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NODAL SOLUTIONS FOR NONLINEAR
NONHOMOGENEOUS NEUMANN EQUATIONS

Sergiu Aizicovici — Nikolaos S. Papageorgiou — Vasile Staicu

Abstract. We consider a nonlinear Neumann problem driven by a non-

homogeneous differential operator with a Caratheodory reaction which is
(p− 1)-sublinear near ±∞. Using variational tools we show that the prob-

lem has at least three nontrivial smooth solutions (one positive, one ne-

gative and a third nodal). Our formulation unifies problems driven by
the p-Laplacian, the (p, q) Laplacian and the p-generalized mean curvature

operator.

1. Introduction

Let Ω ⊂ RN be a bounded domain with a C2-boundary ∂Ω. In this paper
we study the following nonlinear Neumann problem

(1.1) −div a(Du(z)) = f(z, u(z)) in Ω,
∂u

∂n
= 0 on ∂Ω.

Here n( · ) denotes the outward unit normal on ∂Ω, while a: RN → RN is a con-
tinuous, strictly monotone map which satisfies certain regularity conditions. The
precise conditions are formulated in hypotheses H(a) below. Also, f : Ω×R → R
is a Carathéodory reaction (i.e. for all x ∈ R, z → f(z, x) is measurable and for
almost all z ∈ Ω, x→ f(z, x) is continuous) and x→ f(z, x) exhibits a (p− 1)-
superlinear growth near ±∞. The hypotheses on a( · ) include as a special case
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the p-Laplace differential operator. In this particular case, the asymptotic condi-
tion on f(z, · ) implies that the equation is resonant with respect to the principal
eigenvalue λ̂0 = 0 of the negative Neumann p-Laplacian.

The aim of this work is to prove a “three solution theorem” for problem (1.1)
and provide precise sign information for all of the solutions. More precisely, we
show that problem (1.1) has at least three nontrivial smooth solutions, two of
constant sign (one positive and the other negative) and a third one which is nodal
(i.e. sign changing). Recently, Aizicovici, Papageorgiou, Staicu [2] and Motreanu,
Motreanu, Papageorgiou [17] produced nodal solutions for Neumann equations
driven by the p-Laplacian with a (p−1)-superlinear reaction. Multiplicity results
for equations with (p − 1)-sublinear reaction were proved by Liu [15], Liu and
Su [14], Li and Zhou [12] and Papageorgiou and Papageorgiou [19]. However,
all the aforementioned papers deal with equations driven by the Dirichlet p-
Laplacian and do not produce nodal solutions.

We stress that the differential operator in (1.1) is nonhomogeneous and this
is the source of difficulties in the search of a nodal solution. In fact, some of
techniques used in [2] and [17] fail here due to the lack of homogeneity and so,
different methods and tools are needed to deal with the present setting. Also, the
hypotheses on a( · ) provide a unified treatment of problems with some important
classes of differential operators, such as the p-Laplacian, the (p, q)-Laplacian and
the p-generalized mean curvature differential operator.

Our approach is variational, based on the critical point theory. For easy
reference, in the next section we present the main mathematical tools that will be
used in this paper. We also state the hypotheses on y → a(y) and (z, x) → f(z, x)
and explore some useful consequences of them.

2. Mathematical background. Hypotheses

In what follows, by ‖ · ‖p we denote the norm of Lp(Ω) or Lp(Ω,RN ) and
by ‖ · ‖ we denote the norm of the Sobolev space W 1,p(Ω), i.e. ‖u‖ = (‖u‖p

p +
‖Du‖p

p)
1/p for all u ∈ W 1,p(Ω). We mention that the notation ‖ · ‖ will be also

used to denote the RN -norm. No confusion is possible, since it will always be
clear from the context which norm we use. The inner product in RN will be
denoted by ( · , · )RN .

In addition to the Sobolev space W 1,p(Ω), we will also use the Banach space
C1(Ω). This is an ordered Banach space with positive cone

C+ = {u ∈ C1(Ω) : u(z) ≥ 0 for all z ∈ Ω}.

This cone has a nonempty interior, given by

intC+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω}.



Nonlinear Nonhomogeneous Neumann Equations 423

For x ∈ R, we define x± := max{±x, 0} and for u ∈W 1,p(Ω) we set u±( · ) =
u( · )±. We have u± ∈W 1,p(Ω) and

u = u+ − u−, ‖u‖ = u+ + u−.

By ‖ · ‖N we denote the Lebesgue measure on RN . Finally, if h: Ω × R → R is
a measurable function (for example, a Carathéodory function), then we define

Nh(u)( · ) = h( · , u( · )) for all u ∈W 1,p(Ω).

Let (X, ‖ · ‖) be a Banach space and X∗ its topological dual. By 〈 · , · 〉 we
denote the duality brackets for the pair (X∗, X). Also, by w−→ we will designate
the weak convergence in X.

Given ϕ ∈ C1(X), we say that ϕ satisfies the Palais–Smale condition (PS-
-condition, for short), if the following is true:

• every sequence {xn}n≥1 ⊆ X such that {ϕ(xn)}n≥1 ⊆ R is bounded
and

ϕ′(xn) → 0 in X∗ as n→∞
admits a strongly convergent subsequence.

