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GENERALIZATIONS OF KRASNOSEL’SKĬı’S
FIXED POINT THEOREM

IN CONES AND APPLICATIONS

Sorin Budişan

Abstract. We give some generalizations of Krasnosel’skĭı’s fixed point
theorem in cones, replacing norms with functionals. We will apply these

theorems to obtain at least one positive solution for the boundary value

problems for second-order differential equations. Two positive solution re-
sults are also obtained.

1. Introduction

Richard Leggett and Lynn Williams [9] obtained some of the importants
results of the type of Krasnosel’skĭı’s fixed point theorem in cones. To present
a result from [9] we need to introduce two definitions:

Definition 1.1 ([9]). Let (E, ‖ · ‖) be real Banach space. A closed convex
set K ⊂ E is called a (positive) cone if the following conditions are satisfied:

(a) if x ∈ K, then λx ∈ K for λ ≥ 0;
(b) if x ∈ K and if −x ∈ K, then x = 0.
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Definition 1.2 ([9]). Let K be a cone of the Banach space (E, ‖ · ‖). α is
a concave positive functional on K if α:K → [0,∞) satisfies

α(λx+ (1− λ)y) ≥ λα(x) + (1− λ)α(y), 0 ≤ λ ≤ 1.

We observe that if α is a concave positive functional on a cone K, a set of
the form

S(α, a, b) = {x ∈ K : a ≤ α(x) and ‖x‖ ≤ b}
is closed, bounded and convex in K. Let Kc := {x ∈ K : ‖x‖ ≤ c}, where
0 < c <∞.

Theorem 1.3 ([9]). Suppose A:Kc → K is completely continuous and sup-
pose there exist a concave positive functional α with α(x) ≤ ‖x‖(x ∈ K) and
numbers b > a > 0 (b ≤ c) satisfying the following conditions:

(a) {x ∈ S(α, a, b) : α(x) > a} 6= φ and α(Ax) > a if x ∈ S(α, a, b);
(b) Ax ∈ Kc if x ∈ S(α, a, c);
(c) α(Ax) > a for all x ∈ S(α, a, c) with ‖Ax‖ > b.

Then A has a fixed point x in S(α, a, c).

Other authors give generalizations of Krasnosel’skĭı’s fixed poit theorem in
cones. For example, in [11], is given the following result:

Theorem 1.4 ([11]). Let (X, | · |) be a normed linear space, K1,K2 ⊂ X two
cones; K := K1× K2; r,R ∈ R2

+ with 0 < r < R (r = (r1, r2), R = (R1, R2) and
r < R if and only if ri < Ri for i ∈ {1, 2}), and N :Kr,R → K, N = (N1, N2)
a compact map. Assume that for each i ∈ {1, 2}, one of the following conditions
is satisfied in Kr,R, where u = (u1, u2) :

(a) Ni(u) ⊀ ui if |ui| = ri, and Ni(u) � ui if |ui| = Ri;
(b) Ni(u) � ui if |ui| = ri, and Ni(u) ⊀ ui if |ui| = Ri.

Then N has a fixed point u in K with ri ≤ |ui| ≤ Ri for i ∈ {1, 2}.

In [10] the following theorems are proved( (E, | · |) is a normed linear space
and ‖ · ‖ is an other norm on E. Also C ⊂ E is a nonempty convex set, not
necessarily closed, with 0 /∈ C and λC ⊂ C for all λ > 0 . Suppose there exist
constants c1, c2 > 0 such that c1|x| ≤ ‖x‖ ≤ c2|x| for all x ∈ C):

Theorem 1.5 ([10]). Assume 0 < c2ρ < R, ‖ ·‖ is increasing with respect to
C, that is ‖x+y‖ > ‖x‖ for all x, y ∈ C, and the map N : {x ∈ C : ‖x‖ ≤ R} → C
is compact. In addition, assume that the following conditions are satisfied:

(a) |N(x)| < |x| for all x ∈ C with |x| = ρ,
(b) ‖N(x)‖ ≥ ‖x‖ for all x ∈ C with ‖x‖ = R.

