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NUDGED ELASTIC BAND IN TOPOLOGICAL DATA ANALYSIS

Henry Adams — Atanas Atanasov — Gunnar Carlsson

Abstract. We use the nudged elastic band method from computational
chemistry to analyze high-dimensional data. Our approach is inspired by

Morse theory, and as output we produce an increasing sequence of small cell

complexes modeling the dense regions of the data. We test the method on
data sets arising in social networks and in image processing. Furthermore,

we apply the method to identify new topological structure in a data set of

optical flow patches.

1. Introduction

The analysis of large sets of high-dimensional data is a fundamental problem

for all branches of science and engineering. Regression analysis can be used

effectively when the data has a linear or low degree polynomial structure based

on a choice of model for the data. However, it is often the case that the data is

genuinely nonlinear and that there isn’t an obvious choice for how to model it.

The purpose of topological data analysis [5] is to provide methods which produce

simple combinatorial representations of the data.

In this paper we construct a cell complex representation in which the cell

structure depends on the density of the points in the data set. We adapt the

mathematical formalism of Morse theory, which in its idealized form constructs

a cell decomposition of a manifold using sublevel sets of a function on the mani-

fold (called the “Morse function”), to the setting of point clouds, i.e. finite sets of

points in Euclidean spaces. The specific features of our approach are as follows.
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• We use a density estimator as our analogue of the Morse function. One

could also use other intrinsic functions on the geometry, such as notions

of data depth, to obtain other compact representations.

• In order to sample cells from the analogue of the Morse skeleton of the

Morse complex, we adapt the nudged elastic band method (NEB) from

computational chemistry [30], [26], [27], [37] to our situation. NEB has

been used to study high-dimensional conformation spaces of complicated

molecules, and typically uses an energy function as the analogue of the

Morse function.

• We produce an increasing sequence of cell complex models. In accordance

with the idea of topological persistence, this increasing sequence gives

a more accurate representation of the data than the choice of any single

complex.

• We currently construct only the one-dimensional skeleton of the cell com-

plex. Producing higher-order cells will require more difficult mathema-

tics, since the minimization problems involved in the construction of

such cells are challenging, and are related to minimal surface problems

in geometric analysis.

In studying data sets computationally, one finds that outliers will generally

obscure topological features. One approach for dealing with outliers is threshold-

ing by density, i.e. studying superlevel sets of a function that estimates density.

A difficulty is that the superlevel sets of density frequently require large numbers

of points to represent them, since they are “codimension zero” subsets. Consider

Figure 1, which contains a standard Morse theoretic picture: a sublevel set of

a torus in R3 with Morse function given by height. As is standard in Morse

theory, the sublevel set is homotopy equivalent to the Morse skeleton, which

is the dotted loop in Figure 1. In order to achieve an accurate representation

of the homotopy type, sampling from the entire sublevel set will require many

more points than sampling from the Morse skeleton. The goal of this paper

is to demonstrate that one can effectively sample cells from the Morse skele-

ton of a density function on the data set, thereby obtaining a more economical

representation of the topology of the data set.

Figure 1. A sublevel set of a torus in R3 with Morse function given by

height. The dotted loop is the Morse skeleton.
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We demonstrate how the method works on several nonlinear data sets. First,

while it is common to cluster social network data, there is more understanding to

be gained about the structure within a single cluster or about the relationships

between different clusters. As illustrated with the social network data set, our

method can find such relationships. Second, from a collection of optical image

patches we recover a minimal geometric description of the three circle model,

which has applications in image compression and in texture analysis [7], [34].

Third, we find the primary circle model for range image patches [1]. Fourth, we

identify new topological structure in a data set of optical flow patches.

In Section 2 we survey related work, and in Section 3 we provide background

material on CW cell complexes, Morse theory, and NEB. We describe our method

in Section 4, present results on data sets in Section 5, and conclude in Section 6.

2. Related work

The analysis of high-dimensional point cloud data is an important yet chal-

lenging task for which a wide variety of tools exist. One approach is to map

the data points to a lower dimension. This can be done linearly via projection

pursuit [28] or principal component analysis [29], else nonlinearly via Isomap

[40], Locally Linear Embedding [36], or Laplacian eigenmaps [2], among others.

A second approach is to build a combinatorial representation of the data, for

example a dendrogram or a cluster tree, and this is the direction we consider.
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Figure 2. A probability density function on the left and the cluster tree

for its superlevel sets on the right. The function has a circular base and

three bumps of varying heights. For a certain choice of density threshold
the superlevel set of the function has the topology of a circle, but this is
not reflected in the cluster tree.

Given a point cloud data set drawn from an unknown probability density

function, one may cluster the data by approximating the basins of attraction of

the modes of density [42], [24, pp. 205]. The goal of [39] is to recover the cluster

tree of density, a combinatorial model describing how the connected components
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of the superlevel sets of density merge as the density threshold decreases. Re-

gardless of its topology, a connected component of a superlevel set is always

represented in the cluster tree by a single point. For example, some superlevel

sets of the density function in Figure 2 have circular topology, but this is not ap-

parent in the cluster tree. There is more information to be gained by considering

the topology of the superlevel sets.