This compactness-type condition compensates for the fact that the ambient
space is not locally compact and leads to the minimax theorems of critical points
theory. In particular, here we will use the following result, known in the literature
as the “mountain pass theorem”.

Theorem 2.1. If ϕ ∈ C1(X) satisfies the PS-condition, x0, x1 ∈ X and
ρ>0 are such that ‖x1 − x0‖>ρ, max{ϕ(x0), ϕ(x1)}< inf{ϕ(x) : ‖x− x0‖=ρ}
=: ηρ, and c = inf

γ∈Γ
max

t∈[0,1]
ϕ(γ(t)), where Γ = {γ ∈ C([0, 1], X) : γ(0) = x0,

γ(1) = x1}, then c ≥ ηρ and c is a critical value of ϕ (i.e. there exists x∗ ∈ X

such that ϕ′(x∗) = 0 and ϕ(x∗) = c).

Definition 2.2. A map A:X → X∗ is said to be of type (S)+, if for every
sequence {un}n≥1 ⊆ X such that un

w−→ u in X and

lim sup
n→∞

〈A(un), un − u〉 ≤ 0,

one has un → u in X as n→∞.

Near the end of our proof, in order to guarantee the nontriviality of the third
solution we will use critical groups. So, let us recall their definition, First of all,
given ϕ ∈ C1(X) and c ∈ R we introduce the following sets:

ϕc = {x ∈ X : ϕ(x) ≤ c},
Kϕ = {x ∈ X : ϕ′(x) = 0},
Kc

ϕ = {x ∈ Kϕ : ϕ(x) = c}.
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For Y2 ⊆ Y1 ⊆ X and for every integer k ≥ 0, by Hk(Y2, Y1) we denote
the kth-relative singular homology group for the pair (Y1, Y2) with integer co-
efficients. The critical groups of ϕ at an isolated critical point x ∈ Kc

ϕ are
defined by

Ck(ϕ, x) = Hk(ϕc ∩ U, (ϕc ∩ U) \ {x}) for all k ≥ 0,

where U is a neighbourhood of x such that Kϕ ∩ ϕc ∩ U = {x}. The excision
property of singular homology implies that the above definition of critical groups
is independent of the particular choice of the neighbourhood U .

Now, let h ∈ C1((0,∞), (0,∞)) and assume that

0 <
th′(t)
h(t)

≤ C0 for all t > 0, for some C0 > 0,

and

(2.1) C1t
p−1 ≤ h(t) ≤ C2(1 + tp−1) for all t > 0, for some C1, C2 > 0,

where 1 < p <∞. The hypotheses on the map y → a(y) are the following:

H(a) For all y ∈ RN , one has a(y) = a0(‖y‖)y, a(0) = 0, with

(i) a0 ∈ C1((0,∞), (0,∞)). t→ a0(t)t is strictly increasing,

lim
t→0+

ta′0(t)
a0(t)

= C > −1;

(ii) for every y ∈ RN \ {0} we have

‖∇a(y)‖ ≤ C3
h(‖y‖)
‖y‖

for some C3 > 0;

(iii) for every y ∈ RN \ {0} we have

(∇a(y)ξ, ξ)RN ≥ h(‖y‖)
‖y‖

‖ξ‖2 for all ξ ∈ RN ;

(iv) if G0(t) =
∫ t

0
sa0(s) ds, then there exist τ , µ ∈ (1, p) such that t →

G0(t1/τ ) is convex on (0,+∞) and

lim
t→0+

G0(t)
tµ

= 0.

Remarks 2.3. Evidently, G0 is strictly convex and strictly increasing. Let

G(y) = G0(‖y‖) for all y ∈ RN .

Then G is convex, G(0) = 0 and for all y ∈ RN \ {0} we have

∇G(y) = G′0(‖y‖)
y

‖y‖
= a0(‖y‖)y = a(y).
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Hence G(y) is the primitive of a(y). The convexity of G( · ) implies that

(2.2) G(y) ≤ (a(y), y)RN for all y ∈ RN .

Using hypotheses H(a) and (2.1) and (2.2) we infer the following properties of
the map a( · ).

Lemma 2.4. If hypotheses H(a) hold then:

(a) y → a(y) is maximal monotone and strictly monotone;
(b) for all y ∈ RN we have ‖a(y)‖ ≤ C4(1 + ‖y‖p−1) for some C4 > 0;
(c) for all y ∈ RN we have (a(y), y)RN ≥ (C1/(p− 1))‖y‖p (see (2.1)).

Using this lemma and the integral form of the mean value theorem, we obtain
the following growth estimates for the primitive G( · ).

Corollary 2.5. If hypotheses H(a) hold then

C1

p(p− 1)
‖y‖p ≤ G(y) ≤ C5(1 + ‖y‖p)

for some C5 > 0, all y ∈ RN .

Examples 2.6. The following maps satisfy hypotheses H(a):

(a) a(y) = ‖y‖p−2y with 1 < p <∞.
This map corresponds to the p-Laplace differential operator

u→4pu = div(‖Du‖p−2
RN Du), for all u ∈W 1,p(Ω).

