2) and (2.6),
(2.9) ‘Ts,a(u)(t) - Te,a(v)(t”Hf

Aewﬂ&mmm—ﬁMmMs

H;
< Co [ (=9 e ul9) ~ ool

¢
< C’oLeT/ (t—s)"Y2ds sup |u(s) — v(s)| =
0 s€[0,7]

=2CoLr'/%e™ sup |u(s) — v(s)|us
s€[0,7]
<1/2 sup |u(s) — v(s)|n:.
s€[0,7]

Moreover, for all u € S, , and t € [0, 7],

Tz (u)(t) = alug < le™*<a—aln; +

[ e tuts)) as

0 Hs

Since for € € [0,¢(] and s € [0, 7] we have

|fe(u(s)|m= < |fe(u(s)) — fe(a)|u= + [ fe(a)|ue
< Llu(s) = alm; + |fe(a) = f=(0)|me + | f(0)]
< LCy + LCy + Cy = 2LC, + Cs,

we obtain, by (2.7),

/ e_(t_s)AEfs(u(s)) ds

0

t
< Co/ (t— s)_l/Qe(t_s)|f5(u(s))|Hs ds
HE 0
< 20,7Y/2e7(2LC) + Cy) < C /4 = 3R/A.

Moreover, |e~*4q — algs < \e_tAEOL|H16 + lalgs < lalgs + lalg: < 2R by (2.1).
Altogether, we obtain

IT:a(u)(t) —algo <2R+3R/A<3R=C1 forallt€|0,7].

Hence we conclude that T; (S¢,q) C Seo and so, by (2.9) and Banach Fixed
Point Theorem, there is a unique fixed point of T; , in S. 4. In particular am.t
and is defined and |a7.t|g: < 4R for all £ € [0, 7]. The lemma is proved. O

We can now state our first singular convergence result for semiflows.
THEOREM 2.9. Suppose that the family (H®, (-, - )u<, Ac)ccjo,7) satisfies con-

dition (Lin), and the family (f:)-cpo7 satisfies condition (Conv). Let ¢ € [0,Z]
and (en)n be a sequence in [0,E] with €, — 9. We assume that either €, = &g
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for alln € N or else eg = 0 and £, > 0 for all n € N. Let ug € H{® and (un)n,
be a sequence with u, € Hi" for every n € N and

|un — uo|gen — 0 asn — oo.

Let b € ]0,00] and suppose that unme, t and ugme,t are defined for alln € N and
t € [0,0]. Moreover, suppose there exists an M’ € [0, 00 such that |upme, s|gen <
M’ for alln € N and for all s € [0,b]. Then for everyt € |0,b] and every sequence
(tn)n 0 ]0,b] converging to t

|tn e, trn — uowgotn|an —0 asn — oo.

PRrROOF. Notice that M := sup |uc,me,s|go < oo. Hence [uc,me,s|gen <
s€[0,b]

CM for all s € [0,0]. Set M" := max{M’,Cﬁ} and let L := Ly~ be as in
condition (Conv) with M replaced by M".
By the variation-of-constants formula we have, for all n € N and all ¢ € [0, b],

tA tA

(2.10) upme, t —ugme,t = e e, — e ooy

t
+/eWﬂmﬁhﬁwa$—EWWmD®
0

t
+ / (e_u_s)AE" e (uome,s) — e =94 Jeo (uome,5)) ds.
0
Define the function g,:[0,b] x [0,b] — R as follows: If 0 < s < t then set

gn(t,s) = |e_(t_S)AE" fen (uoTeys) — e =94 Jfeo (UUWEOSHHf”

and set g, (t, s) = 0 otherwise. The function g, restricted to the set of (s,t) with
0 < s < t is continuous. Thus g, is measurable on [0,b] x [0,b]. By Fubini’s
theorem the function

%w:AEwwwzﬁE@@w

is almost everywhere defined and measurable on [0, b]. Moreover, we obtain for
0<s<t

(2.11)  |gn(t,8)] < C’QC’oeb(t - 8)71/2 + C’C’gC’oeb(t - 5)71/2 =: C3(t — 5)71/2,

where

Cy := max { sup sup |fe, (womoS)|men, SUP | feo (UoTeyS)|po }
s€[0,b] nEN s€[0,b]

Notice that condition (Conv) implies that Cy < co. Let (), be any sequence
in ]0, ] converging to some ¢t € ]0,b]. If 0 < s < ¢ then, then 0 < s < t,, for all
large n and so Proposition 2.7 implies that g, (t,,s) = 0asn — oco. If 0 <t < s,
then 0 < t,, < s for all large n and so again g, (t,,s) — 0 as n — oco. It follows
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from (2.11) and the dominated convergence theorem that ¢, (t,) — 0 as n — oco.
Now (2.10) implies for all r € ]0, ]

—rA

UnTe, T — UoTe T |gon < e_TAsn Uy — € 0uUg|gen + cp(r
n 0 1 1

s
+ Coe® L / (r— ) Y |upm., s — UQTe S| pren ds.
0

For n € N and r €0, b] set

—rA A

an(r) = le” ey, —e™” EOuo\an + en(r).

It follows that a,, is measurable and bounded on ]0, b]. Using condition (Lin) we
obtain that

(2.12) an(tn) >0 asn — oo.

An application of Henry’s Inequality [8, Lemma 7.1.1] now implies that

tn
[UnTe, tn — UoTeotn|men < an(tn) + / p(tn — s)an(s) ds,
0

where

Z Coe LMHF B)" A1

with 8 :=1/2.
The function p:]0, c0] — ]0, co[ is well defined and continuous on |0, co[ and
it satisfies the estimate

plz) < Cuz=Y2 4 Cy for z €]0,b).