In topological data analysis one often models a superlevel set of density with

a simplicial complex, such as a C̆ech, Vietoris–Rips, alpha, or witness complex

[16], [12]. These simplicial complexes typically contain thousands of simplices,

are too large to interpret by hand, and on their own are not useful descriptors of

a superlevel set. Yet from these complexes one can estimate the homology groups

of the superlevel set using persistent homology [15], [43], [13]. Though homology

is a useful signature for describing the geometry of a superlevel set, in general

there are several possible models with given homology groups, and determining

which model best fits the data is a supervised step. Hence our method, which pro-

duces models matching the geometry of the data, plays a complementary role to

persistent homology. For example, Carlsson et al. in [7] use persistent homology

to identify an image processing data set with rank(H0) = 1 and rank(H1) = 5,

where Hi denotes the i-th homology group. There are many spaces satisfying

these homological constraints, including a wedge sum of five circles. Carlsson

et al. propose a particular space: a model containing three circles with four in-

tersection points (Figure 10). In Section 5.2 we use our method to obtain this

three circle model directly (Figure 11). Our model contains only four 0-cells

and eight 1-cells, which is much fewer than the number of simplices needed in

a C̆ech, Vietoris–Rips, alpha, or witness complex reconstruction. Applications

of persistent homology often study only one superlevel set of density at a time

due to the difficulty of multidimensional persistent homology [8], but exceptions

employing kernel density estimators include [9], [17], [4].

There are a variety of adaptations of Morse theory to combinatorial [18] or

applied settings. Closely related to the Morse complex that we consider is the

Morse-Smale complex, which can be thought of as the intersection of the two

Morse complexes for Morse function f and −f . The Morse–Smale complex can

be efficiently computed for a function defined on a triangulated 2-dimensional

or 3-dimensional domain [14], [3], [23], [22]. Furthermore, in [20], [21] a Morse-

Smale complex is statistically approximated from a high-dimensional scalar field.

A difference between [20], [21] and our setting is that their input is not a point

cloud but instead a point cloud equipped with a function value at each point,

thought of as a finite sampling from a scalar field. A second difference is that

the scalar function in [20], [21] is treated symmetrically, meaning that minima

are as important as maxima, and the cells in the complex encode how one can
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descend from a maximum down to a minimum. Saddle points are not recovered,

and any max-min pair is connected by at most one descending path. In our

NEB approach, we equip the point cloud with a density function but we are

not interested in the regions where this function is small or attains minima.

Saddle points are of primary interest, as they correspond to high-density cells

between maxima, and we are interested in detecting when there are multiple high-

density paths between two maxima, for example as in Figure 11 (center). For

an application of the nudged elastic band method to the study of configuration

spaces of hard disks, see [6].

3. Background

We briefly introduce three topics: CW complexes, Morse theory, and the

nudged elastic band method.

3.1. CW complexes. A CW complex is a type of cell complex. For k

a nonnegative integer, a k-cell is the closed ball {y ∈ Rk | ‖y‖ ≤ 1} of dimen-

sion k. So a 0-cell is a point, a 1-cell is a line segment, a 2-cell is a disk, etc.

A CW complex W is a topological space formed by the following inductive proce-

dure. The 0-skeleton W (0) of W is a set of 0-cells. The 1-skeleton W (1) is formed

by gluing the endpoints of 1-cells to the 0-skeleton, and can be thought of as

a graph. Inductively, we form the k-skeleton W (k) by gluing the boundaries of

k-cells to the (k−1)-skeleton W (k−1). If W is a finite-dimensional CW complex,

then this process terminates and we have W = W (k) for some k. See Figure 3

for an example and [25] for further details.

Figure 3. A stick figure represented as a CW complex containing eight
0-cells, eight 1-cells, and one 2-cell. The 0-skeleton is on the left, the 1-

skeleton is in the center, and the full 2-skeleton is on the right.

3.2. Morse theory. The following introduction to Morse theory is infor-

mal; see [32] for a thorough treatment. Suppose M is a compact manifold of

dimension d and Morse function f : M → R is smooth with non-degenerate

critical points m1, . . . ,mk ∈M satisfying

a0 < f(m1) < a1 < f(m2) < . . . < ak−1 < f(mk) < ak.



252 H. Adams — A. Atanasav — G. Carlsson

The index λi of critical point mi is the number of linearly independent directions

around mi in which f decreases. So a minimum has index 0, a maximum has in-

dex d, and a saddle point has index between 1 and d−1. Let Ma = f−1
(
(−∞, a]

)
be the sublevel set corresponding to a ∈ R. Morse theory tells us that each Mai is

homotopy equivalent to a CW complex with one λi-cell for each critical point mi.

In particular, Mai is homotopy equivalent to Mai−1
with a single λi-cell attached.

For instance, Ma1 is homotopy equivalent to a point and is obtained from Ma0 ,

the emptyset, by attaching a single 0-cell. Figure 4 contains an example.

=
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Figure 4. Morse theory example. (Top) Manifold M is a torus and func-

tion f : M → R is the height function. There are four critical points
m1, . . . ,m4 with indices 0, 1, 1, and 2, respectively. Let a0 < f(m1) <

a1 . . . < f(m4) < a4. (Bottom) Moving from left to right, we attach cells

of dimension 0, 1, 1, and 2 in order to obtain Mai from Mai−1 .

Though Morse theory is traditionally stated in terms of sublevel sets, there

is an equivalent formulation in terms of superlevel sets. The superlevel sets

of f correspond to the sublevel sets of −f , so mi is a critical point of f with

index λi if and only if mi is a critical point of −f with index d− λi. It follows

that superlevel set Mai−1 = f−1
(
[ai−1,∞)

)
is obtained from Mai by attaching

a single cell of dimension d− λi.

3.3. Nudged elastic band. To find saddle points in a high-dimensional

space we use the nudged elastic band method (NEB) from computational chem-

istry [30], [26], [27], [37]. Consider a chemical system, e.g. several molecules,

whose space of states is parametrized by Rn and is equipped with a differen-

tiable map E : Rn → R encoding the potential energy of the system at each

state. The local minima of E correspond to stable states, and chemists are in-

terested in finding reaction paths between two stable states. A reaction path is

a minimum energy path, whose points minimize the energy E in all directions

perpendicular to the path, and which passes through at least one saddle point

of index one.

The nudged elastic band method is used to find minimum energy paths.

An initial piecewise linear path (called a band) connecting two local minima of
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Figure 5. (Left) An initial band connecting two local minima. (Right)

A minimum energy path found using the nudged elastic band method.

energy E is chosen, and forces move the band towards a minimum energy path.