(b) a(y) = ‖y‖p−2y + ‖y‖q−2y with 2 ≤ q < p <∞.
This map corresponds to the (p, q)-Laplace differential operator

u→4pu+4qu for all u ∈W 1,p(Ω),

which arises in quantum physics (see Benci, Fortunato and Pisani [3]).

(c) a(y) = (1 + ‖y‖2)(p−2)/2y with 2 ≤ p <∞.
This map corresponds to the p-generalized mean curvature operator

u→ div((1 + ‖Du‖2)(p−2)/2Du) for all u ∈W 1,p(Ω)

(see Chen-Shen [5]).

(d) a(y) = ‖y‖p−2y + ‖y‖p−2y/(1 + ‖y‖p) with 1 < p <∞.

Let f0: Ω × R → R be a Carathéodory function with subcritical growth in
x ∈ R, i.e.

‖f0(z, x)‖ ≤ â(z) + Ĉ‖x‖r−1 for a.a. z ∈ Ω, all x ∈ R,
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with â ∈ L∞(Ω)+, Ĉ > 0 and 1 < r < p∗, where

p∗ =

{ Np

N − p
if p < N,

+∞ if N ≤ p.

Let F0(z, x) =
∫ x

0
f0(z, s) ds and consider the C1-functional ϕ0:W 1,p(Ω) → R

defined by

ϕ0(u) =
∫

Ω

G(Du(z)) dz −
∫

Ω

F0(z, u(z)) dz for all u ∈W 1,p(Ω).

From Motreanu and Papageorgiou [18], we have the following result.

Proposition 2.7. If u0 ∈ W 1,p(Ω) is a local C1(Ω)-minimizer of ϕ0, i.e.
there exists ρ0 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ C1(Ω) with ‖h‖C1(Ω) ≤ ρ0,

then u0 ∈ C1,α(Ω) with α ∈ (0, 1) and u0 is also a local W 1,p(Ω)-minimizer
of ϕ0, i.e. there exists ρ1 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈W 1,p(Ω) with ‖h‖ ≤ ρ1.

Remark 2.8. The result of Motreanu–Papageorgiou [18] is stated for a map
a(z, y) (i.e. it is also z-dependent), which satisfies more restrictive hypotheses in
the y ∈ RN variable. Nevertheless, a careful inspection of their proof, reveals
that it remains valid (in fact verbatim) if we use instead the regularity result of
Lieberman ([13, p. 320]).

Let A:W 1,p(Ω) →W 1,p(Ω)∗ be the nonlinear map defined by

(2.3) 〈A(u), y〉 =
∫

Ω

(a(Du), Dy)RN dz for all u, y ∈W 1,p(Ω).

The next result is a special case of Proposition 2 of Papageorgiou, Rocha and
Staicu [20]:

Proposition 2.9. If hypotheses H(a) hold and A:W 1,p(Ω) → W 1,p(Ω)∗ is
the nonlinear map defined by (2.3), then A is maximal monotone and of type S+.

Next we introduce the hypotheses on he reaction f(t, x).

H(f) f : Ω × R → R is a Carathéodory function such that f(z, 0) = 0 for almost
all z ∈ Ω and

(i) ‖f(z, x)‖ ≤ α(z) + c‖x‖p−1 for almost all z ∈ Ω, all x ∈ R, with
α ∈ L∞(Ω)+, c > 0;

(ii) if F (z, x) =
∫ x

0
f(z, s) ds, then lim

x→±∞
F (z, x)/‖x‖p = 0 uniformly for

almost all z ∈ Ω and

lim
x→±∞

[f(z, x)x− pF (z, x)] = +∞ uniformly for almost all z ∈ Ω;
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(iii) there exist q ∈ (1,min{µ, τ}) (see H(a)(iv)), θ > q with θ ≤ p∗ if p < N

and θ <∞ if p ≥ N , and δ0 > 0 such that f(z, x)x ≥ Ĉ0‖x‖q − Ĉ1‖x‖θ

for almost all z ∈ Ω, all x ∈ R, with Ĉ0, Ĉ1 > 0, qF (z, x) ≥ f(z, x)x > 0
for almost all z ∈ Ω, all ‖x‖ ≤ δ0 and ess inf

Ω
F ( · , δ0) > 0;

(iv) for every ρ > 0, there exists ξρ > 0 such that f(z, x)x+ ξρ‖x‖p ≥ 0 for
almost all z ∈ Ω, all x ∈ [−ρ, ρ].

Remark 2.10. In fact it is easy to see that in hypothesis H(f)(iii), without
any loss of generality, we can always assume that θ ≥ p.

Example 2.11. The following function satisfies hypotheses H(f) (for the
sake of simplicity we drop the z-dependence):

f(x) = ‖x‖q−2x− ‖x‖r−2x for all x ∈ R, with 1 < q < r < p.

3. Constant sign solutions

In this section we produce two smooth solutions of constant sign (one pos-
itive, the other negative). To this end, we introduce the following truncation-
perturbations of f(z, · ):

f̂+(z, x) = f(z, x+) + (x+)p−1 for all x ∈ R,

f̂−(z, x) = f(z,−x−)− ‖x‖p−2x− for all x ∈ R.

