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1. Introduction and statement of the results

Origins of fractional calculus go back to a question posed by Leibniz to

L’Hôpital about the meaning of the derivative of order 1/2. Since then this

theory was developed and nowadays it has generated a considerable amount

of bibliography, see for example the monographs [11], [13], [14], [17] and the

references therein.

Naturally the interest in fractional differential equations was considerably

raised over the years; among engineers and scientists this is due to their vast

potential of applications in several applied problems, such as fluid flow, rheology,

diffusive transport akin to diffusion, electric networks, probability and statistical

distribution theory, see [4], [18]–[20], [25] among others.

From the mathematical point of view, we observe that fractional differential

equations is a rich and complex area and hence there exists a great interest in

developing the theoretical analysis and numerical methods for these equations,

see [7], [8], [10], [12], [15], [16], [21], [22].

Motivated by this, we consider the abstract fractional Cauchy problem

(1.1)

cDα
t u(t) = Au(t) + f(t, u(t)), t > 0,

u(0) = u0 ∈ X,

where X is a Banach space, α ∈ (0, 1), cDα
t is Caputo’s fractional derivative and

A : D(A) ⊂ X → X is a sectorial operator, i.e. a closed operator with dense

domain for which there are φ ∈ (π/2, π) and N ≥ 1 such that

Sφ := {λ ∈ C : | arg(λ)| ≤ φ, λ 6= 0} ⊂ ρ(A),

‖(λ−A)−1‖ ≤ N

|λ|
for all λ ∈ Sφ.

In order to start our discussion, let us introduce some preliminaries. Consider

{Eα(tαA)}t≥0 and {Eα,α(tαA)}t≥0 the Mittag-Leffler families associated to A

(see next section for details). By a global mild solution to (1.1) in [0,∞) we

understand a continuous function u : [0,∞)→ X such that

(1.2) u(t) = Eα(tαA)u0 +

∫ t

0

(t− s)α−1Eα,α((t− s)αA)f(s, u(s))ds, t ≥ 0.

This concept is based upon the following (formal) construction. Suppose that

u : [0,∞)→ X verifies (1.1). Then, applying the fractional integral operator Jαt
(see, e.g. [3], [12]–[14]) in both sides of the fractional differential equation (1.1),

we obtain, for t ≥ 0,

u(t) = u(0) + Jαt Au(t) + Jαt f(t, u(t))

= u0 +
1

Γ(α)

∫ t

0

(t− s)α−1Au(s) ds+
1

Γ(α)

∫ t

0

(t− s)α−1f(s, u(s)) ds.
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Now, applying the Laplace transform L in both sides of the above equality we

have

û(λ) =
u0
λ

+
1

λα
Aû(λ) +

1

λα
(f̂(u))(λ)⇒ λαû(λ) = u0λ

α−1 +Aû(λ) + (f̂(u))(λ),

where û(λ) = L{u(t)}(λ) and f̂(u)(λ) = L{f(t, u(t))}(λ). Taking now λα ∈
ρ(A), it follows that

û(λ) = λα−1(λα −A)−1u0 + (λα −A)−1(f̂(u))(λ),

and using the inverse Laplace transform, and Lemma 2.1 below, we deduce that

u(t) = Eα(tαA)u0 +

∫ t

0

(t− s)α−1Eα,α((t− s)αA)f(s, u(s))ds, t ≥ 0.

Motivated by this discussion and by the previous related literature, we adopt

the following concept for solution to the problem (1.1).

Definition 1.1. Let τ > 0.

(a) A function u : [0, τ ] → X is said to be a local mild solution to (1.1) in

[0, τ ] if u ∈ C([0, τ ];X) and

u(t) = Eα(tαA)u0 +

∫ t

0

(t− s)α−1Eα,α((t− s)αA)f(s, u(s))ds, t ≥ 0.

(b) A function u : [0, τ) → X is said to be a local mild solution to (1.1) in

[0, τ) if for any τ ′ ∈ [0, τ), u is a local mild solution to (1.1) in [0, τ ′].

Our main purpose in this work is to ensure sufficient conditions for existence

and uniqueness of mild solution to (1.1) and to establish some comparison re-

sults for this solution in ordered Banach spaces. As can be observed in (1.2),

the notion of mild solution to (1.1) is very close to generalized Mittag–Leffler

type functions. For this, in Section 2, among other things, we study some prop-

erties of these functions. In particular, we study the behavior of the families

{Eα(tαA)}t≥0 and {Eα,α(tαA)}t≥0 on the fractional power spaces associated to

the linear operator A and we establish expressions for these families, similar to

the second fundamental limit for semigroups (see Lemma 2.2 and Proposition 2.4

below).

Section 3 is devoted to study existence, uniqueness and continuation re-

sults to (1.1) when the nonlinear term is a locally Lipschitz continuous function

f : [0,∞) × X → X. In this direction we start with a proof of the following

existence result.

Theorem 1.2. Let f : [0,∞)×X → X be a continuous function, and locally

Lipschitz in the second variable, uniformly with respect to the first variable, that

is, for each fixed x ∈ X, there exist an open ball Bx and a constant L=L(Bx)≥0

such that

‖f(t, z)− f(t, y)‖ ≤ L‖z − y‖
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for all z, y ∈ Bx and t ∈ [0,∞). Then, there exists t0 > 0 such that (1.1) has

a unique local mild solution in [0, t0].

In the remainder of Section 3 our goal is to ensure conditions for existence

of global solutions of (1.1). For this purpose, we prove the following result on

continuation of mild solutions.

Theorem 1.3. Let f : [0,∞)×X→X be as in Theorem 1.2. If u : [0, t0]→X

is a local mild solution to (1.1) in [0, t0], then there exists a unique continuation

u∗ of u in some interval [0, t0 + τ ] with τ > 0.

We finish Section 3 with a result on global existence or non-continuation by

blow-up. Namely, we have the following

Theorem 1.4. Let f : [0,∞) × X → X be a continuous function, locally

Lipschitz in the second variable, uniformly with respect to the first variable, and

bounded (i.e. it maps bounded sets onto bounded sets). Then the problem (1.1) has

a global mild solution in [0,∞) or there exists ω ∈ (0,∞) such that u : [0, ω)→ X

is a local mild solution in [0, ω) and u does not have a continuation. Moreover,

if u is the local mild solution to (1.1) in [0, ω), then lim sup
t→ω−

‖u(t)‖ =∞.

We observe that the assumption on the nonlinear term f is rather general but

it does not allow to treat problems where the nonlinearity has critical growth. In

Section 4 we treat the critical case, proving existence of ε-regular mild solution

to (1.1).

In order to state this result, let us introduce some notation. For β ≥ 0, let

Xβ be the fractional power spaces associated to the operator A. In this work we

will use the following concepts.

Definition 1.5. A continuous function u : [0, τ ]→ X1 is called an ε-regular

mild solution to (1.1) if u ∈ C((0, τ ];X1+ε) and verifies (1.2).

Definition 1.6. For ε > 0 we say that a map g is an ε-regular map relative

to the pair (X1, X0) if there exist ρ > 1, γ(ε) with ρε ≤ γ(ε) < 1, and a positive

constant c, such that g : X1+ε → Xγ(ε) and, for all x, y ∈ X1+ε,

‖g(x)− g(y)‖Xγ(ε) ≤ c(1 + ‖x‖ρ−1X1+ε + ‖y‖ρ−1X1+ε)‖x− y‖X1+ε .

We recall from [2] the following classification for a map f which is ε-regular,

for ε ∈ I, relative to the pair (X1, X0).

• If I = [0, ε1] for some ε1 > 0 and γ(0) > 0, we say that f is a subcritical

map relative to (X1, X0).

• If I = [0, ε1] for some ε1 > 0 with γ(ε) = ρε, ε ∈ I, and if f is not

subcritical, then we say that f is a critical map relative to (X1, X0).
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• If I = (0, ε1] for some ε1 > 0 with γ(ε) = ρε, ε ∈ I, and f is not

subcritical or critical, then we say that f is a double-critical map relative

to (X1, X0).

• If I = [ε0, ε1] for some ε1 > ε0 > 0 with γ(ε0) > ρε0 and f is not

subcritical, critical or double critical, then we say that f is an ultra-

subcritical map relative to (X1, X0).

• If I = [ε0, ε1] for some ε1 > ε0 > 0 with γ(ε) = ρε, ε ∈ I, and if f is not

subcritical, critical, double critical or ultra-subcritical, then we say that

f is an ultra-critical map relative to (X1, X0).