A gradient force moves each node in the band along the component of −∇E
perpendicular to the band, and a spring force ensures that adjacent edges of the

band are of approximately equal length, so that the band does not tear apart.

More explicitly, the gradient and spring forces appear as the first two terms on

the right hand side of equation (4.1) in Section 4.3. Extra forces can be added

to smoothen or dampen the motion of the band. Once the forces have stabilized,

the convergent band is the approximation to the minimum energy path found

by NEB.

4. Method

We suppose data set X ⊂ Rn is a finite sampling from an unknown proba-

bility density function g : Rn → [0,∞). We are interested in the regions of high

density in the data set, and therefore would like to understand the profile of

superlevel sets

Y a = g−1([a,∞)) = {y ∈ Rn | g(y) ≥ a}

containing all points in Rn with density at least a ∈ [0,∞). The superlevel sets

Y a encode how the dense regions of data set X are organized.

We follow the ideas of Morse theory to build CW complex models Za approx-

imating the superlevel sets Y a. First we use X to build a differentiable density

estimate f : Rn → [0,∞) approximating the unknown probability density func-

tion g. The 0-cells of our models will be local maxima of f . The 1-cells will be

paths of high density between 0-cells, found using NEB. To find dense 2-cells

with boundaries in the 1-skeleton we use an adaptation of NEB. Given a cell

e ⊂ Rn, let its density be inf{f(y) | y ∈ e}. We define Za to be the union of the

cells with density greater than or equal to a.
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Note that for a ≥ b we have the inclusion of superlevel sets Za ⊂ Zb. A fea-

ture of our approach is that we compute the CW complex model Za for many

values of a at once. This allows the user to observe how Za changes as a de-

creases. In accordance with the idea of topological persistence [15], [43], [13],

knowing Za over a range of values for a gives a better picture of the data set

than knowing Za for any single choice of a. For example, in Section 5.1 we pro-

duce three different models – four vertices, a square loop, and a square disk – for

a social network data set (Figure 8). Each model represents the data at a differ-

ent density threshold, and together they provide a more complete understanding

than any single CW complex model alone. In addition, our nested output can be

used to measure the significance of topological features. Suppose a 1-cell with

density a appears in Za to form a new loop, and suppose a 2-cell with density

b ≤ a appears in Zb to fill this loop to a disk. Then a− b measures how long this

loop persists, and if a− b is large then this loop is likely a significant feature of

the data set, but if a− b is small then the loop may be the product of noise.

Several steps in our approach can be treated in a variety of ways. To name

a few, we estimate density, find local maxima, generate random initial bands,

simulate bands according to a formulation of NEB, and cluster convergent bands.

We use simple methods to handle each of these steps, but we leave open the

possibility of substituting more sophisticated methods. Our approach depends

on the choice of several parameters, and the main parameter which we find

necessary to tune is the standard deviation used to build a density estimator.

We use a consistent choice for all other parameters across all of our data sets,

which suggests the other parameters may not be as important to tune.

4.1. Density estimation. From data set X ⊂ Rn, we build a differentiable

density estimator f : Rn → [0,∞) approximating the unknown underlying den-

sity as follows. Let ψx,σ : Rn → [0,∞) be the probability density of a normal

distribution centered at x ∈ Rn with standard deviation σ > 0. More explicitly,

the n×n covariance matrix contains σ2 along the diagonal and 0 elsewhere. We

use the kernel estimator f(y) = |X|−1
∑
x∈X

ψx,σ(y). See [38] for other possible

estimators, including different kernels or adaptive choices of standard deviation.

Bandwidth estimators often aim to minimize the L2 error, but this is not neces-

sarily optimal for recovering the topology of sublevel sets. We regard standard

deviation σ as the main parameter the user must tune: one may increase σ to

smoothen f or decrease σ to expose local detail.

4.2. 0-cells. To find the 0-cells of our model, we pick a uniformly random

sample of points from X and flow each along the gradient of f towards a local

maxima using the mean shift iterative procedure [19], [10]. If the size of X is

greater than 2,000 than we select 2,000 uniformly random points from X, and if
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the size of X is at most 2,000 then we use each point of X as a seed for mean

shift. Let y0 ∈ X be one of the random initial points. We define a sequence

y0, y1, . . . by setting yi+1 = m(yi), where the mean shift function m : Rn → Rn

is defined by

m(y) =

∑
x∈X

ψx,σ(y)x∑
x∈X

ψx,σ(y)
.

The vector m(y)−y is proportional to the normalized gradient ∇f(y)/f(y), and

the yi converge to a local maxima of f . It is necessary to cluster the conver-

gent points to identify which represent the same 0-cell, and we use single-linkage

clustering. Since we are interested in CW complex models with more than one 0-

cell, we select the clustering threshold parameter to lie in longest interval where

a constant number of clusters greater than one is obtained. For the social net-

work, optical image, range image, and optical flow examples in Sections 5.1–5.4,

the longest interval with a constant number of clusters constitutes 66.0%, 97.8%,

99.6%, and 90.6% of the total parameter range with more than one cluster, re-

spectively. We select the densest member from each cluster as a 0-cell in our

model.

4.3. 1-cells. To find the 1-cells of our model we use NEB, which we now

describe in our data analysis setting. Our formulation is similar to [30], [26],

[27], [37]. A piecewise linear band is given by a list of nodes v1, . . . , vN , with

endpoints v1 and vN in our set of 0-cells. Forces act on the intermediate nodes vi
with 1 < i < N while the endpoints remain fixed. The first task is to approximate

a unit tangent vector τi at each intermediate node. Define u+i = vi+1 − vi and

u−i = vi − vi−1. We use a näıve tangent estimate τi = (u+i + u−i )/‖u+i + u−i ‖
given by averaging, though more elaborate tangent estimators may be used [26].