Both are Carathéodory functions. We set F̂±(z, x) =
∫ x

0
f̂±(z, s) ds and consider

the C1-functionals ϕ̂±: :W 1,p(Ω) → R defined by

ϕ̂±(u) =
∫

Ω

G(Du(z)) dz +
1
p
‖u‖p

p −
∫

Ω

F̂±(z, u(z)) dz for all u ∈W 1,p(Ω).

Proposition 3.1. If hypotheses H(a) and H(f) hold, then problem (1.1) has
at least two nontrivial constant sign smooth solutions u0 ∈ intC+ and v0 ∈
−intC+.

Proof. First we produce the nontrivial positive solution. By virtue of hy-
pothesis H(f)(ii), given ξ > 0, we can find M1 = M1(ξ) > 0, such that

(3.1) f(z, x)x− pF (z, x) ≥ ξ for a.a. z ∈ Ω, all x ≥M1.

Then, by (3.1), for almost all z ∈ Ω and all x ≥M1, we have

d

dx

(
F (z, x)
xp

)
=
f(z, x)x− pF (z, x)

xp+1
≥ ξ

xp+1

hence

F (z, x)
xp

− F (z, y)
yp

≥ −ξ
p

(
1
xp

− 1
yp

)
for a.a. z ∈ Ω, all x ≥ y ≥M1.
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Passing to the limit as x→∞ and using hypothesis H(f)(ii), we have

−F (z, y)
yp

≥ ξ

pyp
for a.a. z ∈ Ω, all y ≥M1,

hence

(3.2) F (z, y) ≤ −ξ
p

for a.a. z ∈ Ω, all y ≥M1.

Since ξ > 0 is arbitrary, we infer that

F (z, y) → −∞ uniformly for a.a. z ∈ Ω, as x→ +∞.

Claim. ϕ̂+ is coercive.
Suppose that the Claim is not true. Then we can find {un}n≥1 ⊂ W 1,p(Ω)

such that

(3.3) ‖un‖ → ∞ and ϕ̂+(un) ≤M2 for some M2 > 0, all n ≥ 1.

Let yn = un/‖un‖, for n ≥ 1. Then ‖yn‖ = 1 for all n ≥ 1 and so, by passing to
a suitable subsequence if necessary, we may assume that

(3.4) yn
w−→ y in W 1,p(Ω) and yn → y in Lp(Ω) as n→∞.

From (3.3) and Corollary 2.5, we have

C1

p(p− 1)
‖Dun‖p

p +
1
p
‖un‖p

p −
∫

Ω

F̂+(z, un) dz ≤M2, for all n ≥ 1.

hence, by the definition of F̂+,

C1

p(p− 1)
‖Dun‖p

p +
1
p
‖un‖p

p −
∫

Ω

F (z, u+
n ) dz − 1

p
‖u+

n ‖p
p ≤M2,

therefore

(3.5)
C1

p(p− 1)
‖Dun‖p

p +
1
p
‖u−n ‖p

p −
∫
{un≥M1}

F (z, u+
n ) dz

−
∫
{0≤un<M1}

F (z, u+
n ) dz ≤M2,

where M1 > 0 is as in (3.1). By (3.3), we have

(3.6) −
∫
{un≥M1}

F (z, un) dz ≥ 0.

Also, by H(f)(i),

(3.7)
∫
{0≤un<M1}

F (z, un) dz ≤ Ĉ, for some Ĉ > 0.

Using (3.6) and (3.7) in (3.5), we arrive at

C1

p(p− 1)
‖Dun‖p

p +
1
p
‖u−n ‖p

p ≤M ′
2,
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with M ′
2 = M ′

2 + Ĉ. This yields

(3.8)
C1

p(p− 1)
‖Dyn‖p

p +
1
p
‖y−n ‖p

p ≤
M ′

2

‖un‖p
.

So, if we pass to the limit as n→∞ in (3.8) and use (3.4), then

C1

p(p− 1)
‖Dy‖p

p +
1
p
‖y−‖p

p ≤ 0,

hence y = ξ ∈ R+. Then Dyn → 0 = Dξ in Lp(Ω,RN ) and yn → ξ in Lp(Ω),
hence yn → ξ in W 1,p(Ω) and so, ‖ξ‖ = 1, i.e. ξ 6= 0. Therefore ξ > 0 and so
we infer that un(z) → ∞ for almost all z ∈ Ω. Then, from the first part of the
proof it follows thatF̂+(z, un(z)) → −∞ for almost all z ∈ Ω, hence∫

Ω

F̂+(z, un(z)) dz → −∞

(by Fatou’s lemma). But from (3.3) we have∫
Ω

F̂+(z, un(z)) ≥ −M2 for all n ≥ 1,

a contradiction. This proves the Claim.
Using the Sobolev embedding theorem, we can easily see that ϕ̂+ is sequen-

tially weakly lower semicontinuous. So, by the Weierstrass theorem, we can find
u0 ∈W 1,p(Ω) such that

(3.9) ϕ̂+(u0) = inf{ϕ̂+(u) : u ∈W 1,p(Ω)} = m̂+.

By virtue of hypothesis H(a)(iv), we can find δ > 0 such that

(3.10) G(y) ≤ ‖y‖µ for all y ∈ RN with ‖y‖ ≤ δ.