Next theorem is the main result of Section 4 (the class F(ε, ρ, γ(ε), c, ν( · ), ξ)
is specified).

Theorem 1.7. Let f ∈ F(ε, ρ, γ(ε), c, ν( · ), ξ). If v0 ∈ X1, there exist posi-

tive values r and τ0 such that for any u0 ∈ BX1(v0, r) there exists a continuous

function u( · , u0) : [0, τ0] → X1 with u(0) = u0, which is an ε-regular mild solu-

tion to the problem

(1.3)

cDα
t u = Au+ f(t, u(t)), t > 0, α ∈ (0, 1),

u(0) = u0.

This solution satisfies

u ∈ C((0, τ0];X1+θ), 0 ≤ θ < γ(ε),

lim
t→0+

tαθ‖u(t, u0)‖X1+θ = 0, 0 < θ < γ(ε).

Moreover, for each θ0 < γ(ε) + ε− ρε there exists a constant C > 0 such that if

u0, w0 ∈ BX1(v0, r), then

tαθ‖u(t, u0)− u(t, w0)‖X1+θ ≤ C‖u0 − w0‖X1 for all t ∈ [0, τ0], 0 ≤ θ ≤ θ0.

In particular we obtain an existence theorem in X1 without the nonlinearity

being defined on X1. The main motivation to consider situations as in Theo-

rem 1.7 is the fact that if the only requirement on the nonlinear term is that

f : X1 → X0 be locally Lipschitz, we cannot ensure that problem (1.1) is well-

posed in an ε-regular sense. For example, taking f(u) = −2Au, which satisfies

f : X1 → X0 and is globally Lipschitz, we will have cDα
t u = −Au, which is not

locally well-posed, in general. Hence, some extra conditions should be imposed

on f to guarantee the existence of solutions of the above problem.

As application we consider our abstract result in the framework of fractional

heat equations.
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Example 1.8. Let Ω ⊂ RN be a bounded domain with smooth boundary.

We will treat the fractional equation (with α ∈ (0, 1))

(1.4)

∂αt u = ∆u+ u|u|ρ−1 in Ω,

u = 0 on ∂Ω,

in the Lq theory, 1 < q < ∞ and q = N(ρ− 1)/2. Observe that this equation

for the case α = 1 is well-known (e.g. cf. [2], [5], [23], [24]).

Let L = ∆ with Dirichlet boundary conditions in Ω. Then, L can be seen as

an unbounded operator in E0
q = Lq(Ω) with domain

D(A) := W 2,q(Ω) ∩W 1,q
0 (Ω).

It is well-known that the scale of fractional power spaces {Eαq }ε∈R associated to

L verifies (see [1], [2])

Eαq ↪→ H2α
q (Ω), α ≥ 0, 1 < q <∞,

E−αq ↪→ (Eαq′)
′, α ≥ 0, 1 < q <∞, q′ =

q

q − 1
.

Therefore, we have

Eαq ↪→ Lr(Ω) for r ≤ Nq

N − 2qα
, 0 ≤ α ≤ N

2q
,

E0
q = Lq(Ω),

Eαq ←↩ Lr(Ω) for r ≥ N

N − 2qα
, − N

2q′
≤ α ≤ 0.

Let Lα be the realization of L in Eαq . Then we have that Lα is an isometry from

Eα+1
q into Eαq and

Lα : D(Lα) = Eα+1
q ⊂ Eαq → Eαq

is a sectorial operator. Denote Xα
q := Eα−1q , α ∈ R. The fractional power spaces

associated to L−1 : X1
q ⊂ X0

q → X0
q satisfy

Xα
q ↪→ Lr(Ω) for r ≤ Nq

N + 2q − 2qα
, 1 ≤ α < 2q +N

2q
,

X1
q = Lq(Ω),

Xα
q ←↩ Lr(Ω) for r ≥ Nq

N + 2q − 2qα
,

2q′ −N
2q′

< α ≤ 1.

Following [2, Lemma 8] and with the above constructions, we may classify

the nonlinear term of (1.4) in the following way.

• If ρ > N/(N − 2), then f is an ε-regular map relative to (X1
q , X

0
q ) for

0 ≤ ε < N/(N + 2q) and γ(ε) = ρε. Therefore f is a critical map.

• If ρ = N/(N − 2), then f is an ε-regular map relative to (X1
q , X

0
q ) for

0 < ε < N/(N + 2q) and γ(ε) = ρε. Therefore f is a double-critical

map.
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• If (N + 2)/N < ρ < N/(N − 2), then f is an ε-regular map relative to

(X1
q , X

0
q ) for 0 < ε0(ρ) < ε < 1/ρ, with

ε0(ρ) =
1

ρ

(
1− N

2

(
1− 2

N(ρ− 1)

))
> 0,

and γ(ε) = ρε. Therefore f is an ultra-critical map.

Applying Theorem 1.7, for each u0 ∈ Lq(Ω) we ensure the existence of an ε-regu-

lar solution to the above problem, starting at u0, for any ε ∈ (ε0(ρ), N/(N + 2q)).

Furthermore, for any 0 < θ < γ(N/(N + 2)) = 1 this solution verifies

tαθ‖u(t)‖X1+θ → 0 as t→ 0+,

tαθ‖u(t, u0)− u(t, v0)‖X1+θ ≤ C‖u0 − v0‖Lq , 0 < t < τ(u0, v0).

In Section 5 we consider the problem of comparison and positive solutions.

We start this with the linear version of (1.1); particularly, we establish the equiv-

alence between the positivity of the families {Eα(tαA)}t≥0 and {Eα,α(tαA)}t≥0
with the positivity of the function λ 7→ (λα−A)−1 (see Propositions 5.1 and 5.3

below). With respect to the semilinear problem (1.1), we establish the following

result on positive solutions.

Theorem 1.9. Let (X,≤X) be an ordered Banach space and suppose that the

families {Eα(tαA)}t≥0 and {Eα,α(tαA)}t≥0 are increasing. If 0 ≤X f(t, x) for

almost every t ∈ [0, t0) and for all x ∈ X with 0 ≤X x, then 0 ≤X u0 implies that

the local mild solution uf (t, u0) is positive, i.e. 0 ≤X uf (t, u0) for all t ∈ [0, t0].

This allows us to conclude the following comparison result.

Theorem 1.10. Let (X,≤X) be an ordered Banach space and suppose that

the families {Eα(tαA)}t≥0 and {Eα,α(tαA)}t≥0 are increasing.

(a) Let u0, u1 ∈ X be given, and assume that there exist t0, t1 ∈ [0,∞) such

that {uf (t, ui)}i=0,1 are local mild solutions in [0, ti], i ∈ {0, 1}, tocDα
t u(t) = Au(t) + f(t, u(t)), t > 0,

u(0) = ui ∈ X.

Then, if t∗ = min{t0, t1}, f(t, · ) is increasing for almost every t ∈ [0, t∗),

and u1 ≤X u0, it holds that uf (t, u1) ≤X uf (t, u0) for all t ∈ [0, t∗].

(b) Consider functions f0 and f1, and u0 ∈ X, and assume that there exist

t0, t1 ∈ [0,∞) such that {ufi(t, u0)}i=0,1 are local mild solutions in [0, ti],

i ∈ {0, 1}, tocDα
t u(t) = Au(t) + fi(t, u(t)), t > 0,

u(0) = u0 ∈ X.
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Then, if t∗ = min{t0, t1} and f0(t, x) ≤X f1(t, x) for almost every t ∈
[0, t∗] and for all x ∈ X, it holds that uf0(t, u0) ≤X uf1(t, u0) for all

t ∈ [0, t∗].

(c) Consider functions f0 and f1, and u0, u1 ∈ X, and assume that there

exist t0, t1 ∈ [0,∞) such that {ufi(t, ui)}i=0,1 are local mild solutions in

[0, ti], i ∈ {0, 1}, tocDα
t u(t) = Au(t) + fi(t, u(t)), t > 0,

u(0) = ui ∈ X.

Then, if t∗ = min{t0, t1}, and x ≤X y imply f0(t, x) ≤X f1(t, y) for al-

most every t ∈ [0, t∗] and u0 ≤X u1, it holds that uf0(t, u0) ≤X uf1(t, u1)

for all t ∈ [0, t∗].

Next result uses the comparison of solutions to establish the existence of

a unique mild solution in a certain interval. As a consequence, when the solutions

of the auxiliary problems are globally defined in time, from the continuation

results we obtained previously, we will conclude the existence of a unique global

mild solution (see Example 1.12 below).