Fix a §p € ]0,t[ and let § € ]0,00/2[ be arbitrary. There is an ng = ng(d) € N
such that |t,, —t| < ¢ for n > ngy. Therefore for all such n € Nand all s € [0, t—26]
it follows that ¢, — s > & so p(tn, — s) < C46~12 4+ €. Thus

p(tn — 8)an(s) < Cs for s €]0,t — 24].
Therefore (2.12) and the dominated convergence theorem show that
t—20
/ p(tn — 8)an(s)ds =0 asn — oco.
0

On the other hand,

tn
/ Pt — 8)an(s) ds < Co(6Y/2 + 0).
t—26

Since § € ]0,00/2] is arbitrary, it follows that

tn
/ p(tn, — S)an(s)ds -0 asn — oo.
0

Consequently, |u, 7, t, — Uoﬂ-gotn|H15n — 0 as n — oo. O
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LEMMA 2.10. Suppose that the family (H*, (-, -)me-, Ac)zc[0,7) satisfies con-
dition (Lin) and the family (f:)-c[o,z) satisfies condition (Conv). Then for every
R €]0,00] there is a 7 = 75 € ]0,00[ such that whenever ug € HY is such that
|u0|H? < ]§, (€n)n is a sequence in ]0,€] with e, — 0 and (uy), s a sequence
with u, € Hi™ for every n € N and

[un — uolgen — 0 asn — oo,

then there exist an ng € N such that ugmot and u,m., t are defined for all n > ng
and t € [0,7] and

sup_|upme,t — uomot|gen — 0 asn — oo,
t€[0,7]

PROOF. Let &) be as in Lemma 2.8 and R € ]0,00] be arbitrary. Define
R = (1+C)R and 7 = 7g, where 75 be as in Lemma 2.8. Let ug € H? be
arbitrary such that |ug|go < R. Moreover, let (£,), be a sequence in ]0,2] with
e, — 0 and (uy,), be a sequence with u,, € H;" for every n € N and such that
|un — to|gen — 0 as m — oo. Then there is an ng € N such that, &, < & and

|tn, — u0|an < R for n > ny. Thus, for all such n
[un|gen < |un —uo|gen + [uolgen < up — uolgen + Clug|go < R.

If follows from Lemma 2.8 that ugmgs and u,m., s are defined for n > ny and
s € [0,7] and [upmos|go < Cr and |u, 7., s|gen < C1 for n > ng and s € [0,7].
Here, C; = 4R.

If the lemma does not hold then, taking subsequences if necessary, we may
assume that there is a sequence (¢,)nen in [0, 7] converging to some to € [0,7]
and there is a § € ]0, oo such that

(2.13) [unTe, tn — oTotn|gen >3, 1 > no.

If to > 0, then (2.13) contradicts Theorem 2.9. Therefore ty = 0. For every
t € [0, 7] we have

UpTe, T — Uy = e tHenqy, —ug + /t e~ (t=9)Ae, fe, (unme, s)ds.
0
Note that |ugmos|gsn < CCj for all s € [0,7]. Let L := Ly be as in (Conv) with
M = CC,. Tt follows that for all n > ng and for every s € [0, 7]
|fe, (unme, $)|Hen < [fe, (unTe, ) = fe, (wo)lHen + [fe,, (v0) | e
< Llupme, s — uo|gen + | fz, (uo)|m=n
< L(Cy + Cluo|go) + [ fe, (wo) | men -

Part (d) of condition (Conv) now implies

|z, (une, 8)| gren < C, for all s € [0,7] and for all n > ng,
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for some C € ]0, co[. Therefore for all n > ng
[unTe, tn — uoTotn|gen < |unme, tn — uolgen + Cluomoty, — ol g0

< |€7tnAEn Uy — eit"AO'LLO|H15n + C’|67tnA0u0 _ UO‘H?
—~ tn
+ C’OC/ (tn — S)_1/2 ds + Clugmot, — UO|H?'
0

Since |etn Aoy, —to|go — 0 and |ugmot, —uo|go — 0 as m — oo, condition (Lin)
implies that |u,7. t, — uOTFQtn|H15n — 0 as n — o0, but this contradicts (2.13).
The lemma is proved. |

We conclude this section proving our main convergence result for semiflows.

THEOREM 2.11. Suppose the family (H®, (-, - )<, Ac)ccjo,7 satisfies condi-
tion (Lin) and the family (f:)-c(o,7 satisfy condition (Conv). Let (en)n be a se-
quence in |0,E] with e, — 0 and let (t,), be a sequence in [0, 00] with t, — to,
for some ty € [0,00[. Let ug € HY and (uy), be a sequence with u, € H;™ for
everyn € N and

[un — to|gen — 0 asm — oo.
Assume ugmoty is defined. Then there exists an ng € N such that w,m. t, is
defined for all n > ng and

|tn e, trn — uowoto\an -0 asn — oo.

PROOF. Since ugmoty is defined, there is a b > tg, b € ]0, 0o[, such that ugmgt
is defined for all ¢ € [0, b[. Define

I:= {t € [0,b] ’ there exists an ng € N such that w, 7. ¢ is defined for n > ng

and sup |upme, s — u07r03|H§n —0asn— oo}.
s€[0,t]

It is clear that O € I. Furthermore if 0 < ¢ <t and ¢t € I, then ¢’ € I. Let

t:=supl.

It follows that ¢ < b and so [0,¢[ C I. An application of Lemma 2.10 with an
arbitrary Ry € ]0, 00[ with |ug| o < Ry and a corresponding 7, = g, shows
that £ > 79 > 0. We claim that ¢ = b. Suppose, on the contrary, that ¢ < b. It
follows that ugmo?f is defined. Let Ry € 10, o[ be arbitrary with |u07T0ﬂH9 <R
and 71 = 7~'§1 be as in Lemma 2.10 . By continuity of mg there is a t € R with
0<t<t<t+T7 and \uoﬂ'ot|H<ln < Ry. We have that ¢ € I so there exists an
ng € N such that u, 7., t is defined for all n > ny and

(2.14) Sup |unme, $ — ugmes|gen — 0 as n — oo.
s€[0,1] !
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Lemma 2.10 implies that there is an ny € N with n; > ng such that (ugmot)mos
and (u,m. t)m., s are defined for all n > n; and s € [0,71] and
(2.15) sup |(unte, t)me, s — (uomol)mos|gren — 0 as n — oo.

s€[0,71]
Formulas (2.14) and (2.15) imply that uomo(t + 71) is defined, u,me, (t + 71) is
also defined for all n > n; and

sup  |upme, s — u07r05|an —0 asn — oo.
SE[O,tJr?l]

Thus ¢t + 71 € I, but t + 71 > £, a contradiction, which proves that ¢ = b.