Let u ∈ C+ \ {0} and let λ ∈ (0, 1) be small, such that λDu(z) ∈ [0, δ] for all
z ∈ Ω. Then

ϕ̂+(λu) =
∫

Ω

G(λDu) dz −
∫

Ω

F (z, λu) dz (since u ≥ 0)(3.11)

≤ λµ‖Du‖µ
µ +

Ĉ1

θ
λθ‖u‖θ

θ −
Ĉ0

q
λq‖u‖q

q (see (3.10)

and H(f)(iii)).

Because 1 < q < µ, θ by (3.11) and by choosing λ ∈ (0, 1) even smaller if
necessary, we obtain ϕ̂+(λu) < 0, hence ϕ̂+(u0) = m̂+ < 0 = ϕ̂+(0) (see (3.9)),
therefore u0 6= 0. From (3.9) we have ϕ̂′+(u0) = 0, hence

(3.12) A(u0) + ‖u0‖p−2u0 = N
bf+

(u0).
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On (3.12) we act with −u−0 ∈W 1,p(Ω) and obtain∫
Ω

(a(Du0),−Du−0 )RN dz + ‖u−0 ‖p
p = 0,

hence
C1

p− 1
‖Du−0 ‖p

p + ‖u−0 ‖p
p ≤ 0

(see Lemma 2.4(c)), therefore u0 ≥ 0, u0 6= 0.
From (3.12) and the nonlinear Green’s identity (see for example, Gasinski

and Papageorgiou [8, p. 210]), we have

−div a(Du0(z)) = f(z, u0(z)) a.e. in Ω,
∂u0

∂n
= 0 on ∂Ω.

From Gasinski and Papageorgiou [9] (Proposition 3.1), it follows that u0 ∈
L∞(Ω). Then the regularity result of Lieberman ([13, p. 320]) implies that
u0 ∈ C+ \ {0}.

Let ρ = ‖u0‖∞ and let ξρ be as postulated by H(f)(iv). Then

−div a(Du0(z)) + ξρu0(z)p−1 = f(z, u0(z)) + ξρu0(z)p−1 ≥ 0 a.e. in Ω,

hence
div a(Du0(z)) ≤ ξρu0(z)p−1 a.e. in Ω.

Invoking Theorem 5.5.1 of Pucci and Serrin ([21, p. 120]) we conclude that
u0 ∈ intC+.

Similarly, working with ϕ̂− (which too is coercive, since F (z, x) → −∞
uniformly for almost all z ∈ Ω, as x → −∞), we obtain a second nontrivial
constant sign smooth solution v0 ∈ − intC+. �

4. A nodal solution

In this section, we produce a third nontrivial smooth solution which is nodal.
To this end, we consider the following auxiliary nonlinear Neumann problem

(4.1)
−div a(Du(z)) = Ĉ0‖u(z)‖q−2u(z)− Ĉ1‖u(z)‖θ−2u(z) in Ω,

∂u

∂n
= 0 on ∂Ω,

where Ĉ0, Ĉ1 are as in hypothesis H(f)(iii).

Proposition 4.1. If hypotheses H(a) hold, then problem (4.1) has a unique
nontrivial positive solution u∗ ∈ int C+ and a unique nontrivial negative solution
v∗ = −u∗ ∈ − intC+.

Proof. First we establish the existence of a nontrivial positive solution. So,
let ψ+:W 1,p(Ω) → R be the C1-functional defined by

ψ+(u) =
∫

Ω

G(Du) dz +
1
p
‖u‖p

p −
Ĉ0

q
‖u+‖q

q +
Ĉ1

θ
‖u+‖θ

θ −
1
p
‖u+‖p

p,
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for all u ∈W 1,p(Ω). Then

ψ+(u) ≥ C1

p(p− 1)
‖Du0‖p

p +
1
p
‖u−‖p

p +
Ĉ1

θ
‖u+‖θ

θ −
Ĉ0

q
‖u+‖q

q ≥ C6‖u‖p−C7‖u‖q

for some C6, C7 > 0 (see [8, p. 227]), therefore ψ+ is coercive (recall that p > q).
Also, using the Sobolev embedding theorem, we can show that ψ+ is sequentially
weakly lower semicontinuous. Therefore we can find u∗ ∈W 1,p(Ω) such that

(4.2) ψ+(u∗) = inf{ψ+(u) : u ∈W 1,p(Ω)} = m∗
+.

As in the proof of Proposition 3.1, using hypotheses H(a)(iv), H(f)(iii) and the
fact that q < µ, θ, we show that

ψ+(u∗) = m∗
+ < 0 = ψ+(0),

i.e. u∗ 6= 0. From (4.2), we have ψ′+(u∗) = 0, hence

(4.3) A(u∗) + ‖u∗‖p−2u∗ = Ĉ0(u+
∗ )q−1 − Ĉ1(u+

∗ )θ−1 + (u+
∗ )p−1.

Acting on (4.3) with −u−∗ ∈W 1,p(Ω) and using Lemma 2.4(c) we obtain

C1

p− 1
‖Du−∗ ‖p

p + ‖u−∗ ‖p
p ≤ 0

i.e. u∗ ≥ 0, u∗ 6= 0. Then, (4.3) becomes

A(u∗) = Ĉ0(u+
∗ )q−1 − Ĉ1(u+

∗ )θ−1,

hence

−div a(Du∗(z)) = Ĉ0(u∗(z))q−1 − Ĉ1(u∗(z))θ−1 a.e. in Ω,
∂u∗
∂n

= 0 on ∂Ω.