At each intermediate node vi we define a total force

(4.1) Fi = c∇f(vi)|⊥ + (‖u+i ‖ − ‖u
−
i ‖)τi + smoothing.

The expression ∇f(vi)|⊥ is the component of ∇f(vi) perpendicular to the tan-

gent τi, and is called the gradient force. The gradient constant c adjusts the

strength of the gradient force. To normalize with respect to the maximum gra-

dient of the normal distribution, we set

c =

(
sup
y∈Rn

‖∇ψ~0,σ(y)‖
)−1

= (σ
√

2π)n
√
e.

The term (‖u+i ‖ − ‖u
−
i ‖)τi in (4.1) is the spring force. This name is slightly

misleading, as the spring force neither enforces a natural spring length on each

edge nor minimizes the length of each edge. Instead, the spring force aims to

equate the lengths of adjacent edges in the band.
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The smoothing term in (4.1) is a force added to prevent kinks, which hinder

convergence, from forming in the band. Let θi be the angle between vectors u+i
and u−i . Typically these vectors are close to parallel and θi is close to zero. Let

0 ≤ α < β ≤ π be fixed angles, and let hα,β : [0, π] → [0, 1] be a function which

is zero for x ≤ α, one for x ≥ β, and increasing continuously from zero to one as

x increases from α to β. We define our smoothing force to be hα,β(θi)(u
+
i −u

−
i ),

which moves vi in order to decrease θi whenever θi > α. In this work we set

hα,β(x) =


0 if x ≤ α,
1

2

(
1− cos

(
π
x− α
β − α

))
if α < x < β,

1 if x ≥ β,

with α = π/6 and β = π/2. We obtain the same CW complex models for

the social network, optical image, range image, and optical flow examples in

Sections 5.1–5.4 using the smoothing force in [30], although occasionally kinks

appear in the bands prior to convergence.

Evolving the band amounts to numerically solving the system of first order

differential equations v′i = Fi; see Figure 6. In the chemistry setting it is appro-

priate to set acceleration proportional to the gradient of the potential energy.

In our setting we do not view ∇f as a force in the literal sense but only as an

indication of which direction to move in order to maximize f , and hence we use

the first derivative v′i rather than the second derivative. Nevertheless, we have

also had success with the second order equation and do not dismiss its use.

Figure 6. A sample 1-cell trial on a small data set. The initial band is in

red and the convergent 1-cell is in blue. The lines which fade from yellow

to green trace the paths of the intermediate nodes.

Between two 0-cells p and q in our model there may be no 1-cells, a single

1-cell, or multiple 1-cells. To find the 1-cells we generate a sample of initial

bands joining p and q, as described in Appendix B. We evolve each band until it

converges and discard non-convergent bands. We also discard convergent bands

which pass too close to any other 0-cell r 6= p, q, as such a band should instead
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appear as the concatenation of two others. To identify which convergent bands

represent the same 1-cell, we perform single-linkage clustering on the bands with

threshold parameter equal to 10% of the diameter of the data set. The social

network, optical image, range image, and optical flow examples in Sections 5.1–

5.4 are quite stable with respect to this choice – we obtain identical results for

any percentage of the diameter between 1% and 45%. Our metric dp,q,N on bands

of N nodes starting at p and ending at q assigns to the two bands v1, . . . , vN and

ṽ1, . . . , ṽN the distance dp,q,N ({vi}, {ṽi}) = (N − 2)−1
N−1∑
i=2

d(vi, ṽi). From each

cluster we select the band with the highest density to represent the corresponding

1-cell. We estimate a band’s density as min{f(v1), . . . , f(vN )}, though one could

obtain a more accurate estimate by subdividing the band further or by using the

climbing image method of [27].

We make the following consistent parameter choices for all of the data sets.

We include N = 11 nodes in the bands and say that a band has converged

when (N − 2)−1
N−1∑
i=2

‖v′i‖ < 10−4. Increasing N or decreasing the convergence

threshold improves the maximum density path approximation at the expense of

computation time, but does not alter our CW complex models.

4.4. Higher-dimensional cells. In order to search for higher-dimensional

cells, one can imagine adapting NEB. In Appendix C we describe a näıve ap-

proach along with its weaknesses. We are interested in better methods, but

further work is needed.

5. Results

We apply our method to the four data sets in Table 1. From the social

network, optical image, and range image data sets we extract small cell complexes

which efficiently model the dense regions of the data. Moreover, we identify new

topological structure in the data set of optical flow patches. See Appendix A for

social optical range optical

network image image flow

size of data set X ⊂ Rn 1,127 15,000 15,000 15,000

dimension n 5 8 24 16

standard deviation (1) σ 0.45 0.20 0.35 0.30

Table 1. Data set information

(1) This is not a property of the data set, but instead the standard deviation we use to

estimate density.
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further information on the data sets. Our code is available along with several of

the data sets at the following webpage: http://code.google.com/p/neb-tda.

5.1. Social network. The National Longitudinal Study of Adolescent

Health is a school-based study of American youth. In 1994–1995 a sample of

high schools and middle schools was chosen, and when possible each high school

was paired with a sister middle school from the same community. The students

from each school were asked to list up to five of their closest female friends who

attend their school or their sister school, and likewise for their male friends.

In [33], Moody creates network graphs from the survey data. Each student

is represented by a vertex, and the edge between two students exists if each

student listed the other as a friend. We analyze the graph for the students

from “Countryside High School,” a pseudonym used by Moody, and its sister

middle school. Of the 1,147 students from this community who participated in

the survey, 20 students shared no connections with any others and were removed

from the graph.

Figure 7 illustrates the following interesting structure in this graph. Most of

the students can be placed into one of four groups, containing a majority of white

high schoolers, nonwhite high schoolers, white middle schoolers, or nonwhite

middle schoolers. There are many friendships between students in the same

group. In addition, there are a significant number of friendships between groups

of the same school or race category. However, their are very few friendships

between groups with neither category in common.