Corollary 1.11. Let (X,≤X) be an ordered Banach space and C > 0 such

that

x ≤X y ≤X z ⇒ ‖y‖X ≤ C(‖x‖X + ‖z‖X) for all x, y, z ∈ X.

Suppose that the families {Eα(tαA)}t≥0 and {Eα,α(tαA)}t≥0 are increasing. Let

u0 ∈ X and consider f1, f2 and g : [0,∞)×X → X as in Theorem 1.2, and that

g is bounded. Moreover, assume that f1(t, x) ≤X g(t, x) ≤X f2(t, x) for almost

every t ≥ 0 and for all x ∈ X. Suppose that the problemscDα
t u(t) = Au(t) + fi(t, u(t)), t > 0,

u(0) = u0 ∈ X

for i = {1, 2} have unique local mild solutions in [0, t∗] for some t∗ > 0. Then,

the problem cDα
t u(t) = Au(t) + g(t, u(t)), t > 0,

u(0) = u0 ∈ X.

has a unique local mild solution in [0, t∗].

Finally, as an application of this last result (and some of Section 3) we ensure

existence of global mild solution for the following fractional partial differential

equation coming from heat conduction theory:
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Example 1.12. Let Ω ⊂ RN , N ∈ N, be a bounded open subset with smooth

boundary ∂Ω. Consider the problem

(1.5)


c∂αt u(t, x) = D∆u(t, x) + F (u(t, x)), t > 0, x ∈ Ω,

∂u/∂−→v (t, x) = 0, t > 0, x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω.

where c∂αt is Caputo’s fractional derivative, u = (u1, . . . , un)>, n ≥ 1,

∂u

∂−→v
= (〈∇u1,−→v 〉, . . . , 〈∇un,−→v 〉)>,

where −→v is the outward normal vector, and D is the diagonal matrix

D =


d1 0 0 . . . 0

0 d2 0 . . . 0

0 0 d3 . . . 0
...

...
...

. . .
...

0 0 0 . . . dn


n×n

with di > 0, for all i ∈ {0, 1, . . . , n}. The nonlinearity

F = (F1, . . . , Fn) : Rn → Rn

is assumed to be locally Lipschitz.

To treat this problem we set X = (Lq(Ω))n, for 1 < q < ∞, with the usual

order ≤X and we consider AD = diag(A1, . . . An), where for each i ∈ {0, . . . , n}
we define Ai : D(Ai) ⊂ Lq(Ω)→ Lq(Ω) by

D(Ai) =

{
φ ∈W 2,q(Ω) :

∂φ

∂−→v
= 0 on ∂Ω

}
=: W 2,q

N (Ω);

Aiφ = − di∆φ

and suppose that inf{Re(σ(AD))} = d̃1 < 0. In [6, Proposition 2.8] it was shown

that this operator is sectorial and has positive resolvent. Then, rewriting (1.5)

in the abstract formcDα
t u(t) = −ADu(t) + F (u(t)), t > 0,

u(0) = u0 ∈ (Lq(Ω))n,

we may ensure, by Theorem 1.2, existence and uniqueness of a local mild solu-

tion u. If there exist constants c0 ∈ [0,−d̃1) and c1 ≥ 0 such that

−c0|ui| − c1 ≤ Fi(u) ≤ c0|ui|+ c1 for all i ∈ {1, . . . , n},

then problem (1.5) has a global mild solution. Indeed, we conclude that

−c0|||u||| − C1 ≤X F (u) ≤X c0|||u|||+ C1 for all u ∈ (Lq(Ω))n,

where |||u||| := (|u1|, . . . , |un|) and C1 = (c1, . . . , c1).
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Since the problemscDα
t u(t) = −ADu(t)− c0|||u(t)||| − C1, t > 0,

u(0) = u0 ∈ (Lq(Ω))n,

and cDα
t u(t) = −ADu(t) + c0|||u(t)|||+ C1, t > 0,

u(0) = u0 ∈ (Lq(Ω))n,

have global mild solutions (by using Theorem 1.4), we conclude by Corollary 1.11

and Theorems 1.3 and 1.4 that (1.5) possesses a unique global mild solution.

2. Preliminary results

Let (X, ‖ · ‖) be a complex Banach space. As usual, for a linear operatorA, we

denote by D(A) the domain of A, by σ(A) its spectrum, while ρ(A) := C−σ(A)

is the resolvent set of A. Moreover, we denote by L(Y, Z) the space of all

bounded linear operators between two normed spaces Y and Z with the operator

norm ‖ · ‖L(Y,Z). We abbreviate this notation to L(Y ) when Y = Z. When no

confusion arise, we write ‖T‖L(Y ) as ‖T‖ for every T ∈ L(Y ). Finally, for β ≥ 0

we denote by Xβ the fractional power spaces associated to the operator A, being

X0 = X and X1 = D(A).

The aim of this section is to present the basic tools we will use in this man-

uscript. Our results include the classical theory of the Mittag-Leffler function

that is closely related to the solutions of the fractional differential equations.

2.1. Mittag–Leffler functions and sectorial operators. We start with

a generalization of the Cauchy representation for semigroups associated to sec-

torial operators. To this end we recall that given ε > 0 and θ ∈ (π/2, π), the

Hankel path Ha = Ha(ε, θ) is the path given by Ha = Ha1 +Ha2−Ha3, where

Hai are such that

(2.1)

Ha1 := {teiθ : t ∈ [ε,∞)},

Ha2 := {εeit : t ∈ [−θ, θ]},

Ha3 := {te−iθ : t ∈ [ε,∞)}.

Lemma 2.1. Consider α ∈ (0, 1) and suppose that A : D(A) ⊂ X → X is

a sectorial operator. Then, the functions

Eα(tαA) :=
1

2πi

∫
Ha

eλtλα−1(λα −A)−1dλ, t ≥ 0,

Eα,α(tαA) :=
t1−α

2πi

∫
Ha

eλt(λα −A)−1dλ, t ≥ 0
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(where Ha is given by (2.1)) are well defined. Furthermore, there exists a con-

stant M > 0 such that

‖Eα(tαA)‖ ≤M and ‖Eα,α(tαA)‖ ≤M for all t ≥ 0.

Proof. Let φ ∈ (π/2, π), Sφ be the sector associated with the sectorial

operator A and choose arbitrary values ε > 0 and θ ∈ (π/2, φ]. We will estimate

the function ‖Eα(tαA)‖ on each Hai, according to definition (2.1), for any t > 0.

Just observe that for each fixed t 6= 0, if we assume that ε = 1/t, then

• On Ha1, it holds that∥∥∥∥ 1

2πi

∫
Ha1

eλtλα−1(λα −A)−1dλ

∥∥∥∥
≤ 1

2π

∥∥∥∥∫ ∞
ε

etse
iθ

(seiθ)α−1((seiθ)α −A)−1eiθ ds

∥∥∥∥
and using that if λ = seiθ ∈ Ha(ε, θ) ⊂ Sφ, then λα ∈ Sφ, we obtain by

the sectorial property that∥∥∥∥ 1

2πi

∫
Ha1

eλtλα−1(λα −A)−1dλ

∥∥∥∥ ≤ N

2π

∫ ∞
ε

ets cos(θ)|(seiθ)|−1ds

≤ N

2πε

∫ ∞
ε

ets cos(θ)ds =
Necos(θ)

−2π cos(θ)
.

• On Ha2, we have that∥∥∥∥ 1

2πi

∫
Ha2

eλtλα−1(λα −A)−1dλ

∥∥∥∥
=

1

2π

∥∥∥∥∫ θ

−θ
etεe

is

(εeis)α−1((εeis)α −A)−1iεeisds

∥∥∥∥
≤ N

2π

∫ θ

−θ
etε cos(s) ds ≤ θNe

π
.

• On Ha3 we proceed in the same way as in Ha1.

Taking M as the maximum over all the bounds obtained above, we deduce

that ‖Eα(Atα)‖ is well defined for each t ≥ 0.

Now we shall seek a uniform bound for the function ‖Eα(Atα)‖ for all t ≥ 0.

For this, just observe that if ε < ε′ and π/2 < θ′ < θ < φ and we take Ha =

Ha(ε, θ) and Ha′ = Ha(ε′, θ′), we obtain the equality

1

2πi

∫
Ha

eλtλα−1(λα −A)−1dλ =
1

2πi

∫
Ha′

eλtλα−1(λα −A)−1dλ for all t ≥ 0.

This is enough to justify that the estimate obtained before is uniform on t > 0.

To verify the boundedness for t = 0, we observe that making a change of variables

Eα(tαA) =
1

2πi

∫
Ha

eλλα−1(λα −Atα)−1 dλ, t ≥ 0,
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and therefore, using the dominated convergence theorem, we conclude that

Eα(0αA) is the identity operator.