Nonlinear regularity (see Lieberman [13, p. 320]) and the nonlinear maximum
principle (see Pucci and Serrin [21, p. 120]) imply that u∗ ∈ intC+.

Next we show the uniqueness of this positive solution. To this end, let
ξ+:L1(Ω) → R = R ∪ {∞} be the integral functional defined by

ξ+(u) =

{ ∫
Ω

G(Du1/τ ) dz if u ≥ 0, u1/τ ∈W 1,p(Ω),

+∞ otherwise.

Let u1, u2 ∈ dom ξ+. For t ∈ [0, 1] we define

y = (tu1 + (1− t)u2)1/τ .

We set v1 = u
1/τ
1 and v2 = u

1/τ
2 . As in Lemma 1 of Diaz and Saa [6] (see also

Benguria, Brezis, Lieb [4, Lemma 4]), via Hölder’s inequality, we have

‖Dy(z)‖ ≤ (t‖Dv1(z)‖τ + (1− t)‖Dv2(z)‖τ )1/τ a.e. in Ω.

Since G0 is increasing, we obtain

(4.4) G0(‖Dy(z)‖) ≤ G0((t‖Dv1(z)‖τ + (1− t)‖Dv2(z)‖τ )1/τ ) a.e. in Ω.
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Hypothesis H(a)(iv) implies that

(4.5) G0((t‖Dv1(z)‖τ + (1− t)‖Dv2(z)‖τ )1/τ )

≤ tG0(‖Dv1(z)‖) + (1− t)G0(‖Dv2(z)‖) a.e. in Ω.

Recalling that G(y) = G0(‖y‖) for all y ∈ RN , from (4.4) and (4.5), we have

G(Dy(z)) ≤ tG(Du1(z)1/τ ) + (1− t)G(Du2(z)1/τ ) a.e. in Ω,

hence ξ+ is convex. Also, via Fatou’s lemma, we infer that ξ+ is lower semi-
continuous and of course dom ξ+ 6= ∅ (i.e. ξ+ ∈ Γ0(L1(Ω)); see Gasinski and
Papageorgiou [8, p. 488]).

Let u ∈W 1,p(Ω) be a nontrivial positive solution of (4.1). From the first part
of the proof, we know that u ∈ intC+. Then uτ ≥ 0, (uτ )1/τ = u ∈ W 1,p(Ω),
hence uτ ∈ dom ξ+. Let h ∈ C+ \ {0}. Then for λ ∈ (−1, 1) small, we have
uτ +λh ∈ intC+ and so uτ +λh ∈ dom ξ+. Hence, the Gateaux derivative of ξ+
at uτ in the direction h exists, and the chain rule implies that

(4.6) ξ′+(uτ )(h) =
1
τ

∫
Ω

−div a(Du)
uτ−1

h dz.

Similarly, if v ∈ W 1,p(Ω) is another nontrivial positive solution of (4.1), then
v ∈ intC+ and

(4.7) ξ′+(vτ )(h) =
1
τ

∫
Ω

−div a(Dv)
vτ−1

h dz.

The convexity of ξ+ implies that ξ′+ is monotone. Hence, from (4.6) and (4.7),
we have

0 ≤
∫

Ω

(
−div a(Du)

uτ−1
+

div a(Dv)
vτ−1

)
(uτ − vτ ) dz,

hence (cf. (4.1))

(4.8) 0 ≤
∫

Ω

(
Ĉ0

(
1

uτ−q
− 1
vτ−q

)
− Ĉ1(uθ−τ − vθ−τ )

)
(uτ − vτ ) dz.

Since q < τ < θ (see H(f)(iii)), the function x → Ĉ0/x
τ−q − Ĉ1x

θ−τ is strictly
decreasing on (0,∞). So, from (4.8) we infer that u = v. This proves the
uniqueness of u∗ ∈ intC+.

The oddness of (4.1) implies that v∗ = −u∗ ∈ −intC+ is the unique nontrivial
negative solution of (4.1). �

Using this proposition, we can establish the existence of extremal solutions
of constant sign, i.e. we show that there exists a smallest nontrivial positive
solution and a biggest nontrivial negative solution of (1.1).



Nonlinear Nonhomogeneous Neumann Equations 433

Proposition 4.2. If hypotheses H(a) and H(f) hold, then problem (1.1)
has a smallest nontrivial positive solution u+ ∈ intC+ and a biggest nontrivial
negative solution v− ∈ − intC+.

Proof. Let S+ be the set of nontrivial positive solutions of (1.1). From
Proposition 3.1 and its proof we know that S+ 6= ∅ and S+ ⊂ intC+.

Claim. If ũ ∈ S+ then u∗ ≤ ũ.

Let γ+: Ω× R → R be the Carathéodory function defined by

(4.9) γ+(z, x) =


0 if x < 0,

Ĉ0x
q−1 − Ĉ1x

θ−1 + xp−1 if 0 ≤ x ≤ ũ(z),

Ĉ0ũ(z)q−1 − Ĉ1ũ(z)θ−1 + ũ(z)p−1 if ũ(z) < x.