Since to € [0,b], it follows that there is a t € [0,b] with tg < t and ¢, < t for
all n large enough. In particular ugmot, and w,m., t, are defined for all n large
enough and

[unTe, tn — toTotn|gen — 0 asn — oo.
Since
[uomotn — uomoto| gen < Cluomotn — tomotol o
and |uomot, — Uoﬁoto\Hg — 0 as n — o0, the theorem follows. |
DEFINITION 2.12. Suppose that the family (H<,(-,-)g<, Ac)-[o,7) satisfies

condition (Lin) and the family (f:)-c[oz satisfies condition (Conv). Let g €
]0,00[ and N be a closed subset of HY. For ¢ € [0,7] set

N.s=N, ife=0,
Nepg={ue Hi|Qcue N and [(Idg: — Q- )ulg: < B}, if e > 0.
We say that N is strongly admissible rel. to 8 and the family (Hf,7.)ecpo,
(resp. the family (H®, 7. )cco7 ) if the following conditions are satisfied:

(a) for each € € [0,Z] the local semiflow 7. does not explode in N; g;
(b) whenever g € [0,], (¢n)n is a sequence in [0,], (£,), is a sequence in
10, oo[ and (uy,)n is a sequence such that

t, — 00 asn — oo,

either ¢,, = ¢¢ for all n € N or else eg = 0 and &,, — ¢ for n — oo, and,
for each n € N, u,, € H{" and u,7, [0,t,] C N., g, then there exist
a v € H{® and a subsequence of the sequence (u,me, tn)nen, denoted
again by (unme, tn)nen, such that

|unme, tn — vlgsn — 0 asn — oo.

(resp. |unTe, tn — v|gen — 0 asn — 00.)

REMARK 2.13. If N is strongly admissible rel. to 8 and (H{, 7. ).c[o,z] and
v is as in (b) of Definition 2.12, then, as is easily seen, v € N, g.
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THEOREM 2.14. Suppose that the family (H®,(-, - )n<,Ac)eeclo,z) satisfies
condition (Lin) and the family (f:)ccjo,7 satisfies condition (Conv). Let f €
10,00[ and N be a closed bounded subset of HY. Suppose N is strongly admissi-
ble rel. to 8 and the family (H®,7.)ccjo,7). Then N is strongly admissible rel. to
B and the family (H{,7:)ecp0.7)-

ProOF. There is an M € [0, 00[ such that |w|ge < M so |w|g; < CM for
all we N.

Let ¢g € [0,2], (e1)n be a sequence in [0,Z], (t,)n be a sequence in ]0, oo and
(un)n be a sequence such that

t, — 00 as n — oo,
either €,, = ¢g for all n € N or else ¢g = 0 and &,, — ¢ for n — o0,
and, for each n € N, uw,, € H{" and u,7,, [0,t,] C N, g. There is an ny € N
such that ¢, > 1 for all n > ng. Set ¢/, =, — 1 for all n > ng. By hypothesis

there is a v € N, g and a subsequence of the endpoint sequence (w, e, t),)n>ngs
denoted again by (u, 7., t),)n>n,, such that

[upme, b, — V|, — 0 as n — oo.

Let v, = upme, th,, n > ng. Then, for all n > ng and s € [0, 1], v,7., s is defined
and v,m., s € N, g s0

|vn7TEnS|Hf" <|Qe, (UnﬂansﬂHf" + |(Idas — QE)(UnﬂensﬂHf" <CM + 5,
S0
(2.16) [UnTe, 8|gen < CM + B, n>ng, s€[0,1].

There is an s; € ]0, 1] such that vm,, sy is defined. Therefore, the estimate (2.16)
together with Theorem 2.9 show that

|wn — w[gen — 0, asmn — oo

where w = vm., 81 and w, = v,7me,s1 for n > ng. If €, = go for all n > ny,
then this implies that w € N, 3. If g = 0 and €, — €9 as n — oo, then, as
Q:, w, € N for all n > np and Q.w = w for all € € ]0,€], we obtain from the

estimates

Qe wn — w|H§ = |Qe, (wn — w)|H? < ClQe, (wn — w)|Hf" < Clwn, — w|Hf”

that w € N = N,, 3. Thus w € N, g in both cases. We claim that wm,, (1 — s1)
is defined. If not, then the fact that 7., does not explode in N, g implies that
there is some s2 € ]0,1 — s1[ such that wn., s is defined and wme,s2 ¢ Ne, 5. If
ey, = €p for all n > ng, then continuity of n., implies that w, ., s2 ¢ Ne, s, for
all n large enough, which contradicts the fact that w, 7. ss = v,7e, (51 + s2) for
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allm > ng and sy +s2 < 1. If gg = 0 and €,, — €9 as n — oo, then an application
of Theorem 2.11 shows that

lwy, —w'|gen — 0, asn — o0

where w' = wme,s2 and w), = w,7e, s2 for n > ng. As above this implies that
w’ € Ng, g, a contradiction. This proves that wm (1 — s1) is defined so vmg,s
is defined for all s € [0,1]. Thus the estimate (2.16) together with Theorem 2.9
show that

[unme, tn — vme, 1 gen = |vpTe, 1 — vme U gen — 0, as n — oo.

The theorem is proved. O

Let the family (H*, (-, )<, Ac)cco,7 satisfy condition (Lin) and the family
(fe)eelo,7) satisfy condition (Conv).

Set Xo := HY. For every ¢ € ]0,&¢], define Y. := (I — Q.)H$ and endow
Y. with the norm | - [g= restricted to Y.. Define on Z. = X, x Y: the following

norm:
[[(w, v)|]e = max{ |u|go, [v[as } for (u,v) € Z..

We will denote by Tz the metric on Z. induced by the norm || - ||c. For each
e €10, eq], define 6. := 0.
Let W.: Hf — Z. be the linear map defined by

U (w):=(Qew,(I — Q:)w) for w € HF.
It follows that W, is a bijective linear map and its inverse map is given by
U, Hu,v) =u+wv for (u,v) € Z..

Moreover, both ¥, and ¥.~! are continuous maps. This fact is a consequence
of the following inequalities:

(2.17) [We(w)]le < Clw|n: for w € Hj,
(2.18) |\I/€_1(u7v)|Hf <1+ 02)1/2|\(u,v)||5 for (u,v) € Z,

where the constant C' € |1, co[ was defined in hypothesis (Lin).
Given (u,v) € Z. and t € [0, co[ define

(u, v)7ot := U (V. (u,v)m.t)

whenever W_~!(u,v)7.t is defined. It follows that 7. is a local semiflow on Z,
the conjugate to me via ¥.. Theorem 2.11 and inequalities (2.17) and (2.18)
immediately imply the following
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COROLLARY 2.15. Under the above hypotheses the family (T:)zg)0,,] con-
verges singularly to m. a

Theorem 2.14, Remark 2.13 and inequalities (2.17) and (2.18) imply the
following:

COROLLARY 2.16. Under the above hypotheses let 5 € 10,00 and N be
a closed bounded subset of HY. If N is strongly admissible rel. to 3 and the
family (H®,7:)zcl0,2], then N is singularly strongly admissible with respect to f3
and the family (7c)ecp0,7), where Ty = m.