Figure 7. Social network for “Countryside High School” and its sister
middle school. (Left) Cross vertices are students from the middle school

and circle vertices are students from the high school. (Right) Cross vertices
are white students and circle vertices are nonwhite students. A handful of
students are without race data and their vertices are left unmarked.

We illustrate how our method can recover relevant structure in this graph.

The shortest path distance between vertices v and w is the fewest number of

edges one must cross to travel from v to w. To represent the graph as a point

cloud we use stress majorization, an optimization strategy in multidimensional

scaling [11], to embed the vertices of the graph as a data set X ⊂ R5 in a manner

distorting the shortest path metric as little as possible. The choice of embed-

ding dimension is not critical in this example — we have tested our method on
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embeddings in Rn for 2 ≤ n ≤ 8 and obtained the same CW complex models,

where higher choices of n allow for smaller distortion of the shortest path metric.

Each point x ∈ X corresponds to a student, and we regard the resulting set X

as our input data set.

Our method finds four 0-cells, which correspond to the four groups of stu-

dents. We find four 1-cells which form a square loop. The 0-cells have densities

in [1.69 ·10−2, 2.02 ·10−2] and the 1-cells in [1.07 ·10−2, 1.54 ·10−2] (2). We find

a 2-cell filling the loop with density 0.79 · 10−2. Recall CW complex Za is de-

fined to be the union of the cells with density greater than or equal to a, and see

Figure 8 for three such CW complex models. For a ∈ (1.54 · 10−2, 1.69 · 10−2)

the model Za consists of four 0-cells. Hence we recover the groupings of stu-

dents based on school and race. For a ∈ (0.79 · 10−2, 1.07 · 10−2) the model

Za is a square. The square reveals that groups sharing either the school or race

category are more closely linked than groups sharing neither. This suggests that

when making friends it is more difficult to cross two cultural barriers than one.

For a < 0.79 · 10−2 the model Za fills to a disk, which is an appropriate rep-

resentation of the data at a sufficiently coarse scale. Note that this increasing

sequence of CW complex models provides a better understanding of the data set

than any single model alone.

Figure 8. Social network data, projected to a plane using principal compo-
nent analysis. Our CW complex model Za grows as the density threshold

a decreases. From left to right, we have four 0-cells, a square loop, and

a disk.

5.2. Optical image patches. The optical image database collected by van

Hateren and van der Schaaf in [41] contains a variety of indoor and outdoor

scenes. From this database, Lee et al. in [31] select a large random sample of 3×3

patches, each thought of as a point in R9. The coordinates are the logarithms of

grayscale pixel values, and they use the logarithm so that the relative reflectance

of an object is invariant under changes in lighting intensity. Lee et al. define

a norm measuring the contrast of a patch and select the high-contrast patches.

They normalize each patch by subtracting from each pixel the average of the nine

(2) Occasionally we also find a 0-cell with density below 6 ·10−4, but due to its low density

value it does not affect our analysis.
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coordinates, and by dividing by the contrast norm. They change to the Discrete

Cosine Transform (DCT) basis {e1, . . . , e8}, which maps the patches to the unit

sphere S7 ⊂ R8. Note in Figure 9 that e1 and e2 are horizontal and vertical

linear gradients while e3 and e4 are horizontal and vertical quadratic gradients.

Let M be the resulting set of high-contrast, normalized, 3 × 3 patches. Each

point of S7 is close to some point of M, but the density of M varies widely.

Figure 9. (Top) Sample optical images from the van Hateren database.

(Bottom) Vectors e1, e2, . . . , e8 form the 3× 3 DCT basis.

Carlsson et al. in [7] use persistent homology to study M. Using a family

of density estimators they select a family of dense core subsets from M. They

apply persistent homology, and for a global estimate of density their core subset

has rank(H0) = rank(H1) = 1, where Hi denotes the i-th homology group. This

core subset lies near the primary circle {αe1 + βe2 | (α, β) ∈ S1} containing

linear gradient patches at all angles. With a more local estimate of density, the

core subset has rank(H0) = 1 and rank(H1) = 5. Carlsson et al. identify a three

circle model matching this homology profile and the data; see Figure 10. This

is a supervised step. In addition to the primary circle, the three circle model

contains two secondary circles, {αe1 + βe3 | (α, β) ∈ S1} and {αe2 + βe4 |
(α, β) ∈ S1}, which include quadratic gradients in the horizontal or vertical

direction. The primary circle reflects nature’s preference for linear gradients

in all directions, and the secondary circles reflect nature’s preference for the

horizontal and vertical directions.

For our analysis we select a random input data set X ⊂M of size 15,000. We

find four 0-cells located near the four most common patches ±e1 and ±e2. Be-

tween each of the four 0-cell pairs {e1, e2}, {e2,−e1}, {−e1,−e2}, and {−e2, e1}
we find a quarter-circular 1-cell. Together these form the primary circle. Be-

tween the pair {e1,−e1} we find two semicircular 1-cells forming the horizontal

secondary circle, and between {e2,−e2} we find two semicircular 1-cells forming
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Figure 10. Three circle model. The solid outer circle is the primary circle

and contains linear gradients. The dotted and dashed inner circles are the

horizontal and vertical secondary circles which contain quadratic gradients.
Each secondary circle intersects the primary circle twice, but the secondary

circles do not intersect each other.

the vertical secondary circle. The 0-cells have densities in [2.11, 2.36] (3), the pri-

mary circle 1-cells in [1.17, 1.28], and the secondary circle 1-cells in [0.33, 0.38].

For a ∈ (1.28, 2.11) our model Za is the four most common patches, for a ∈
(0.38, 1.17) it is the primary circle, and for a < 0.33 it is the three circle model

(Figure 11). Indeed, in an unsupervised fashion we obtain the minimal cellular

decomposition of the three circle model that is geometrically accurate.