A similar procedure proves that ‖Eα,α(Atα)‖ ≤M for all t ∈ [0,∞).

Next result give us information on the Mittag–Leffler families in the fractional

power spaces Xβ , β ≥ 0, associated to the sectorial operator A.

Lemma 2.2. Consider α ∈ (0, 1), 0 ≤ β ≤ 1, and suppose that A : D(A) ⊂
X0 → X0 is a sectorial operator. Then, there exists a constant M > 0 such that

‖Eα(tαA)x‖Xβ ≤Mt−αβ‖x‖X0

and

‖tα−1Eα,α(tαA)x‖Xβ ≤Mtα(1−β)−1‖x‖X0

for all t > 0.

Proof. We have that

‖Eα(tαA)x‖Xβ =

∥∥∥∥ 1

2πi

∫
Ha

eλtλα−1Aβ(λα −A)−1x dλ

∥∥∥∥
X0

≤ t−α

2π

∥∥∥∥∫
Ha

eλλα−1Aβ((λ/t)α −A)−1x dλ

∥∥∥∥
X0

≤ t−αβ
(
C

2π

∫
Ha

|eλλαβ−1| d|λ|
)
‖x‖X0 .

Hence, it is sufficient to choose M > 0 such that

C

2π

∫
Ha

|eλλαβ−1| d|λ| ≤M.

By a similar procedure one may prove the second estimate.

Our goal now is to establish an expression for Mittag–Leffler functions as-

sociated to sectorial operators similar to the second fundamental limit for semi-

groups. For this, we recall the Post–Widder inversion formula, which can be

found in [26]. This expression will be very useful to our following results.

Lemma 2.3 (Post–Widder). Let u : [0,∞) → X be a continuous function

such that u(t) = O(exp(ωt)) as t→∞ for some ω ∈ R and let û be the Laplace

transform of u. Then

u(t) = lim
n→∞

(−1)n

n!

(
n

t

)n+1(
dn

dλn
û

)(
n

t

)
,

uniformly on compact sets of (0,∞).
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Proposition 2.4. Consider A : D(A) ⊂ X → X a sectorial operator and

α ∈ (0, 1). Let {Eα(tαA)}t≥0 and {Eα,α(tαA)}t≥0 be the Mittag–Leffler families

associated to A. Then, for each x ∈ X we have

(2.2) Eα(tαA)x = lim
n→∞

1

n!

n+1∑
k=1

bαk,n+1

((
n

t

)α((
n

t

)α
−A

)−1)k
x,

and

(2.3) tα−1Eα,α(tαA)u0 = lim
n→∞

1

n!

n∑
k=1

αkbαk,n

(
n

t

)αk+1((
n

t

)α
−A

)−(k+1)

x,

uniformly on compact sets of (0,∞), where the positive real numbers bαk,n are

defined by

(2.4)



bα1,1 = 1,

bαk,n = (n− 1− αk)bαk,n−1 + α(k − 1)bαk−1,n−1, if 1 ≤ k ≤ n
and n = 2, 3, . . . ,

bαk,n = 0, if k > n

and n = 1, 2, . . .

Proof. By Lemma 2.1 there exists M ≥ 1 such that ‖Eα(tαA)‖ ≤ M and

‖Eα,α(tαA)‖ ≤M for all t ≥ 0. By induction in n, we obtain for Reλ > 0 that

dn

dλn
(λα−1(λα−A)−1) = (−1)nλ−(n+1)

n+1∑
k=1

bαk,n+1[λα(λα−A)−1]k, n = 1, 2, . . .

Furthermore, for each x ∈ X the function u(t) = Eα(tαA)x is such that

û(λ) = λα−1(λα −A)−1x.

Hence, (2.2) follows by Lemma 2.3.

On the other hand, to prove (2.3), observe that

dn

dλn
(λα −A)−1 = (−1)nλ−n

n∑
k=1

αkbαk,nλ
αk(λα −A)−(k+1), n = 1, 2, . . .

and for each x ∈ X, the function v(t) = tα−1Eα,α(tαA)x verifies v̂(λ) = (λα −
A)−1x. Using again Lemma 2.3, the proof is finished. �

2.2. Ordered Banach spaces. We recall briefly the basic properties of an

order on a Banach space X, in order to develop our comparison results.

Definition 2.5. An ordered Banach space is a couple (X,≤X) where X is

a Banach space and ≤X is an order relation in X such that for every x, y, z ∈ X
and for any scalar λ ≥ 0, it holds that

(a) x ≤X y implies x+ z ≤X y + z;

(b) x ≤X y implies λx ≤X λy;
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(c) the positive cone C = {x ∈ X : 0 ≤X x} is closed in X.

Remark 2.6. Observe that x ≤X y is equivalent to 0 ≤X y−x. Furthermore,

x ≤X 0 if and only if 0 ≤X −x.

Example 2.7. Consider 1 ≤ p ≤ ∞. The Banach spaces Lp(Ω) and C(Ω)

with the order “f ≤ g if and only if f(x) ≤ g(x) almost everywhere” are ordered

Banach spaces.

Definition 2.8. Suppose that (X,≤X) and (Y,≤Y ) are ordered Banach

spaces. A function T : D(T ) ⊂ X → Y is called increasing if x ≤X y implies

Tx ≤Y Ty. T is called positive if 0 ≤X x implies 0 ≤Y Tx, for all x, y ∈ D(T ).

Lemma 2.9. Let (X,≤X) be an ordered Banach space and consider f ∈
L1(t0, t1;X) such that 0 ≤X f(t) for almost every t ∈ (t0, t1). Then

0 ≤X
∫ t1

t0

f(s) ds.

3. Local well posedness

We start this section with a proof of our result on local existence and unique-

ness of mild solutions to (1.1).

Proof of Theorem 1.2. Given u0 ∈ X, let Bu0
(r) be the open ball with

center u0 and radius r > 0 and L = L(Bu0
(r)) be the Lipschitz constant of f

associated to Bu0
(r). Fix β ∈ (0, r) and choose t0 > 0 such that

(M/α)(Lβ + C)tα0 ≤ β/2 and ‖Eα(Atα)u0 − u0‖ ≤ β/2 for all t ∈ [0, t0].

where M = sup
t∈[0,∞)

‖Eα,α(Atα)‖ and C = sup
t∈[0,t0]

‖f(s, u0)‖. Consider

K := {u ∈ C([0, t0];X) : u(0) = u0 and ‖u(t)− u0‖ ≤ β for all t ∈ [0, t0]}

and define the operator T on K by

T (u(t)) = Eα(tαA)u0 +

∫ t

0

(t− s)α−1Eα,α((t− s)αA)f(s, u(s)) ds.

If u ∈ K, then T (u(0)) = u0 and T (u(t)) ∈ C([0, t0];X). Furthermore, we have

that

‖T (u(t))− u0‖ ≤‖Eα(Atα)u0 − u0‖

+

∫ t

0

(t− s)α−1M(‖f(s, u(s))− f(s, u0)‖+ ‖f(s, u0)‖) ds

≤‖Eα(Atα)u0 − u0‖+ (M/α)(Lβ + C)tα0 ≤
β

2
+
β

2
= β,

that is, T (K) ⊂ K. Now, if u, v ∈ K, we see that

‖T (u(t))− T (v(t))‖ ≤
∫ t

0

(t− s)α−1M‖f(s, u(s))− f(s, v(s))‖ ds
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≤ LMtα0
α

sup
s∈[0,t0]

‖u(s)− v(s)‖

≤ 1

2
sup

s∈[0,t0]
‖u(s)− v(s)‖.

So, by the Banach contraction principle we have that T has a unique fixed point

in K. We will denote this fixed point by w.

Uniqueness of local mild solution to (1.1) follows from the Singular Gronwall

Inequality (see [9, Lemma 7.1.1, p. 188]). Therefore, we obtain that the solution

ω is the unique continuous function that satisfies the integral equation and this

finishes the proof. �

Definition 3.1. Let u : [0, t0]→ X be a local mild solution in [0, t0] to (1.1).

If t1 > t0 and v : [0, t1] → X is a local mild solution to (1.1) in [0, t1], then we

say that v is a continuation of u in [0, t1].

The remainder of this paragraph will be devoted to the problem of continu-

ation of local mild solutions and existence of global mild solutions of (1.1).