We can now state the following Conley index continuation principle for sin-
gular families of abstract parabolic equations:

THEOREM 2.17. Suppose that the family (H®,(-, -)nu-,Ac)ecloz] satisfies
condition (Lin) and the family (f:)ccjo,7 satisfies condition (Conv). Let f €
]0,00[ and N be a closed bounded subset of HY. Suppose N is strongly admis-
sible rel. to B and the family (H®,7.)ccloz- Finally, assume N is an isolating
neighbourhood of an invariant set Ky relative to mg. For e € |0,e0] and for every
n €10, 00][ set

N.,y = {u€ Hi | Qeue N and |(I. — Qc)ula <1}

and K., :=Inv,_(N. ) t.e. K., is the largest m.-invariant set in N, ,. Then for
every n € 10, 5] there exists an €° = €°(n) € ]0,&0] such that for every e € |0, e°]
the set N, is a strongly admissible isolating neighbourhood of K., relative to
Te and

h(ﬂ'g, KE717) = h(ﬂ'o, K())

Furthermore, for every n > 0, the family (K: )zc[o,cc(n)) of invariant sets, where
Ko, = Ko, is upper semicontinuous at € = 0 with respect to the family | - |re of

norms i.e.
lim sup inf |w—u|g: =0.
e=0t ywek, , vEKo
PRrROOF. The isomorphism ¥, conjugates the local semiflow 7. to the local
semiflow 7.. Thus whenever S is a strongly admissible isolating neighbourhood
with respect to 7., then ¥.(S5) is a strongly admissible isolating neighbourhood
with respect to 7. and

h(me,S) = h(7e, ¥ (9)).
Corollaries 2.15 and 2.16 imply that the family of semiflows (7<).c[o,,] and the
set N satisfy the hypotheses of [4, Theorem 4.1]. Notice also that any closed ball

in Y; is contractible. Hence [4, Theorem 4.1] and [4, Corollary 4.11] completes
the proof. O
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REMARK. The family (K. ,)-c]o,c<(y) is asymptotically independent of 7 i.e.
whenever n; and 1y € |0, 00][ then there is an ¢’ € |0, min(g°(n1),e°(n2))] such
that K. ,, = K., for e €]0,¢].

We also state the following (co)homology index continuation principle:

THEOREM 2.18. Assume the hypotheses of Theorem 2.17 and for every n €
10, 00[ let €°(n) € ]0,e0] be as in that theorem. Let (P, <) be a finite poset. Let
(Mp0)pep be a <-ordered Morse decomposition of Ko relative to myg. For each
p€ P, letV, C N be closed in Xo and such that My o = Invy,(V,) C Intyo(V}).
(Such sets V,, p € P, exist.) For e €]0,¢9], for every n € 10,00 and p € P set
My ni=Inv, (Vpen), where

Vopem i={u € Hf | Qeu € V, and |(I — Qc)ulu: < n}.

Then for every n € ]0,00[ there is an € = £(n) € 10,e°(n)] such that for every
e €0,e] and p € P, My, C Inty:(Vpcp) and the family (My.p)pep is
a <-ordered Morse decomposition of K., relative to m. and the (co)homology
index braids of (mo, Ko, (Mpo)pep) and (me, Ke p, (M e n)pep)), € € ]0,€], are
isomorphic and so they determine the same collection of C'-connection matrices.

PRrROOF. Since the isomorphism ¥, conjugates the local semiflow 7. to the lo-
cal semiflow 7., using [6, Proposition 2.7], it follows that whenever S is a strongly
admissible isolating neighbourhood with respect to m. and (M,)yep is a <-
ordered Morse decomposition of S relative to m¢, then U.(S) is a strongly admis-
sible isolating neighbourhood with respect to 7. and (¥.(M,))pep is a <-ordered
Morse decomposition of S relative to 7. and the (co)homology index braids of
(e, Sy (M) pep) and (Te, Ue(S), (¥e(Myp))per)), € € ]0,£0], are isomorphic.

Corollaries 2.15 and 2.16 imply that the family of semiflows (7:).¢[0,¢,) and
the set N satisfy the hypotheses of [5, Theorem 3.10]. Since any closed ball in Y,
is contractible, an application of [5, Theorem 3.10] completes the proof. O

REMARK. Again, for each p € P, the family (M, c ;)cc(o,2(n)], Where My o, =
My, o is upper semicontinuous at € = 0 with respect to the family |- |z of norms
and the family (Mp ¢ ,)eej0,5()) is asymptotically independent of 7.

3. Applications to curved squeezing on unbounded domains

We will now apply the previous results to singularly perturbed equations on
curvedly squeezed unbounded domains. We assume the reader’s familiarity with
the paper [7] and only recall some necessary definitions.

Let ¢, k and r be positive integers with r > 2, £ > 2 and k < £. Let (-, -)
be an inner product on Rf and || - || be the corresponding Euclidean norm.

Let M C Rf be a k-dimensional submanifold of R’ of class C.
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For p € M let Q(p):R* — R’ be the orthogonal projection of R’ onto
the tangent space T,(M) to M at p and P(p):R* — R’ be the orthogonal
projection of R” onto the orthogonal complement T5-(M) of T,,(M) in Rf. We
have P(p) = Idge — Q(p).

The map Q: M — L(R’,R) is of class C*~1.

Moreover, (DQ(p)a)b € T, (M) for each p € M and all a, b € T,(M) and
the map

IL,: Ty (M) x Tp(M) = T5-(M),  (a,b) = (DQ(p)a)b

is bilinear and symmetric. The map II, is called the second fundamental form
of M at p.
We say that M has bounded second fundamental form if

sup{[|II,(a, )| | p € M, (a,b) € T,(M) x T,(M), |lal| <1, [[bl] <1} < oo.
This is equivalent to the requirement that
sup{[[(DQ(p)a)el | p € M, (a,c) € Ty(M) x T, (M), |la]l < 1, [|el| <1} < co.