Figure 11. (Left) Optical image patches X ⊂ R8 and primary circle com-

plex Za for a ∈ (0.38, 1.17), projected to the e1e2 plane. (Center) Three

circle model Za for a < 0.33, projected to the plane spanned by e1 + e4/4
and e2 + e3/4 so that the secondary circles are visible. (Right) The densest

8,500 points of X, projected to the e1e2 plane. The primary circle appears

clearly and the projections of the secondary circle patches form a faint
cross.

Carlsson et al. discover a 2-dimensional Klein bottle surface that contains

the three circle model as its backbone and which is a good example of how

(3) Occasionally we also find a 0-cell with density below 0.08, but due to its low density

value it does not affect our analysis.
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data set models can not only improve qualitative understanding but also lead

to applications. As a low-dimensional manifold the Klein bottle can be used in

image compression schemes [7], and in addition the Klein bottle model has been

used to identify and analyze optical image textures [34]. In order to identify

the Klein bottle using persistent homology, Carlsson et al. add a set Q ⊂M of

optical image patches to their data set, where “the size of Q can be thought of

as a measure of the failure of the density function to cut out the 2-dimensional

manifold” [7]. As this is a first exploration of nudged elastic band in topological

data analysis, we do not add any such points Q in order to try to corroborate

the Klein bottle model.

5.3. Range image patches. A range image is captured by a laser scanner,

and each pixel in a range image stores the distance between the laser scanner

and the nearest object in the corresponding direction. In [31], Lee et al. select

a large random sample of log-valued, high-contrast, normalized, 3×3 range image

patches from the Brown database, which contains a variety of indoor and outdoor

scenes. They observe that the patches cluster near binary patches, where the

binary values correspond to foreground and background.

Figure 12. (Top) Sample range images from the Brown database. (Bot-

tom) Vectors e1 and e5 from the 5×5 DCT basis are horizontal and vertical

linear gradients.

Though the largest clusters are arranged in the shape of a circle, the 3 × 3

binary patches are too coarse to fill the full circle. In [1], Adams and Carlsson

consider 5 × 5 patches, preprocessed in a manner similar to [31]. They obtain
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a large sample R of high-contrast, normalized, 5× 5 range image patches. The

5 × 5 DCT basis now contains 24 vectors {e1, . . . , e24}, where e1 and e5 are

horizontal and vertical linear gradients (Figure 12). With persistent homology

they find that a dense core subset of R has rank(H1) = 1, and they propose the

range primary circle model {αe1 + βe5 | (α, β) ∈ S1} to match this homology.

Figure 13. (Left) Range image patches X ⊂ R24 and range primary circle

Za for a ∈ (0.39, 0.51), projected to the e1e5 plane. (Right) The densest

9,000 points of X.

For our Morse theory approach, we pick a random subset X ⊂ R of size

15,000. We find four 0-cells near ±e1 and ±e5. Three of these 0-cells have

densities in [0.59, 0.75] while the 0-cell near e1 has density 1.47. This reflects

the fact that many range patches are shots of the ground and hence are near

the horizontal linear gradient given by e1. We find four quarter-circular 1-cells

forming a loop with densities in [0.51, 0.64], and a 2-cell filling the loop with

density 0.39. For a ∈ (0.75, 1.47) our model Za is the single 0-cell near DCT

basis vector e1, and for a ∈ (0.39, 0.51) our model Za is the range primary circle

(Figure 13).

5.4. Optical flow patches. In this example we identify new topological

structure in an optical flow data set. A video records a sequence of images, and

its optical flow is the apparent motion in the sequence of images. At each frame,

the optical flow is represented by a vector field with one vector per pixel that

points to where that pixel appears to move for the subsequent frame. No instru-

ment measures optical flow directly, and estimating optical flow from a video

is an ill-posed problem. However, Roth and Black in [35] create a database of

ground-truth optical flow by pairing range images with camera motions and by

calculating the produced optical flow. The range images are from the Brown

database, and the camera motions are retrieved from a database of videos from

hand-held or car-mounted cameras.

With preprocessing steps analogous to [31] we create a large sample F of high-

contrast, normalized, 3 × 3 optical flow patches. We change to the DCT basis
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{eu1 , . . . , eu8 , ev1, . . . , ev8}, where the superscript u denotes flow in the horizontal

direction and v denotes the vertical direction; see Figure 14. We select X to be

a random subset of F of size 15,000.

Figure 14. (Top) Two sample optical flows from the Roth and Black data-

base. Horizontal components are on the top and vertical components are
on the bottom. White corresponds to flow in the positive direction (+x

or +y) and black corresponds to the negative direction. (Bottom) Vector

fields eu1 , eu2 , ev1 , and ev2 from the 3 × 3 optical flow DCT basis. Compare
with the patches e1 and e2 in Figure 9.

We apply our method and find four 0-cells near ±eu1 and ±eu2 and four

quarter-circular 1-cells, all with densities in [0.71, 2.79]. These cells form a loop.

We find a 2-cell filling the loop with density 0.39, and hence for a ∈ (0.39, 0.71)

our model Za recovers the horizontal flow circle near {αeu1 + βeu2 | (α, β) ∈ S1}
(Figure 15). When applying a camera motion to a range image, the apparent

motion of the foreground is faster than that of the background. In particular,

applying rightward horizontal camera motion to the linear 3 × 3 range patch

αe1 + βe2 (with e1 and e2 from the 3× 3 DCT basis) produces the optical flow

patch αeu1 + βeu2 , and applying leftward horizontal camera motion to this same

range patch produces the optical flow patch −αeu1 − βeu2 . Hence the horizon-

tal flow circle can be obtained by applying horizontal camera motion to range

patches from the 3 × 3 analogue of the range primary circle. Also, one expects

horizontal camera motion to be more common than vertical motion in hand-held

and car-mounted videos. Thus the topology of the optical flow data set combines

important patterns from both the range image and camera motion databases:

the horizontal flow circle can be interpreted as the image of the range primary

circle after applying common horizontal camera motions.
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Figure 15. (Left) Optical flow patches X ⊂ R16 and horizontal flow circle

Za for a ∈ (0.39, 0.71), projected to the eu1 e
u
2 plane. (Right) The densest

6,000 points of X.