We set

Γ+(z, x) =
∫ x

0

γ+(z, s) ds

and consider the C1-functional β+:W 1,p(Ω) → R defined by

β+(u) =
∫

Ω

G(Du) dz +
1
p
‖u‖p

p −
∫

Ω

Γ+(z, u(z)) dz for all u ∈W 1,p(Ω).

From Corollary 2.5 and (4.9), we see that β+ is coercive. Also, it is sequentially
weakly lower semicontinuous. So, we can find ŷ ∈W 1,p(Ω) such that

(4.10) β+(ŷ) = inf{β+(u) : u ∈W 1,p(Ω)} = m̂+.

As in the proof of Proposition 3.1, using hypotheses H(a)(iv), H(f)(iii) and re-
calling that 1 < q < µ, θ we conclude that

β+(ŷ) = m̂+ < 0 = β+(0) (see (4.10)), i.e. ŷ 6= 0.

From (4.10) we have β′+(ŷ) = 0, hence

(4.11) A(ŷ) + ‖ŷ‖p−2ŷ = Nγ+(ŷ).

On (4.11) we act with −ŷ− ∈W 1,p(Ω) and use Lemma 2.4(c) to obtain

C1

p− 1
‖Dŷ−‖p

p + ‖ŷ−‖p
p ≤ 0

(see (4.9)) hence ŷ ≥ 0, ŷ 6= 0.
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Acting on (4.11) with (ŷ − ũ)+ ∈W 1,p(Ω), we obtain

〈A(ŷ),(ŷ − ũ)+〉+
∫

Ω

ŷp−1(ŷ − ũ)+ dz

=
∫

Ω

γ+(z, ŷ)(ŷ − ũ)+ dz

=
∫

Ω

(Ĉ0ũ
q−1 − Ĉ1ũ

θ−1)(ŷ − ũ)+ dz +
∫

Ω

ũp−1(ŷ − ũ)+ dz (see (4.9))

≤
∫

Ω

f(z, ũ)(ŷ − ũ)+ dz +
∫

Ω

ũp−1(ŷ − ũ)+ dz (see H(f)(iii))

= 〈A(ũ), (ŷ − ũ)+〉+
∫

Ω

ũp−1(ŷ − ũ)+ dz,

hence∫
{by>eu}

(a(Dŷ)− a(Dũ), Dŷ −Dũ)RN dz +
∫
{by>eu}

(ŷp−1 − ũp−1)(ŷ − ũ) ≤ 0

therefore ‖{ŷ > ũ}‖N = 0, i.e. ŷ ≤ ũ (see Lemma 2.4(a)). So, we have proved
that

ŷ ∈ [0, ũ] = {u ∈W 1,p(Ω) : 0 ≤ u(z) ≤ ũ(z)}, y 6= 0.

Then (4.11) becomes
A(ŷ) = Ĉ0ŷ

q−1 − Ĉ1ŷ
θ−1

(see (4.9)), hence

−div a(Dŷ(z)) = Ĉ0ŷ(z)q−1 − Ĉ1ŷ(z)θ−1 a.e. in Ω,
∂ŷ

∂n
= 0 on ∂Ω,

and we conclude that ŷ = u∗ (see Proposition 4.1). Therefore we have u∗ ≤ ũ

and this proves the Claim.
Now, let C ⊂ S+ be a chain (i.e. a linearly ordered subset of S+). From Dun-

ford and Schwartz ([7, p. 336]), we know that there exists a sequence {un}n≥1 ⊂
C such that inf

C
= inf

n≥1
un. Moreover, according to Heikkila and Lakshmikantham

([10, p. 15]), we may assume that {un}n≥1 is decreasing.
We have

(4.12) A(un) = Nf (un) and u∗ ≤ un ≤ u1 for all n ≥ 1

(see the Claim), hence {un}n≥1 ⊂W 1,p(Ω) is bounded. So, we may assume that

(4.13) un
w−→ u in W 1,p(Ω) and un → u in Lp(Ω) as n→∞.

On (4.12) we act with un − u ∈ W 1,p(Ω), pass to the limit as n → ∞ and use
(4.13). Then

lim
n→∞

〈A(un), un − u〉 = 0,

hence

(4.14) un → u in W 1,p(Ω) as n→∞
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(see Proposition 2.9). So, if in (4.12) we pass to the limit as n → ∞ and use
(4.14), then A(u) = Nf (u) and u∗ ≤ u (see (4.12)), hence u ∈ S+ and u = inf C.

Since C is an arbitrary chain in S+, by the Kuratowski–Zorn lemma, it follows
that S+ has a minimal element u+ ∈ S+.

As in Aizicovici–Papageorgiou–Staicu [2] (see Lemma 1 and the proof of
Proposition 8) we show that S+ is downward directed (i.e. if u1, u2 ∈ S+, then
there exists u ∈ S+ such that u ≤ u1 and u ≤ u2).