DEFINITION 3.1. An open set I/ in R with M C U is called a normal
neighbourhood (or normal strip) of M if there is a map ¢:U — M of class
C*~1, called an orthogonal projection of U onto M and a continuous function
§: M — 10, 00], called the thickness of U such that:

(a) whenever z € U and p € M then ¢(z) = p if and only if the vector
@ —p€TyMand [z —pll <3(p);
(b) ex+ (1 —¢e)p(x) €U for all x € U and all € € [0, 1].

For the rest of this paper assume that M has bounded second fundamental
form choose M € ]0, co| arbitrarily with

sup{[[(DQ(p)a)el| | (p,a,c) € M x Tp(M) x T,-(M), [lal| <1, [lell <1} < M.

PROPOSITION 3.2. Let gy € |0, 1] be arbitrary. There is a normal neighbour-
hood U of M with normal projection ¢ and thickness 6 such that Md(p) < qo for
allp e M.

For the rest of this paper we fix a ¢o € ]0,1[ and a normal neighbourhood
U with normal projection ¢ and thickness § such that the assertions of Proposi-
tion 3.2 are satisfied.
For ¢ € [0,1] define the maps:
o I'o:l - U Dby x— ¢(z) + e(x — ¢(x)),
o J:U = R by J.(z) = |det(DI'e(2)1,,,(m)]; © €U, and
o S.:U — L(RY,RY) by

(3.1) Se(x)h = Do(L(2))h — (DQ(¢(x))(DH(T (2))h))(x — d(x))
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for z € U and h € RL.

In the sequel, given a linear map B:R! — R¢ we denote by BT the adjoint
of B relative to the scalar product (-, -).
For the rest of this paper we will assume that

(3.2)  Qisopen in R* with C1(Q2) C U. For ¢ € )0, 1], we write 2. = ().

For € € ]0, 1] define the following bilinear forms:
G H'(Q.) x H'(Q.) = R, (u,?) — / Vi(x) - Vo(x) de
be: L2(Q) x L2(Q.) — R, (W,9) »—>/
and let a.: HY(Q) x H*(Q)) — R be defined by

aE(u,v):/QJe(x)<55(x)TVu(x),S’E(m)TVv(x»dx
1

+ =N Je(z){P(2)Vu(z), P(z)Vo(z)) dz, u,ve H(Q).

For ¢ € [0,1] define the bilinear form b.: L?(Q) x L*(Q) — R by

be(u,v) = / Jo(z)u(z)v(z) de, u, v € L*(Q).
Q
We have
(3.3) Ge(u,u) + be(w,u) = Juld g, € €10,1], u e HY(Q.).

Let ¢ € ]0,1] be arbitrary. Then the pair (., b.) generates a densely de-
fined selfadjoint operator B, in (L? (QE),EE)7 which we interpret, as usual, as the
operator —A on ). with Neumann boundary condition on 9f)..

Let us define the space

HYX Q) :={uec HY(Q)| P(z)Vu(r) =0 a.e.}.
Note that

u € HYQ) iff w € HY(Q) and (Vu(z),v) for a.a. = € Q and all

(3.4) T¢l(r)(M)

This is a closed linear subspace of the Hilbert space H'(2). Now define the
‘limit’ bilinear form
a0 HY(Q) x HY(Q) > R, (u,0 t—>/]0 )(So(2)"Vu(z), So ()" Vo(a)) da

Finally, let L2(Q2) be the closure of H!(Q) in L?(Q). L2(Q) is a closed linear
subspace of the Hilbert space L?((2). For € € ]0,1] and u, v € L*(Q) set

(u,v)e 1= be(u,v).
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For ¢ €]0,1] and u, v € H*(Q) set
{(u, v))e := ac(u,v) + be(u,v).

(-, )e (vesp. (-, -)e) is a scalar product on H® := L%(Q) (resp. H}(Q)). Let
| - |e (vesp. || -|lc) be the Euclidean norm on L%() (resp. H'(f2)) induced by
(-, )e (vesp. (-, - )<). Furthermore, for u, v € L(Q) set

(u, v)g := bo(u,v).
Finally, for u, v € H(Q) set
{u, v = ao(u,v) + bo(u,v).
(-, )0 (resp. (-, - )o) is a scalar product on HY := L%(Q) (resp. H()).
Let |-|o (resp. ||-]lo) be the Euclidean norm on L2(£2) (resp. H(Q)) induced
by (-, )o (resp. (-, - )o).
For € € [0,1], (H®, (-, -)e) is a Hilbert space.
For £ € [0,1], the pair (ac, (-, -)c) generates a densely defined selfadjoint
operator A, on (H®, (-, -)c).
The (linear) operators B, (resp. A.) defined by (ae, b:) (resp. (ae, b)) satisfy
the following properties:
(a) u € D(B.) if and only if uo (I'.)|q € D(A.);
(b) Ac(uo (Te)n) = (Beu) o (I')q for u € D(B.).

The following result was proved in [7]

PROPOSITION 3.3. [7, Corollary 4.5] The family (H®, (-, -) e, Ac)ccio,1) de-
fined in this section satisfies hypothesis (Res).

Now consider the following:

ASSUMPTION 3.4. G:[0,1] xU x R = R, (¢,y,s) — G(e,y,s) is continuous
and such that, for all (e,y) € [0,1] x U, G(e,y, -) is continuously differentiable
in s. Moreover, for e € [0,1], G(e,T<(+),0)jo € L*(Q) and G(e,T<(-),0)j0 —
G(0,¢(),0))q in L?(Q) as e — 0F. Furthermore, there is a constant Cg € [0, 00|
such that

105G (e, Te(2), 5)| < Co(1+ s]%)
for all (e,z,s) € [0,1] x Q@ x R, where § € ]0,00[ is arbitrary for £ = 2 and
B=2/(¢—2) for £>3.
Finally, the function G(0, -, -) is continuously differentiable in (y, s).

PROPOSITION 3.5. Given € € [0,1] and u € H'(Q) define the function
fe(u): Q=R by

(3.5) fe(u)(z) = G, Te(x),u(x)), =€ Q.
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For all e € [0,1] the function fc(u) lies in H® for uw € Hf and the induced family
(fe)eeo,1) satisfies condition (Conv).