Proof of Theorem 1.3. Let u : [0, t0] → X be the local mild solution

to (1.1) in [0, t0]. Since f is locally Lipschitz, there exist r > 0, an open ball

B = B(u(t0)) with center in u(t0) and radius r, and L = Lu(t0) the Lipschitz

constant of f associated to B. Fix β ∈ (0, r) and choose τ > 0 such that the

following conditions are satisfied:

• ‖Eα(Atα)u0 − Eα(At0
α)u0‖ ≤ β/4,

• (M/α)(Lβ + C)τα ≤ β/4, (MD/α)[tα − (t− t0)α − tα0 ] ≤ β/4,

•
∫ t0

0

(t0 − s)α−1‖[Eα,α(A(t− s)α)− Eα,α(A(t0 − s)α)]f(s, u(s))‖ ds ≤ β

4

for all t ∈ [t0, t0 + τ ], where

C = sup
s∈[0,t0]

‖f(s, u(t0))‖,

D = sup
s∈[0,t0]

‖f(s, u(s))‖,

M = max

{
sup

t∈[0,∞)

‖Eα,α(Atα)‖, sup
t∈[0,∞)

‖Eα(Atα)‖
}
.

Consider

K := {w ∈ C([0, t0 + τ ];X) : w(t) = u(t) for all t ∈ [0, t0]

and ‖w(t)− u(t0)‖ ≤ β for all t ∈ [t0, t0 + τ ]}

and T : K → C([0, t0 + τ ];X) given by

T (w(t)) = Eα(tαA)u0 +

∫ t

0

(t− s)α−1Eα,α((t− s)αA)f(s, u(s)) ds.
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We check that T (K) ⊂ K.

(a) If w ∈ K, then w(t) = u(t) in [0, t0] with u the local mild solution to

(1.1) in [0, t0]. So, if t ∈ [0, t0],

T (w(t)) =Eα(tαA)u0 +

∫ t

0

(t− s)α−1Eα,α((t− s)αA)f(s, w(s)) ds

=Eα(tαA)u0 +

∫ t

0

(t− s)α−1Eα,α((t− s)αA)f(s, u(s)) ds = u(t).

(b) If t ∈ [t0, t0 + τ ], then

‖T (w(t)) − u(t0)‖ ≤ ‖Eα(tαA)u0 − Eα(t0
αA)u0‖

+

∥∥∥∥ ∫ t

0

(t− s)α−1Eα,α((t− s)αA)f(s, w(s)) ds

−
∫ t0

0

(t0 − s)α−1Eα,α((t0 − s)αA)f(s, w(s)) ds

∥∥∥∥
≤I1 + I2 + I3 + I4 ≤ β,

where

I1 = ‖Eα(tαA)u0 − Eα(t0
αA)u0‖ ≤

β

4
,

I2 =

∥∥∥∥ ∫ t

t0

(t− s)α−1Eα,α((t− s)αA)f(s, w(s)) ds

∥∥∥∥ ≤ β

4
,

I3 =

∥∥∥∥ ∫ t0

0

[(t− s)α−1 − (t0 − s)α−1]Eα,α((t− s)αA)f(s, w(s)) ds

∥∥∥∥ ≤ β

4
,

I4 =

∥∥∥∥ ∫ t0

0

(t0 − s)α−1[Eα,α((t− s)αA)− Eα,α((t0 − s)αA)]f(s, w(s)) ds

∥∥∥∥ ≤ β

4
.

By similar computations, we conclude that, for every t ∈ [0, t0 + τ ],

‖T (ω(t))− T (v(t))‖ ≤ LMτα

α
sup

s∈[0,t0+τ ]
‖ω(s)− v(s)‖

≤ 1

2
sup

s∈[0,t0+τ ]
‖ω(s)− v(s)‖

for all u, v ∈ K. Therefore, by the Banach contraction principle, we conclude

that there exists a unique fixed point u∗ ∈ K of the integral equation. As in the

proof of Theorem 1.2, it is not difficult to see that u∗ is the unique continuous

continuation of u in [0, t0 + τ ]. �

The following result will be useful in the proof of Theorem 1.4.

Lemma 3.2. Consider ω ∈ (0,∞), u : [0, ω) → X a bounded continuous

function, and f : [0,∞) × X → X continuous and bounded. If {tn} ⊂ [0, ω)
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satisfies limn tn = ω, then

lim
n

∫ tn

0

(tn − r)α−1‖[Eα,α(A(tn − rα))− Eα,α(A(w − rα))]f(r, u(r))‖ dr = 0.

Proof. Let M = sup
t∈[0,∞)

‖Eα,α(Atα)‖ and K = sup
s∈[0,ω)

‖f(s, u(s))‖. Given

ε > 0, fix γ ∈ (0, ω) such that

(ω − γ)α

α
MK ≤ ε

2
.

Now, choose N ∈ N such that

• tn > γ for all n ≥ N ;

•
∫ γ

0

(tn − r)α−1‖[Eα,α(A(tn − rα))− Eα,α(A(w − rα))]f(r, u(r))‖ dr < ε

2
for all n ≥ N .

Hence, we conclude that for n ≥ N ,∫ tn

0

(tn − r)α−1‖[Eα,α(A(tn − rα))− Eα,α(A(w − rα))]f(r, u(r))‖ dr

≤ ε

2
+

∫ tn

γ

(tn − r)α−1MK dr ≤ ε

2
+

(ω − γ)α

α
MK ≤ ε. �

Proof of Theorem 1.4. ConsiderH := {τ ∈ [0,∞) : there exists uτ : [0, τ ]

→ X unique local mild solution to (1.1) in [0, τ ]}. If supH = w, we can consider

a continuous function u : [0, ω) → X that is a local mild solution to (1.1) in

[0, ω). If ω =∞, then u is a global mild solution in [0,∞). Otherwise, if ω <∞
we will prove that lim sup

t→ω
|u(t)| = ∞. By contradiction, suppose that there

exists K <∞ such that ‖u(t)‖ ≤ K for all t ∈ [0, ω). Therefore, it follows from

Lemma 3.2 that if {tn} ⊂ [0, ω) is a sequence that converges to ω, given ε > 0,

there exists N ∈ N, such that, if m, n ≥ N, we have

‖Eα(tαnA)u0 − Eα(tαmA)u0‖ ≤
ε

5
,

|tn − tm|α
MK

α
≤ ε

5
,

|tαn − (tn − tm)α − tαm|
MK

α
≤ ε

5
,

∫ tn

0

(tn − r)α−1‖[Eα,α((tn − r)αA)− Eα,α((w − r)αA)]f(r, u(r))‖ dr ≤ ε

5
,∫ tm

0

(tm − r)α−1‖[Eα,α((tm − r)αA)− Eα,α((w − r)αA)]f(r, u(r))‖ dr ≤ ε

5
,

where

K = sup
t∈[0,ω)

‖f(t, u(t))‖, M = max{ sup
t∈[0,∞)

‖Eα,α(Atα)‖, sup
t∈[0,∞)

‖Eα(Atα)‖}.
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Hence, for n,m ≥ N and assuming, without loss of generality, that tn > tm, it

follows from the estimate

‖u(tn)− u(tm)‖ ≤ ‖Eα(tαnA)u0 − Eα(tαmA)u0‖+ I1 + I2 + I3,

where

I1 =

∫ tn

tm

(tn − r)α−1‖Eα,α((tn − r)αA)f(r, u(r))‖ dr ≤ |tn − tm|α
MK

α
,

I2 =

∫ tm

0

(tn − r)α−1‖[Eα,α((tn − r)αA)− Eα,α((tm − r)αA)]f(r, u(r))‖ dr

≤
∫ tm

0

(tn − r)α−1‖[Eα,α((tn − r)αA)− Eα,α((ω − r)αA)]f(r, u(r))‖ dr

+

∫ tm

0

(tn − r)α−1‖[Eα,α((tm − r)αA)− Eα,α((ω − r)αA)]f(r, u(r))‖ dr

≤
∫ tn

0

(tn − r)α−1‖[Eα,α((tn − r)αA)− Eα,α((ω − r)αA)]f(r, u(r))‖ dr

+

∫ tm

0

(tm − r)α−1‖[Eα,α((tm − r)αA)− Eα,α((ω − r)αA)]f(r, u(r))‖ dr

and

I3 =

∫ tm

0

|[(tn − s)α−1 − (tm − s)α−1]| ‖Eα,α((tm − s)αA)f(s, u(s))‖ ds

≤ |tαn − (tn − tm)α − tαm|
MK

α
,

that ‖u(tn) − u(tm)‖ ≤ ε. This computation shows that {u(tn)} is a Cauchy

sequence and therefore it has a limit, ut ∈ X. Then, we may extend u over [0, ω]

obtaining the equality

u(t) = Eα(tαA)u0 +

∫ t

0

(t− s)α−1Eα,α((t− s)αA)f(s, u(s)) ds

for all t ∈ [0, ω]. With this, by Theorem 1.3, we can extend the solution to some

bigger interval, which is a contradiction with the definition of ω. �

Corollary 3.3. Let f : [0,∞)×X → X be as in Theorem 1.4 and suppose

that there exists a constant K > 0 such that if ‖u0‖ ≤ K, then the solutions

to (1.1), while exists, are bounded by K. Then (1.1) possesses a unique global

mild solution.