Therefore, u+ ∈ S+ is the smallest nontrivial positive solution of (1.1).
Similarly, let S− be the set of nontrivial negative solutions of (1.1). Then

S− 6= ∅, S− ⊂ − intC+ and S− is upward directed (i.e. if v1, v2 ∈ S−, then
there exists v ∈ S− such that v1 ≤ v and v2 ≤ v) (see [2, Lemma 2]). Reason-
ing as above, we obtain v− ∈ − intC+, the biggest nontrivial negative solution
of (1.1). �

Remark 4.3. The proofs of Propositions 4.1 and 4.2 are somewhat compa-
rable to those of [16], Lemma 2.2 and Lemmas 4.1–4.2, respectively.

Using these extremal solutions, we can establish the existence of a nodal
solution for problem (1.1).

Proposition 4.4. If hypotheses H(a) and H(f) hold, then problem (1.1) has
a nodal solution y0 ∈ C1(Ω).

Proof. Let u+ ∈ intC+ and v− ∈ − intC+ be the two extremal nontrivial
constant sign solutions of (1.1). We consider the following truncation of the
reaction f(z, · ):

(4.15) f̃(z, x) =


f(z, v−(z)) + ‖v−(z)‖p−2v−(z) if x < v−(z),

f(z, x) + ‖x‖p−2x if v−(z) ≤ x ≤ u+(z),

f(z, u+(z)) + u+(z)p−1 if u+(z) < x.

This is a Carathéodory function. We set

F̃ (z, x) =
∫ x

0

f̃(z, s) ds

and introduce the C1-functional ξ̃:W 1,p(Ω) → R defined by

ξ̃(u) =
∫

Ω

G(Du) dz +
1
p
‖u‖p

p −
∫

Ω

F̃ (z, u(z)) dz, for all u ∈W 1,p(Ω).

Also, let

f̃±(z, x) = f̃(z,±x±), F̃±(z, x) =
∫ x

0

f̃±(z, s) ds

and consider the C1-functionals ξ̃±:W 1,p(Ω) → R defined by

ξ̃±(u) =
∫

Ω

G(Du) dz −
∫

Ω

F̃±(z, u(z)) dz, for all u ∈W 1,p(Ω).
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As before (see for example, the proof of Proposition 4.2, using (4.15) we show
that K

eξ ⊂ [v−, u+], K
eξ+

⊂ [0, u+], K
eξ−

⊂ [v−, 0]. The extremality of the
solutions u+ and v− implies that

(4.16) K
eξ ⊆ [v−, u+], K

eξ+
= {0, u+}, K

eξ−
= {v−, 0}.

Claim. u+ ∈ intC+ and v− ∈ − intC+ are both local minimizers of ξ̃.
From (4.15) we see that ξ̃+ is coercive. Also, it is weakly lower semicontinu-

ous. So, we can find y ∈W 1,p(Ω) such that

(4.17) ξ̃+(y) = inf{ξ̃+(u) : u ∈W 1,p(Ω)}.

As before, using hypotheses H(a)(iv), H(f)(iii) and the fact that 1 < q < µ, θ we
infer that ξ̃+(y) < 0 = ξ̃+(0), i.e. y 6= 0. But y ∈ K

eξ (see (4.17)). Hence y = u+

(see (4.16)).
Note that ξ̃|C+ = ξ̃+|C+ and u+ ∈ intC+, hence u+ is a local C1(Ω)-

minimizer of ξ̃, therefore u+ is a local W 1,p(Ω)-mini-mizer of ξ̃ (see Proposi-
tion 2.7). Similarly for v− ∈ − intC+, using this time the functional ξ̃−. This
proves the Claim.

We may assume that ξ̃(v−) ≤ ξ̃(u+) (the analysis is similar if the opposite
inequality holds). By virtue of the Claim, as in Aizicovici, Papageorgiou and
Staicu [1] (see the proof of Proposition 29), we can find ρ ∈ (0, 1) small such
that

(4.18) ξ̃+(v−) ≤ ξ̃(u+) < inf{ξ̃(u) : ‖u− u+‖ = ρ ∈W 1,p(Ω)} = η̃ρ.

Since ξ̃ is coercive (see (4.15)), it satisfies the PS-condition. This fact and (4.18)
permit the use of Theorem 2.1 (the mountain pass theorem). So, we can find
y0 ∈W 1,p(Ω) such that y0 ∈ Keξ and η̃ρ ≤ ξ̃(y0), hence y0 /∈ {v−, u+} (see (4.18)).
Then y0 ∈ [v−, u+]\{v−, u+} (see (4.16)), y0 ∈ C1(Ω) (nonlinear regularity) and
it solves (1.1).

We may suppose that y0 is a critical point of mountain pass type for ξ̃. Thus,

(4.19) C1(ξ̃, y0) 6= 0.

On the other hand, hypothesis H(f)(iii) and Proposition 2.1 of Jiu-Su [11] imply

(4.20) Ck(ξ̃, 0) = 0 for all k ≥ 0.

Comparing (4.19) and (4.20), we infer that y0 6= 0. Since y0 ∈ [v−, u+]\{v−, u+},
the extremality of v− and u+ implies that y0 ∈ C1(Ω) is a nodal solution
of (1.1). �

We can conclude that the following multiplicity theorem for problem (1.1) is
true:
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Theorem 4.5. If hypotheses H(a) and H(f) hold, then problem (1.1) has at
least three nontrivial smooth solutions

u0 ∈ intC+, v0 ∈ − intC+, and y0 ∈ C1(Ω), nodal.
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