PROOF. Since there are continuous imbeddings from H!(Q) to L?(Q) and
from H'(Q) to L2P+1(Q), it follows that there is a constant C; € ]0, 00[ such
that for all € € [0,1] and all w € H*(Q), f-(u) lies in L?(Q2) and

|fe(u)|r20) < [G(e,T<(4),0)|L20) +Cl|u\§,ﬁm7
and for all all u, v € H*(Q)

(3.6) [fe(w) = £ ()] 120y < Crllulfp ) + V15 0y)le = vlm (@)

It follows that, for £ € ]0, 1], formula (3.5) defines an operator f.: Hf — H®. We
will now show that fo(u) € H® if u € HY. To prove this let (U )ren be a covering
of U by a sequence of open sets with ClU}, C U1 and ClUj, compact for all k €
N. For k € Nlet &: U xR — R be a C*®°-function with 0 < &, < 1, & (y,t) = 1 for
(y,t) € Si := ClUy, x [k, k] and & (y,t) = 0 for (y,t) & Upy1 X |-k — 1,k + 1].
Since u € H'(Q), there is a sequence (up)nen in HY(Q) N C®(Q) with u,, — u
in H'(€2). We may assume that u,, — u and d;u,, — d;u almost everywhere in
Q for all j € [1..4]. Moreover, we may also assume that there is a v € L*(Q)
such that |u,| < v and |0;u,| < v almost everywhere on 2 for all j € [1../]. Let
k € N be arbitrary. For n € N let wy, ,: Q@ — R be defined by

(37) wk,n(x) = ﬁk(zb(x),un(x)) . G(Ov gb(x),un(x)), z €N

It follows that wy,, — wy almost everywhere in 2 as n — oo, where w;: Q0 — R
is defined by

(3.8) wi(x) = &k(d(x), u()) - G(0, ¢(x),u(z)), =€

Moreover, for x € 2 we obtain

(3.9) [wen (@) = 1€6(6(2), () - G(0, (), wn ()
< |€k(¢(ﬂs),un(x))|( sup 1G(0,y,s)|

as £ (¢(x), un (@) - G(0, ¢(x), un(w)) = 0 if ((2), un(x)) & Skt
The function wy , lies in C1(Q) and using the product rule, we obtain for
x€Qandjell.f

(3.10)
Ojwien () = Ek(3(2), un(2)) Dy G(0, $(@), un(2))0;6(x)
+ & (0(@), un (2))05G(0, ¢(), un () djun ()
+ Dyi(9(2), un(2))0;6(2)G (0, §(2), un(z))
+ 058 (0(2), un (2))0jun () G(0, d(2), un ().
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Thus 0wk, n — w,(cj) almost everywhere in ) as n — oo, where w,(j): Q2 — Ris
defined by

(3.11) w (@) = &((x), u(2)) Dy G(0, ¢(x), u(x))d; ()
+ &r(0(2), u(2))0:G (0, ¢(x), u(x))d;ju(x)
+ Dy&i(9(2), u(2))0;6(2)G(0, (x), u(z))

+ 058k (0(2), u(2))05u(x)G(0, ¢(x), u(x)).

Moreover, for = € 2,

(3.12) |0jwin(z)| <|€k(d(2), un(x))|  sup IDyG(O,y»S)Izgglam(y)l

(y,5)ESk41

+ sup  [&(y,s)| sup  |0:G(0,y,s)| - |O5un(2)]
(y,s)EUXR (¥,5)€Sk+1

+ |Dy&r(¢(2), un () sup [0;0(y)|  sup  [G(0,y,s)]
yeu

(y,8)€Sk+1

+  sup (08 (y, 8)| - [Ojun(z)]  sup  |G(0,y,s)].
(y,s)EUXR (4,8)ESk+1

Now by the mean-value theorem we have, for all (x,s) € QxR and all j € [1../],
[Ek(D(2), 8)| < [€x(D(2), 0)] + Sup |0:8k((2), 05)] - [s],

[ Dy&r(d(x), )| < [Dy&(p(2),0)[ + sup [0:sDy&x((),05)| - [s]-

0€[0,1]
Note that sup |D¢(y)| < oo by [7, Lemma 4.4]. Consequently, there is a constant
yeUu
Cy(k) €10, 00[ such that for all n € N, all z € Q and all j € [1..4],

(3.13) [wi,n ()] < (1€6(0(x), 0) + Co(k)|un(2)])Ca (k)
and
(3.14) 10wk ()] < (I€k(D(2), 0)] 4+ Ca (k) |un (2)])C2 (k)

+ Co(k)|0;un ()|
+ (1Dy € (¢(2), 0)| + Co(k)un ()]) Ca(K)
+ Ca(k)[9jun(2)].

By our choice of M and ¢g (see Proposition 3.2) we see that the functions
1€ (6(+),0)] and |Dy&k(o(+),0)| lie in L?(Q), since they are continuous hence
measurable, bounded and their supports are subsets of the closed qo/M-neigh-
bourhood of ClUy41.

By the dominated convergence theorem we now obtain that wy, , — wy and
for all j € [1..4], Ojwy,, — w,(f) in L?(Q) as n — oco. Thus wx € H'(Q) and

0wy, = w,gj) for all j € [1..4].
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Now, for all z € U and all v € T(;‘(x) (M),
¢
Z 0;¢(x)v; = Do(z).v =0.
j=1

¢
Since u € H}(Q), we infer from (3.4) that > d;u(z)v; = 0 for almost all
j=1

r €U and all v € Tdf'(x)(/\/l) . Consequently (3.11) implies that for almost all

re€ldandallv € Ti(w) (M), il djwy(z)v; = 0. Thus wy, € HX(Q) for all k € N.
Now wi, — G(0,¢( - ),u(-)) aimost everywhere in (2 as k — co. Moreover, |wy| <
|G(0,6(-),u(-))| almost everywhere in Q. Since G(0,¢(-),u(-)) € L*(Q), it
follows that wy, — G(0,¢(-),u(-)) in L?(Q) as k — co. Hence G(0,¢(-),u(-)) €
L2(Q). Our claim is proved. Thus part (a) of condition (Conv) holds with € = 1.

Now (3.6) together with [7, Propositions 2.7 and 2.8] imply that part (c) of
condition (Conv) holds. Our assumptions together with dominated convergence
theorem imply that whenever u € H!(), then f.(u) — fo(u) in L%(Q) as
¢ — 0. This together with Theorem 2.4 and [7, Proposition 2.7] shows that the
remaining parts (b) and (d) of condition (Conv) hold. O

We will now prove that under some additional hypotheses on (f:).c0,1),
whenever 3 € ]0,00[ and N is a closed bounded subset of HY, then N is strongly
admissible rel. to 3 and the family (H®,7.).c[0,z. Here, for € € [0,1], m. is the
local semiflow generated on H_! by the semilinear differential equation

u=—Au+ f(u).