4. Critical nonlinearities

Following the notation of [2], we consider the following class of nonlinearities:

let ε, γ(ε), ξ, ζ, c, and δ be positive constants, and a function ν with values in

[0, δ) and limt→0+ ν(t) = 0. Define F(ε, ρ, γ(ε), c, ν( · ), ξ, ζ) as the family of
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functions f such that, for t ≥ 0, f(t, · ) is an ε-regular map relative to the pair

(X1, X0), satisfying, for all x, y ∈ X1+ε,

‖f(t, x)− f(t, y)‖Xγ(ε) ≤ c(‖x‖
ρ−1
X1+ε + ‖y‖ρ−1X1+ε + ν(t)t−ζ)‖x− y‖X1+ε ,

‖f(t, x)‖Xγ(ε) ≤, c(‖x‖
ρ
X1+ε + ν(t)t−ξ).

Without loss of generality we may assume that the function ν is non-decre-

asing. We will suppose that 0 ≤ ζ ≤ α(γ(ε)− ε) and 0 ≤ ξ ≤ αγ(ε), α ∈ (0, 1).

In most cases in the arguments below we will fix the parameters ε, γ(ε), ρ, ξ, ζ

and c, and we will denote the class F defined above by F(ν( · )).
As immediate consequence of Lemma 2.2 we have that if 0 ≤ θ, β ≤ 1, then

tα(1+θ−β)‖Eα(tαA)x‖X1+θ ≤M‖x‖Xβ ,(4.1)

tα(θ−β)+1‖tα−1Eα,α(tαA)x‖X1+θ ≤M‖x‖Xβ .

To prove Theorem 1.7 we need some previous results.

Lemma 4.1. Consider α ∈ (0, 1), θ ∈ [0, 1], and a sectorial operator A. The

operators {tαθEα(tαA) : X1 → X1+θ}t>0 are bounded linear operators satisfying

‖tαθEα(tαA)‖L(X1,X1+θ) ≤M,

with M > 0 independent of t. Moreover, given a compact subset J of X1, we

have

lim
t→0+

sup
x∈J
‖tαθEα(tαA)x‖X1+θ = 0.

Proof. The fact that ‖tαθEα(tαA)‖L(X1,X1+θ) ≤M follows from (4.1). For

the remaining part it suffices to observe that the operators tαEα(tαA) : X1 →
X1+α are uniformly bounded in t, that

lim
t→0+

‖tαEα(tαA)x‖X1+α = 0,

for x ∈ X1+α, and that Xα is a dense subset of X1. �

Let B : (0,∞)× (0,∞)→ (0,∞) be the beta function given by

B(a, b) =

∫ 1

0

(1− x)a−1xb−1 dx.

For ζ ≥ 0, define

Bθ
ε(ζ) = sup

0≤η≤θ
{B(α(γ(ε)− η), 1− ζ),B(α(γ(ε)− η), 1− αρε)}.

Lemma 4.2. With the above notation, let f ∈F(ν( · )). If u∈C((0, τ ];X1+ε),

then, for all 0 ≤ θ < γ(ε), we have that

tαθ
∥∥∥∥∫ t

0

(t− s)α−1Eα,α((t− s)αA)f(s, u(s)) ds

∥∥∥∥
X1+θ

≤McBθ
ε(ξ)(ν(t)tαγ(ε)−ξ + λ(t)ρtα(γ(ε)−ρε))
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for 0 < t ≤ τ , where λ(t) = sup
s∈(0,t]

{sαε‖u(s)‖X1+ε}.

Proof. Indeed, we have that

tαθ
∫ t

0

‖(t− s)α−1Eα,α((t− s)αA)f(s, u(s))‖X1+θ ds

≤Mtαθ
∫ t

0

(t− s)α(γ(ε)−θ)−1c(ν(s)s−ξ + ‖u(s)‖ρX1+ε) ds

≤Mcν(t)tαθ
∫ t

0

(t− s)α(γ(ε)−θ)−1s−ξ ds

+Mctαθ
∫ t

0

(t− s)α(γ(ε)−θ)−1s−αρε(sαε‖u(s)‖X1+ε)ρ ds

≤Mcν(t)tαθ−ξ+α(γ(ε)−θ)
∫ 1

0

(1− s)α(γ(ε)−θ)−1s−ξ ds

+Mcλ(t)ρtαθ−αρε+α(γ(ε)−θ)
∫ 1

0

(t− s)α(γ(ε)−θ)−1s−αρε ds

≤McBθ
ε(ξ)(ν(t)tαγ(ε)−ξ + λ(t)ρtα(γ(ε)−ρε)),

which concludes the proof. �

Lemma 4.3. With the above notation, let f ∈ F(ν( · )) and consider u, v ∈
C((0, τ ];X1+ε) such that tαε‖u(t)‖X1+ε ≤ µ and tαε‖v(t)‖X1+ε ≤ µ for some

µ > 0. Then, for all 0 ≤ θ < γ(ε) < 1, we have

tαθ
∥∥∥∥∫ t

0

(t− s)α−1Eα,α((t− s)αA)(f(s, u(s))− f(s, v(s))) ds

∥∥∥∥
X1+θ

≤McBθ
ε(ζ + αε)[ν(t)tα(γ(ε)−θ)−ζ + 2µρ−1tα(γ(ε)+ε−θ−ρε)]

× sup
0<s≤τ

sαε‖u(s)− v(s)‖X1+ε .

Proof. It follows from the ε-regularity property of f that

tαθ
∫ t

0

‖(t− s)α−1Eα,α((t− s)αA)(f(s, u(s))− f(s, v(s)))‖X1+θ ds

≤Mtαθ
∫ t

0

(t− s)α(γ(ε)−θ)−1‖f(s, u(s))− f(s, v(s))‖Xγ(ε) ds

≤Mctαθ
∫ t

0

(t− s)α(γ(ε)−θ)−1‖u(s)− v(s)‖X1+ε

× (‖u(s)‖ρ−1X1+ε + ‖v(s)‖ρ−1X1+ε + ν(s)s−ζ) ds

≤Mcν(t)tαθ
∫ t

0

(t− s)α(γ(ε)−θ)−1s−ζ−αεsαε‖u(s)− v(s)‖X1+ε ds

+Mctαθ
∫ t

0

(t− s)α(γ(ε)−θ)−1s−αρε
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× [(sαε‖u(s)‖X1+ε)ρ−1 + (sαε‖v(s)‖X1+ε)ρ−1]sαε‖u(s)− v(s)‖x1+ε ds

≤ [ν(t)tα(γ(ε)−θ)−ζ + 2µρ−1tα(γ(ε)+ε−θ−ρε)]

×McBθ
ε(ζ + αε) sup

0≤s≤τ
sαε‖u(s)− v(s)‖X1+ε . �

Now we may prove the main result of this section.

Proof of Theorem 1.7. Define µ by

McBε
εµ
ρ−1 =

1

8
,

where Bθ
ε := max{Bθ

ε(ξ),B
θ
ε(ζ + αε)} and choose r = r(µ,M) > 0 such that

r =
µ

4M
=

1

4M(8cMBε
ε)

1/(ρ−1) .

For v0 fixed, choose τ0 ∈ (0, 1] such that ν(t) < δ for all t ∈ (0, τ0],

‖tαεEα(tαA)v0‖X1+ε ≤ µ

2
if 0 ≤ t ≤ τ0,

and

McδBε
ε = min

{
µ

8
,

1

4

}
.

Consider

K(τ0) =

{
u ∈ C((0, τ0];X1+ε) : sup

t∈(0,τ0]
tαε‖u(t)‖X1+ε ≤ µ

}
with norm

‖u‖K(τ0) = sup
t∈(0,τ0]

tαε‖u(t)‖X1+ε .

Suppose that u0 ∈ X1 with ‖u0 − v0‖X1 < r and define on K(τ0) the map

Tu(t) = Eα(tαA)u0 +

∫ t

0

(t− s)α−1Eα,α((t− s)αA)f(s, u(s)) ds.