Remark 5.1. Any method in data analysis must tolerate noisy data points,

namely points x ∈ X with low density. One may try to remove noisy points

from the data set, but in general it is not easy to remove noise without also

removing features. Because we use data set X primarily to build density estimate

f : Rn → R, we believe that noise which is sparse enough to not significantly

affect f will not significantly affect our CW complex output. As evidence for

this claim, consider the large samples M, R, and F of optical image, range

image, and optical flow patches. Both [7] and [1] remove noise from M and R
by studying only core subsets of points with densities in the top 30%. However,

in this paper we work with random subsets of M and R containing both dense

and noisy points. As shown in Figures 11, 13, and 15, we extract small CW

complex models without first attempting to discard noisy data points.

6. Conclusion

We have introduced a method for finding structure in high-dimensional Eu-

clidean data sets. Following Morse theory, we use the nudged elastic band

method to sample cells from the analogue of the Morse complex determined

by the density function. We produce a nested family of CW complex models

representing the dense regions of the data. We test the approach on social net-

work, optical image, and range image data sets and find compact complexes

revealing important nonlinear patterns. Moreover, we discover new topological

structure, the horizontal flow circle, in a data set of optical flow patches.

Appendix A. Additional data set information

In this appendix we provide further information about each of the data sets.

Our Java code and the optical image, range image, and optical flow data sets

are available at the following webpage: http://code.google.com/p/neb-tda.

A.1. Social network. More information on the social network data set is

available at the Adolescent Health Study webpage http://www.cpc.unc.edu/
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projects/addhealth. To obtain a copy of the non-linkable Adolescent Health

Network Structure files, please contact addhealth@unc.edu.

A.2. Optical image patches. The optical image database collected in [41]

contains 4,167 grayscale images from indoor and outdoor scenes, each 1020×1532

pixels (Figure 9). More details and the database itself are available at http:

//bethgelab.org/datasets/vanhateren/. From this database, Lee et al. in

[31] create a set M of high-contrast, normalized, 3 × 3 patches through the

following preprocessing steps.

(1) Lee et al. select a large random sample of 3×3 patches with coordinates

the logarithms of grayscale pixel values.x1 x4 x7
x2 x5 x7
x3 x6 x9


Each patch is represented by a vector x = (x1, . . . , x9)T ∈ R9.

(2) Lee et al. define a norm ‖ ‖D measuring the contrast of a patch. Two

coordinates xi and xj of x are neighbors, denoted i ∼ j, if the corre-

sponding pixels in the 3× 3 patch are adjacent. Let

‖x‖D =

√∑
i∼j

(xi − xj)2.

Lee et al. select the patches with contrast norm in the top 20% of their

sample.

(3) Lee et al. normalize each patch by subtracting the average coordinate

value and by dividing by the contrast norm. This maps the patches to

a 7-dimensional ellipse.

(4) Lee et al. change to the Discrete Cosine Transform (DCT) basis {e1, . . . ,
e8} for 3× 3 patches. The basis vectors are normalized to have contrast

norm one, and so this maps the patches to a 7-dimensional sphere.

Let M be the resulting set of high-contrast, normalized, 3 × 3 optical patches.

Three dense core subsets from M are studied in [7] using persistent homology.

In this paper we select a random data set X ⊂M of size 15,000.

A.3. Range image patches. The Brown range image database by Lee

and Huang is a set of 197 range images from indoor and outdoor scenes, mostly

444 × 1440 pixels (Figure 12). The operational range for the Brown scanner

is typically 2–200 meters, and the distance values for the pixels are stored in

units of 0.008 meters. The database can be found at the following webpage:

http://www.dam.brown.edu/ptg/brid/index.html.

From the Brown database we obtain a space of range image patches through

the following steps, which are similar to the procedures in [31], [1].
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(1) We randomly select about 4·105 size 5×5 patches from the images in the

database. Each patch is represented by a vector x ∈ R25 with logarithm

values.

(2) We compute the contrast norm

‖x‖D =

√∑
i∼j

(xi − xj)2

of each patch and select the patches with contrast norm in the top 20%

of the entire sample.

(3) We subtract from each patch the average of its coordinates and divide

by the contrast norm.

(4) We change to the DCT basis {e1, . . . , e24} for 5× 5 patches, normalized

to have contrast norm one. This maps the patches to a 23-dimensional

sphere.

Let R be the resulting set of high-contrast, normalized, 5× 5 range patches.

Our data set is a random subset X ⊂ R of size 15,000.

A.4. Optical flow patches. The optical flow database by Roth and Black

(see [35]) contains 800 optical flow fields, each 250 × 200 pixels (Figure 14).

This ground-truth optical flow is generated by pairing range images from the

Brown range image database with camera motions. The camera motions are

extracted from a database of 67 videos from hand-held or car-mounted video

cameras, each approximately 100 frames long, using boujou software by 2d3 Ltd.

available at http://www.2d3.com. The Roth and Black database is available

at http://www.gris.informatik.tu-darmstadt.de/~sroth/research/flow/

downloads.html.

From the Black and Roth database we create a space of optical flow patches,

and our preprocessing is similar to that of [31].