Our guiding principle is the method of tail estimates, cf. [18], [9], [1], [12], which
we adapt to the present situation.
Define the function A: Q2 — R by

Az) = (¢(z), ¢(x)), =€

Moreover, let 9: R — R be a C*°-function such that 0 < ¢ < 1,9 =0 on |—o0, 1]
and ¥ = 1 on [2,00[. For k € N define the function 6;: ) — R by

Op(z) = I\ (2)/K?), x€Q.
Then 6}, is a C'-function and for all z € Q and all v € R¢,
(VOi(2), v) = Dby (x).v = (2/k*)9 (Ax) /k) (Do ()., 6(x)).
In particular,

(3.15) (VO(2),v) =0, z€9Q, ve Ty, M).
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Now, if u € HY(Q), then 0 -u € H*(). For almost all z € Q, v, = P(x)Vu(x) €
Tdf(m)(./\/l) S0

(3.16) (P(2)VOi(x), P(x)Vu(x)) = 0.
Now let € € [0,1] and u € H§ be arbitrary. If £ > 0, then we obtain from (3.16)

—ae (0 - u,u) = — /Q Jo(2)01(2)(S=(2) T Vu(x), Sc(2)T Vu(z)) dx

— /Q Je(z)u(2) (S (2) VO (2), S (z)T Vu(zx)) d
1 ; Je ()0, (P(x)Vu(x), P(x)Vu(x)) dx
=, Je(z)u(x)(P(x)VOi(z), P(x)Vu(x)) dx

< - / Je(x)u(2) (S (2) ' VOk(2), Se(z)T Vu(x)) d
Q
If e =0 and u € H(Q) then, by (3.4) and (3.15), 6 - u € H.()) and we obtain
—ac(Ok - uyu) = — /Q Jo ()01 (2)(S=(2)TVu(x), Sc(2)T Vu(z)) de
- /Q Jo(z)u(x) (S (2) T Vo (x), Se(2)T Vu(z)) d

< - / Jo(z)u(x) (S (2) T Vo (x), Sc (2) T Vu(z)) de.
Q
Thus, whenever € € [0,1] and v € Hf then 0 - v € H{ and

(3.17) —a:(0f - u,u) < —/QJe(x)u(a:)<55(x)TV9k(a:),Sg(x)TVu(x» dzx.

Now, setting h(z) = S(z)ST (x)Vu(z) we see that
(S.(2)TVO, (), Se ()T Vu(z)) = DOy (x).h(z)
= (2/k*)9'(A\(x)/k*){¢(x), Dg().h(z)).

Thus, using (3.17) and letting Q. be the set of all x € Q with k? < \(z) < 2k?
we see that

—a: (0, - u,u) < (2/k*)C / lu(z)| sup |o(y)| |Vu(z)| dx

YEQ,

where

C'= sup J.(y)sup|¥(s)|sup |Do(y)| sup [S-(y)ST(y)l.
e€l0,1],yeU seR yeu e€[0,1],yeUd

Our choice of ¥ and [7, Lemma 4.4] imply that C’ < co. Thus

—ae (0 - u,u) < (C1/k) /|u [ |Vu(z)| de < (Cu/k)\u|H1(Q
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Here, C; = 2v/2C". We thus obtain

LEMMA 3.6. There is a constant Cy € ]0,00[ such that for all k € N, all
e €10,1] and all w € Hf we have Oy - u € Hf and

7(15(9]@ ’ u,u) < (Cl/k”uﬁll(ﬂ)

LEMMA 3.7. Lete €[0,1], k € N and T € ]0, o0 be arbitrary and u: [0,T] —
Hf be a solution of
u=—Au+ f(u).
Then the function (:[0,T] = R, t — b(0k - u(t), u(t)) is continuously differen-
tiable on [0,T) and
¢'(t) = &(t) == —2ac(0k - u(t), u(t)) + 2b< (0 - u(t), fo(u(t))), te[0,T7].
For every p € 10, 00|

(3.18) ¢(t) :e—mg(o)+/te—2“<t—5>gu(s) ds, te€][0,T],
0

where £,:[0,T] — R is defined by
Eu(t) = —2ac (O - u(t), u(t)) + 2b-(0k - u(t), fo(u(t)) + pu(t)), tel[0,T7].
If R € [0,00[ is such that |u(t)| g1 (o) < R for allt € [0,T] then

(3.19) 161 - u(t)[ 2 () < C3 (e M CoR? + (CLR? [ (k) + (M (R) /1))
where Co = sup sup J.(z) < oo, C3 = inf supJ.(z) >0 and
e€lo0,1] z€U e€l0,1] zeu
Mk(R) = Sup bs(ak C U, fs(u> + :U’u)'

e€l0,1], u€H¢, |u\H1(Q)§R

PROOF. Since the map H(Q) — H(Q), v — 0 - v is linear and bounded
and since the norm | - |g: is equivalent (with bounds depending on ¢) to the
(restriction of the) norm of H(Q), it follows that the map Hf — Hf, v+ 0y - v
is well-defined, linear and bounded. Since u is continuous (into HY) and the
restriction of u to ]0,T] is differentiable into H€, it follows that ¢ and & are
continuous on [0, T]. Moreover, ¢ differentiable on ]0, 7] and, for ¢t € |0, T1,

C'(t) = be(Bh - (), u(t)) + be (O - u(t), u'(2))
= 2b- (0 - u(t), v (t)) = 2b(0c - u(t), —Acu(t) + fe(u(t))).
Since, for w € Hf and v € D(A,),

be(w, Av) = a:(w,v),

it follows that ¢ is differentiable on 0,7 and ¢’(t) = &(¢t) for ¢t € ]0,T. Since &
is continuous at ¢t = 0 it follows that ¢ is differentiable at ¢ = 0 and ¢’(0) = £(0).
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We now conclude that, given u € ]0, 00|

¢'(t) = =2pC(t) + &u(t), t€[0,T].