Our purpose is to show that for any u0 ∈ BX1(v0, r), K(τ0) is T -invariant and

T is a contraction.

Initially, let us prove that T : K(τ0)→ K(τ0) is well defined.

Claim 1. If u ∈ K(τ0), then Tu ∈ C((0, τ0];X1+θ) for all θ ∈ [0, γ(ε)).

For this, let t1, t2 ∈ (0, τ0], t1 > t2; then, for every 0 ≤ θ < γ(ε), we have

that

‖Tu(t1),−Tu(t2)‖X1+θ ≤ ‖(Eα(tα1A)− Eα(tα2A))u0‖X1+θ

+

∥∥∥∥∫ t2

0

((t1 − s)α−1Eα,α

× ((t2 − s)αA)− (t1 − s)α−2Eα,α((t2 − s)αA))f(s, u(s)) ds

∥∥∥∥
X1+θ

+

∥∥∥∥∫ t1

t2

(t1 − s)α−1Eα,α((t1 − s)αA)f(s, u(s)) ds

∥∥∥∥
X1+θ

.
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The first term trivially goes to 0 as t1 → t+2 . A similar procedure to Theorem 1.4

shows that the second term also goes to 0 as t1 → t+2 . Let us consider the third

term. We have∥∥∥∥∫ t1

t2

(t1 − s)α−1Eα,α((t1 − s)αA)f(s, u(s)) ds ds

∥∥∥∥
X1+θ

≤M
∫ t1

t2

(t1 − s)α(γ(ε)−θ)−1‖f(s, u(s))‖Xγ(ε) ds

≤Mc

∫ t1

t2

(t1 − s)α(γ(ε)−θ)−1(ν(s)s−ξ + ‖u(s)‖ρ−1X1+ε) ds

≤Mcδ

∫ t1

t2

(t1 − s)α(γ(ε)−θ)−1s−ξ ds

+Mc

∫ t1

t2

(t1 − s)α(γ(ε)−θ)−1‖u(s)‖X1+ε ds

≤Mcδt
α(γ(ε)−θ)−ξ
1

∫ 1

t2/t1

(1− s)α(γ(ε)−θ)−1s−ξ ds

+Mcµρtα(γ(ε)−θ−ρε)
∫ 1

t2/t1

(1− s)α(γ(ε)−θ)−1s−αρε ds,

which goes to 0 as t1 → t+2 . The case t1 < t2 is analogous.

Claim 2. tαε‖Tu(t)‖X1+ε ≤ µ for all t ∈ (0, τ0].

Indeed, we may estimate as follows.

tαε‖Tu(t)‖X1+ε ≤ ‖tαεEα(Atα)u0‖X1+ε

+Mtαε
∫ t

0

(t− s)α(γ(ε)−ε)−1‖f(s, u(s))‖Xγ(ε) ds

≤‖tαεEα(Atα)(u0 ∓ v0)‖X1+ε

+Mctαε
∫ t

0

(t− s)α(γ(ε)−ε)−1(ν(s)s−ξ + ‖u(s)‖ρX1+ε) ds

≤Mr + ‖tαεEα(Atα)v0‖X1+ε +Mcδtαγ(ε)−ξ
∫ 1

0

(1− s)α(γ(ε)−ε)−1s−ξ ds

+Mcµρtα(γ(ε)−ρε)
∫ 1

0

(1− s)α(γ(ε)−ε)−1s−αρε ds

≤Mr + ‖tαεEα(Atα)v0‖X1+ε +McδBε
ε +McµρBε

ε ≤ µ.

This shows that T (K(τ0)) ⊂ K(τ0).

Finally, by taking θ = ε, it follows from Lemma 4.3 that T is a strict con-

traction in K(τ0) and that

‖Tu(t)− Tv(t)‖K(τ0) ≤
1

2
‖u− v‖K(τ0).
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By the Banach contraction principle we have that T has a unique fixed point

in K(τ0), which will be denoted by u(·, u0). It is defined for ‖u0 − v0‖X1 < r,

0 ≤ t ≤ τ0.

Observe that u( · , u0) ∈ C((0, τ0];X1+θ) for all 0 ≤ θ < γ(ε). Furthermore,

we will prove that

Claim 3. tαθ‖u(t, u0)‖X1+θ → 0 as t→ 0, for all 0 < θ < γ(ε).

Indeed, from Lemma 4.2 we have that

tαθ‖u(t, u0)‖X1+θ ≤ tαθ‖Eα(tαA)u0‖X1+θ

+ tαθ
∥∥∥∥∫ t

0

(t− s)α−1Eα,α((t− s)αA)f(s, u(s, u0)) ds

∥∥∥∥
X1+θ

≤ tαθ‖Eα(tαA)u0‖X1+θ +McBθ
ε(ξ)ν(t)

+McBθ
ε(ξ)µ

ρ−1 sup
0<s≤t

{sαε‖u(s, u0)‖X1+ε}.

Therefore, if θ = ε we deduce

tαε‖u(t, u0)‖X1+ε ≤ tαε‖Eα(tαA)u0‖X1+ε

+McBε
εν(t) +

1

8
sup

0<s≤t
{sαε‖u(s, u0)‖X1+ε},

from which we obtain

sup
0<s≤t

{sαε‖u(s, u0)‖X1+ε} ≤ 8

7

(
sup

0<s≤t
{sαε‖Eα(sαA)u0‖X1+ε}+McBε

εν(t)

)
→ 0

as t→ 0. From above we also conclude that Claim 3 holds.

Claim 4. lim
t→0+

‖u(t, u0)− u0‖X1 = 0.

For this observe that from Lemma 4.2,

‖u(t,u0)− u0‖X1

≤‖Eα(tαA)u0 − u0‖X1 +

∫ t

0

‖(t− s)α−1Eα,α((t− s)αA)f(s, u(s, u0)‖X1 ds

≤‖Eα(tαA)u0 − u0‖X1 +McB0
ε(ξ)(ν(t) + [ sup

0<s≤t
{sαε‖u(s, u0)‖X1+ε}]ρ).

Therefore, the claim follows and we have that u(t, u0) is an ε-regular mild solution

starting at u0 and it is the unique ε-regular mild solution, starting at u0, in the

set K(τ0). We will call it the K-solution starting at u0.
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Moreover, if u0, w0 ∈ BX1(v0, r), it follows from Lemma 4.3 and the choice

of τ0 that

tαθ‖u(t, u0) − u(t, w0)‖X1+θ ≤ tαθ‖Eα(tαA)(u0 − w0)‖X1+θ(4.2)

+ tαθ
∥∥∥∥∫ t

0

(t− s)α−1Eα,α((t− s)αA)(f(s, u(s, u0))

− f(s, u(s, w0)) ds

∥∥∥∥
X1+θ

≤M‖u0 − w0‖X1 +McBθ
ε(ζ + αε)ν(t)tα(γ(ε)−θ)−ζ

× sup
0<s≤τ0

{sαθ‖u(s, u0)− u(s, w0)‖X1+ε}

+McBθ
ε(ζ + αε)2µρ−1tα(γ(ε)+ε−θ−ρε)

× sup
0<s≤τ0

{sαθ‖u(s, u0)− u(s, w0)‖X1+ε}.

For θ = ε we obtain

tαε‖u(t, u0)− u(t, w0)‖X1+ε

≤M‖u0 − w0‖X1 +
1

2
sup

0<s≤τ0
{sαε‖u(t, u0)− u(t, w0)‖X1+ε},

which implies

tαε‖u(t, u0)− u(t, w0)‖X1+ε ≤ 2M‖u0 − w0‖X1 .

For 0 ≤ θ ≤ θ0 < γ(ε) + ε− ρε we have from (4.2) that

tαθ‖u(t, u0)− u(t, w0)‖X1+θ ≤M‖u0 − w0‖X1

+ 2M2cBθ
ε(ζ + αε)[ν(t)tα(γ(ε)−θ)−ζ + 2µρ−1tα(γ(ε)+ε−θ−ρε)]‖u0 − w0‖X1

≤C(θ0)‖u0 − w0‖X1 ,

where

C(θ0) = M

(
1 + 2M sup

t∈[0,τ0],
0≤θ≤θ0

{cBθ
ε(ζ + αε)[ν(t)tα(γ(ε)−ε)−ζ

+ 2µρ−1tα(γ(ε)+ε−θ−ρε)]}
)
.