(1) We randomly choose 4 ·105 size 3×3 optical flow patches from the Roth

and Black database. Each patch is a matrix of ordered pairs, where ui
and vi are the horizontal and vertical components, respectively, of the

flow vector at pixel i.(u1, v1) (u4, v4) (u7, v7)

(u2, v2) (u5, v5) (u8, v8)

(u3, v3) (u6, v6) (u9, v9)


We define u = (u1, . . . , u9)T and v = (v1, . . . , v9)T to be the vectors of

horizontal and vertical flow components. We rearrange each patch to be

a vector

x =

(
u

v

)
∈ R18.
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(2) We compute the contrast norm

‖x‖D =

√∑
i∼j
‖(ui, vi)− (uj , vj)‖2

for all patches. We select the patches with contrast norm in the top 20%

of the entire sample.

(3) We normalize the patches to have zero average flow. More explicitly,

given a patch x, let u ∈ R9 have each entry equal to 1
9

9∑
i=1

ui, the average

of the horizontal components. Let v be defined similarly. We replace

each patch x with (
u− u
v − v

)
.

We then divide each patch by its contrast norm.

(4) We change to the DCT basis {eu1 , . . . , eu8 , ev1, . . . , ev8} ⊂ R18 for 3 × 3

optical flow patches, where

eui =

(
ei−→
0

)
and evi =

(−→
0

ei

)
.

This maps the patches to a 16-dimensional sphere.

Let F be the resulting set of high-contrast, normalized, 3 × 3 optical flow

patches. Our data set is a random subset X ⊂ F of size 15,000.

Appendix B. Initial bands

Let p and q be distinct 0-cells. Our method for generating the initial bands

between p and q depends on whether data set X is a general data set in Rn or

whether X is normalized to lie on a unit sphere Sn−1 ⊂ Rn.

For a general data set X ⊂ Rn, we pick a uniformly random vector y from

the set of all unit vectors perpendicular to p− q, which is a sphere of dimension

n − 2. We also pick r ∈ [0, d(p, q)] uniformly randomly. The resulting initial

band is N evenly distributed nodes along the circular arc (or straight line, with

probability zero) between the points p, (p+ q + ry)/2, and q.

If X is normalized to lie on a unit sphere Sn−1 ⊂ Rn, we generate initial

bands lying near Sn−1. Though p and q are near dense regions of X they need

not lie in X nor in Sn−1. Let p̂ = p/‖p‖ and q̂ = q/‖q‖. We pick a uniformly

random vector y 6= p̂, q̂ in Sn−1. The plane defined by y, p̂, and q̂ intersects Sn−1

in a circle. Let p̂ = v̂1, . . . , v̂N = q̂ be the unique band that is evenly-spaced

along this intersection circle, that starts at p̂, that ends at q̂, and that does not

pass through y. We define our initial band to be p = v1, . . . , vN = q, where

vi =
(N − i)‖p‖+ (i− 1)‖q‖

N − 1
v̂i.
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Appendix C. Higher-dimensional cells

One can imagine adapting the NEB method to search for higher-dimensional

cells. Suppose for k > 1 that we have obtained the (k − 1)-skeleton of a CW

complex model. Now given an initial k-cell, we would like to move it towards

a maximum density k-cell, and we describe a näıve approach. We model a k-

cell by a graph G = (V,E) that is the 1-skeleton of a regular CW complex

homeomorphic to a k-cell. We choose an attaching map from the boundary of

the k-cell to the (k− 1)-skeleton of the CW complex model; this fixes the nodes

in V that lie in the boundary of the k-cell. Given a node α ∈ V , let vα ∈ Rn

denote its position and let Vα = {β ∈ V | {α, β} ∈ E} denote its set of incident

vertices. We estimate the k-dimensional tangent space at vα to be the span of

the first k components of a principal component analysis on {vβ − vα | β ∈ Vα}.
If α is not a boundary node, then we define

Fα = c∇f(vα)|⊥ +
∑
β∈Vα

(vβ − vα)

to be the force at vertex α. As before, ∇f(vα)|⊥ is the component of ∇f(vα)

perpendicular to the tangent space and is called the gradient force. Gradient

constant c adjusts the strength of the force. The term
∑
β∈Vα

(vβ − vα) is the

spring force. We numerically solve the system of first order differential equations

v′α = Fα.

We point out several weaknesses in the straightforward approach above.

• The spring force does not generalize the dimension k = 1 case.

• The gradient forces and spring forces do not both go to zero; instead,

they balance against one another. This means that the cell does not

converge exactly to the maximum density cell. A possible remedy is to

project the spring force to the tangent space. One may then need to

add an appropriate smoothing force to prevent kinks from forming in

the cell.

• It may be preferable to have forces depend not only on the underlying

1-skeleton graph of the k-cell but also on its higher dimensional cells.

• One may want an adaptive representation of a cell whose triangulation

changes as the cell moves. Otherwise, the choice of an initial triangula-

tion may affect the subsequent motion of the cell.

• If the (k − 1)-skeleton of the CW complex is complicated, then it is not

clear which attaching maps to choose as the potential boundaries for

k-cells.

We are interested in improved generalizations of NEB to higher-dimensional cells.

Nevertheless, we use this approach to search for 2-cells in of our data sets.

We use a particular CW complex homeomorphic to a 2-cell, containing 201
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vertices, 400 edges, and 200 2-cells, whose 1-skeleton is a web-shaped graph with

20 nodes on each of 10 concentric rings (Figure 16). We place the boundary

nodes evenly-spaced on a chosen loop in the 1-skeleton; these nodes remain fixed.

For the initial location of the 2-cell, we place the center node at the average

of the boundary nodes, and we linearly interpolate between the boundary and

center to place all remaining nodes. We estimate a convergent cell’s density as

minα∈V f(vα). See Figure 16 for the resulting 2-cells.

Figure 16. The 2-cells in the data sets. (Top) Social network data, pro-

jected to a plane using principal component analysis. (Bottom left) Range
image patches, projected to the e1e5 plane. (Bottom right) Optical flow

patches, projected to the eu1 e
u
2 plane.
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