Now the variation-of-constants formula proves (3.18).
To prove (3.19), note, that formula (3.18), Lemma 3.6 and the fact that
0 <6 <1 imply

Csl0k - u(t)] L2y < C(t) < e72¢(0) + (1/2) (2(C1/k) R? + 2Mi(R)).
Since ¢(0) < Cslu(0) QLz(Q) < C2R?, estimate (3.19) follows. O

Let us call the family (f:)ccjo,1) tail admissible if there is a p € ]0, co[ such
that for every k € N and every R € ]0, 00]

My (R) = sup be (O - u, fo(u) + pu) — 0, as k — oo.
£€[0,1), wEHS, [ul 1 o) <R
The following sufficient conditions for tail admissibility are due to Prizzi [9] in
the context of reaction-diffusion equations on R¥.

LEMMA 3.8. Assume there are numbers i € 10, 00[, q € [2,00[ and p € ]1, 0]
and functions ¢ € L'(Q), e € LP(Q) such that
(a) s-G(e,Te(z),8) < —pls|? + e(z)]s|? + c(x) for alle € [0,1], s € R and
a.a. v € €.
(b) If £ =2 and p = oo, then |0y - e|p~ ) — 0 as k — co.
(¢) For £ >3 either ¢ < 2¢/(¢ —2) and 2¢/(2¢ — q(¢ — 2)) < p < o0 or else
q<20/({—2), p=o00 and |0k - €|~y — 0 as k — oc.
Then (fe)ecjo,1) s tail admissible.
PrOOF. Let 7 =p/(p— 1) for p < 0o and r = 1 for p = co. For ¢ € [0,1],
k € N and u € Hf we have, by Holder inequality,

be (0k - u, fo(u) + pu) = /Q Je ()0 (2)u(z)(G(e, Te(x), u(x)) + pu(z)) dx

< /QJe(I)9k(I)(6(x)|U($)|q +c(x)) de

< Co(|0k - el Lo (9 [ulFar ) + 10k - clL1(@))
where, as before, Cy = sup supJ.(z) < oco. By our assumptions there is
a bounded imbedding froirel[(ﬁ]lgng)[ to LI7(€2). Thus there is a constant Cy €
10, oo, such that for all € € [0,1], all k € N and all u € Hf

(320)  be(Ok - u, fe(u) + pu) < C2(Calk - el oo [ulfp gy + 0k - clrr())-

By the properties of ¥ and the dominated convergence theorem we obtain that
|0k -l — 0 and [0y - e[rrq) — O (for p < oo) for k — oco. But by our



724 K.P. RYBAKOWSKI

assumption, the latter convergence also holds for p = co. Together with (3.20),
this implies the lemma. 0

We can now state the following

THEOREM 3.9. If (f:)cejo,1) 5 tail admissible, B € ]0,00[ and N is a closed
bounded subset of HY, then N is strongly admissible rel. to B and the family

(HE, 776)56[0,?] .

PROOF. Since for each € € [0, 1] the map f. maps bounded subsets of Hf to
bounded subsets of H*®, it follows that 7. does not explode in N, g. There is a
bound R € ]0, oo such that |u[z1q) < R for all € € [0,1] and u € N 5.

Let €g € [0,1], (€5)n be a sequence in [0, 2], (t,)n be a sequence in ]0, co[ and
(un)n be a sequence such that

t, — 00 as n — oo,

either €, = ¢ for all n € N or else ¢ = 0 and &,, — ¢ for n — oo,

and, for each n € N, u,, € H{" and u,7., [0,t,] C N, s.

Ife, =g foralln € N, then (u, 7., tn)n is bounded in the Hilbert space H{°,
so there is a v € H{® C H'(Q) and a subsequence of (4,7 t,)n, again denoted
by (unTeotn)n, such that (u,m.,tn), converges weakly in H;°, hence in H'(£2)
tov. If g = 0 and €, — g9 for n — oo, then (u,7., tn), is bounded in the
Hilbert space H'(2), so there is a v € H'() and a subsequence of (u,7e, tn)n,
again denoted by (u,7e, tn)n, such that (u,m., t,), converges weakly in H'(Q)
to v. Thus (P(,-)V(unme, tn))n converges weakly in L2(Q,Rf) to P(-)Vw.
From the definition of a. it follows that |P(-)V(unme, tn)r2(rey — 0. Thus
(P(-)V(une, tn))n converges to 0 strongly hence weakly in L?(Q,RY). This
shows that P(-)Vv = 0 almost everywhere in €, i.e. v € H}(Q) = H{°.

The proof will be completed if we can show that there is a subsequence of
(UnTe, tn)n, again denoted by (unme, tn)n, such that |u,m. t, — v|gen — 0 as
n — oo, i.e. equivalently, that |u,m. t, —v|r2@) — 0 as n — oo. By the
uniqueness of weak limits we thus have to show that the sequence (un,me, ty)n
is precompact in L*(Q), i.e. that a({unm., t, | n € N}) = 0, where « is the
Kuratowski measure of noncompactness on L?(Q2). We have for every k € N

al{upme, tn | n € N}) <a({0 - (upme, tn) | n € N})
+a({(1—0g) - (upme, tn) | n € N}).
Let § € ]0,00[ be arbitrary. Then (3.19) together with tail admissibility imply
that there is a k € N and an ng € N such that [0y - (un7e, th)|12(q) < § for all
n > ng. Thus
a({0k - (upme, tn) | n € N} <26.
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Now define Vi to be the set of all z € Q with ||z|| < (qo/M) + kv/2. Let
S ={(1-0k) (upme,ts) | n € N} and (ws,)m be any sequence in S. For each
m € N let w,, be the restriction of w,, to the open set Vj. Then w,, € H'(V})
and [Wy,|g1(v;,) < R. Since Vj is bounded, Rellich theorem implies that there is
a subsequence (W, )¢ of (W, )m converging in L?(V4) to some w € L?(Vy). Our
choice of ¥ implies that w,,(x) = 0, whenever m € N, z € Q and = ¢ V. Thus
(Wi, )¢ converges in L2(€2) to the function w:Q — R defined by w(z) = w(z)
if x € Vi and w(x) = 0 otherwise. Altogether we see that every sequence
in S has a subsequence which converges in L?(2). Thus «a(S) = 0 and so
a{upme t, | m € N}) < 26. Since § € ]0,00][ is arbitrary, it follows that
a({u,m. t, | n € N}) =0. This completes the proof of the theorem. |

We thus obtain the following result.

THEOREM 3.10. For (H, (-, -)m=,Ac)ecio,1] and (fe)ee(o,1) defined in this
section, if (fz)ee[0,1] is tail admissible, then the assumptions and hence the con-
clusions of the Conley index continuation results Theorems 2.17 and 2.18 hold
(together with the corresponding remarks).
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