This concludes the proof of the theorem. �

We have the following two consequences of Theorem 1.7. The first one is that

if f is independent of time, we obtain the same result. Observe that this is not

just by an application of the theorem, since now we do not have a time-dependent

class F any more. However, it is not difficult to readapt its proof.
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Corollary 4.4. With the above notation, assume that f is independent of

time and it is an ε-regular map, for some ε > 0, relative to the pair (X1, X0).

Then if v0 ∈ X1, there exist r = r(v0) > 0 and τ0 = τ0(v0) > 0 such that for

every u0 ∈ BX1(v0, r) there is a continuous function u( · , u0) : [0, τ0]→ X1 with

u(0) = u0, which is an ε-regular mild solution to the problem (1.3) starting at

u0. Furthermore, this solution satisfies

u ∈ C((0, τ0];X1+θ), 0 ≤ θ < γ(ε),

lim
t→0+

tαθ‖u(t, u0)‖X1+θ = 0, 0 < θ < γ(ε).

Moreover, for each θ0 < γ(ε) + ε− ρε there exists a constant C > 0 such that if

u0, w0 ∈ BX1(v0, r), then

tαθ‖u(t, u0)− u(t, w0)‖X1+θ ≤ C‖u0 − w0‖X1

for all t ∈ [0, τ0], 0 ≤ θ ≤ θ0 < γ(ε) + ε− ρε.

The second consequence of Theorem 1.7 is the following

Corollary 4.5. Let f be as in Theorem 1.7 and K a relatively compact set

in X1, then there exists τ0 = τ0(K) such that the ε-regular solution starting at

u0 exists in the time interval [0, τ0] for any u0 ∈ K.

5. Comparison and positivity results

5.1. Linear equations. The following result establishes the equivalence

between the positivity of the resolvent operator of A and the positivity of the

Mittag–Leffler families.

Proposition 5.1. Let (X,≤X) be an ordered Banach space and consider

α ∈ (0, 1) and A : D(A) ⊂ X → X a sectorial operator. Suppose that there exists

λ0 > 0 such that (λα − A)−1 is increasing for any λ > λ0. Then, Eα(tαA) is

increasing for all t ≥ 0. Conversely, if X 3 u0 7→ Eα(tαA)u0 ∈ C([0,∞);X) is

increasing for all t ≥ 0, then (λα −A)−1 is increasing for any λ > 0.

Proof. The case t = 0 is easily verified.

To prove the case t > 0, consider 0 ≤X u0 ∈ X. From Proposition 2.4, write

(5.1) Eα(tαA)u0 = lim
n→∞

1

n!

n+1∑
k=1

bαk,n+1

((
n

t

)α((
n

t

)α
−A

)−1)k
u0, t > 0.

If n ∈ N is such that n/t > λ0, then

0 ≤
((

n

t

)α
−A

)−1
u0.

Since the values bαk,n+1, given by (2.4), are positive real numbers and the positive

cone is closed, it follows from (5.1) that 0 ≤X Eα(tαA)u0.
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Conversely, since the integral is a positive operator and

λα−1(λα −A)−1 =

∫ ∞
0

e−λtEα(tαA)dt for all λ > 0,

we conclude that (λα −A)−1 is a positive operator whenever λ > 0. �

Remark 5.2. (a) Proposition 5.1 is equivalent to the following result: if

0 ≤X u0, then the solution of the linear homogeneous problemcDα
t u(t) = Au(t),

u(0) = u0 ∈ X,

verifies 0 ≤X u(t) for all t ≥ 0. Equivalently, if u1 ≤X u0, then v(t) ≤X u(t)

for all t ≥ 0, where u and v are the corresponding solutions to the problem with

initial conditions u(0) = u0 and v(0) = u1, respectively.

(b) The assumption on the operator A is equivalent to the following positivity

result for elliptic problems: for any λ > λ0 and for any f with 0 ≤X f , the

solution to the problem λαu−Au = f satisfies 0 ≤X u.

A similar result may be stated in terms of the family {Eα,α(tαA)}t≥0.

Proposition 5.3. Let (X,≤X) be an ordered Banach space and consider

α ∈ (0, 1) and A : D(A) ⊂ X → X a sectorial operator. Suppose that there exists

λ0 > 0 such that (λα − A)−1 is increasing for any λ > λ0. Then, Eα,α(tαA) is

increasing for all t ≥ 0. Conversely, if X 3 u0 7→ Eα,α(tαA)u0 ∈ C([0,∞);X)

is increasing for all t ≥ 0, then (λα −A)−1 is increasing for any λ > 0.

Proof. It suffices to observe that if u0 ∈ X, then

tα−1Eα,α(tαA)u0 = lim
n→∞

1

n!

n∑
k=1

αkbαk,n

(
n

t

)αk+1((
n

t

)α
−A
)−(k+1)

u0, t ≥ 0.

Now, we may proceed as in the proof of Proposition 5.1. Conversely, we have

that

(λα −A)−1 =

∫ ∞
0

e−λttα−1Eα,α(tαA) dt,

for any λ > 0, which concludes the proof. �

Corollary 5.4. Let (X,≤X) be an ordered Banach space and consider α ∈
(0, 1) and A : D(A) ⊂ X → X a sectorial operator. Suppose that there exists

λ0 > 0 such that (λα − A)−1 is increasing for any λ > λ0. Let uf (t, u0) be the

local mild solution in [0, τ ], for some τ > 0, to the problemcDα
t u(t) = Au(t) + f(t), t > 0,

u(0) = u0 ∈ X,

and suppose that f ∈ L1(0, τ ;X). Assume that u1 ≤X u0 and f1(t) ≤X f0(t)

for almost every t ∈ (0, τ). Then uf1(t, u0) ≤X uf0(t, u0) for all t ∈ [0, τ ].
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In particular, if 0 ≤X u0 and 0 ≤X f(t) for almost every t ∈ (0, τ), then

0 ≤X uf (t, u0) for all t ∈ [0, τ ].

Proof. Observe that the corresponding solutions (i = 0, 1) are given by

ui(t) = Eα(tαA)ui +

∫ t

0

(t− s)α−1Eα,α((t− s)αA)fi(s) ds.

Since Eα(tαA)u1 ≤X Eα(tαA)u0 and, for any 0 < s < t < τ ,

Eα,α((t− s)α−1A)f1(s) ≤X Eα,α((t− s)α−1A)f0(s),

the result follows from the fact that the integral is a positive operator. �

5.2. Semilinear equations. In this paragraph we deals with comparison

results and positivity for the semilinear problem (1.1) where f : [0, τ)×X → X

a continuous function, locally lipschitz in the second variable (uniformly with

respect to the first variable), and, eventually, bounded.

Proof of Theorem 1.9. Let T be the operator defined by

T (u)(t) = Eα(tαA)u0 +

∫ t

0

(t− s)α−1Eα,α((t− s)αA)f(s, u(s)) ds.

We proved in Theorem 1.2 that if τ ∈ [0, t0] and β > 0 are small enough, then T

is a contraction in K = {u ∈ C([0, τ ];X) : ‖u(t)− u0‖ ≤ β} and it has a unique

fixed point. Consider y0(s) = u0, s ∈ [0, τ ]. Consequently, 0 ≤X y0(s) and

0 ≤X f(s, y0(s)) almost everywehre in (0, τ). Hence, y1(t) = T (y0(t)), t ∈ [0, τ ]

satisfies 0 ≤X y1(t). Iterating, we obtain

0 ≤X yn(t) = T (yn−1(t)), t ∈ [0, τ ].

Since {yn}n∈N converges to u in C([0, τ ];X) we have that 0 ≤X u(t) for all

t ∈ [0, τ ]. Now, combining this with some continuation arguments from Section 3,

we may conclude that 0 ≤X u(t) for all t ∈ [0, t0]. �

Proof of Theorem 1.10. (a) For i = 0, 1, we know that ui(t) = uf (t, ui),

is a fixed point of the operator

T (u)(t) = Eα(tαA)ui +

∫ t

0

(t− s)α−1Eα,α((t− s)αA)f(s, u(s)) ds

in [0, ti].

Consider initially the function y0i (t) = ui, t ∈ [0, ti], i = 0, 1. Iterating, we

have yni (t) = T (yn−1i )(t) and this sequence converges to ui(t) in C([0, ti];X).

Furthermore, we have y01(t) ≤X y00(t) for almost every t ∈ (0, t∗) and hence

f(t, y01(t)) ≤X f(t, y00(t)) for a.e. t ∈ (0, t∗).

Then, y11(t) ≤X y10(t) in [0, t∗]. Iterating, we obtain yn1 (t) ≤X yn0 (t) and conse-

quently u1(t) ≤X u0(t) in [0, t∗].

Statements (b) and (c) can be proved analogously. �
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