Then N has at least two fixed points x1, x2 ∈ C with |x1| < ρ ≤ |x2| and
‖x2‖ ≤ R.
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Theorem 1.6 ([10]). Assume 0 < 1/c1ρ < R, | · | is increasing with respect
to C, and the map N : {x ∈ C : |x| ≤ R} → C is compact. In addition, assume
that the following conditions are satisfied:

(a) ‖N(x)‖ < ‖x‖ for all x ∈ C with ‖x‖ = ρ,
(b) |N(x)| ≥ |x| for all x ∈ C with |x| = R.

Then N has at least two fixed points x1, x2 ∈ C with ‖x1‖ < ρ ≤ ‖x2‖ and
|x2| ≤ R.

In [1] the authors give an existence result based on the following properties:

Property A1 ([1]). Let P be a cone in a real Banach space E and Ω be
a bounded open subset of E with 0 ∈ Ω. Then a contiuous functional β:P →
[0,∞) is said to satisfy Property A1 if one of the following conditions hold:

(a) β is convex, β(0) = 0, β(x) 6= 0 if x 6= 0, and inf
x∈P∩∂Ω

β(x) > 0,

(b) β is sublinear, β(0) = 0, β(x) 6= 0 if x 6= 0, and inf
x∈P∩∂Ω

β(x) > 0,

(c) β is concave and unbounded.

Property A2 ([1]). Let P be a cone in a real Banach space E and Ω be
a bounded open subset of E with 0 ∈ Ω. Then a contiuous functional β:P →
[0,∞) is said to satisfy Property A2 if one of the following conditions hold:

(a) β is convex, β(0) = 0, β(x) 6= 0 if x 6= 0,
(b) β is sublinear, β(0) = 0, β(x) 6= 0 if x 6= 0,
(c) β(x+ y) ≥ β(x) + β(y) for all x, y ∈ P , β(0) = 0, β(x) 6= 0 if x 6= 0.

We present now the existence result.

Theorem 1.7 ([1]). Let Ω1 and Ω2 be two bounded open sets in a Banach
space E such that 0 ∈ Ω1 and Ω1 ⊆ Ω2 and P is a cone in E. Suppose A:P ∩
(Ω2 − Ω1) → P is completely continuous, α and ψ are nonnegative continuous
functionals on P , and one of the two conditions:

(a) α satisfies Property A1 with α(Ax) ≥ α(x), for all x ∈ P ∩ ∂Ω1, and ψ
satisfies Property A2 with ψ(Ax) ≤ ψ(x), for all x ∈ P ∩ ∂Ω2; or

(b) α satisfies Property A2 with α(Ax) ≤ α(x), for all x ∈ P ∩ ∂Ω1, and ψ
satisfies Property A1 with ψ(Ax) ≥ ψ(x), for all x ∈ P ∩ ∂Ω2,

is satisfied. Then A has at least one fixed point in P ∩ (Ω2 − Ω1).

Theorem 1.7 provide a generalization of some compression-expansion argu-
ments that have utilized the norm or functionals in obtaining the existence of at
least one fixed point.

Avery, Henderson and O’Regan proved the result above using the fixed point
index.
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In our paper we obtain the existence results on a direct way, imposing the
appropriate conditions on the functionals that appear. Moreover, we give ab-
stract results that extend and complement previous results from the literature,
such as Theorem 1.5 from [1] (At least one of our functionals does not satisfies
neither Property A1, nor Property A2).

Also, in [3] the author gives the following result:

Theorem 1.8 ([3]). Let (X, | · |) be a normed linear space, K ⊂ X a positive
cone, “�” the order relation induced by K and “≺” the strict order relation
induced by K. Let be Kr,R = {x ∈ K : r ≤ |x| ≤ R}, where r,R ∈ R+,
0 < r < R. We assume that N :Kr,R → K is a completely continuous operator
and ϕ,ψ:K → R+. Also, assume that the following conditions are satisfied:

(a)


ϕ(0) = 0,

there exists h ∈ K \ {0} such that ϕ(λh) > 0

for all λ ∈ (0, 1],

ϕ(x+ y) ≥ ϕ(x) + ϕ(y) for all x, y ∈ K \ {0},

(b) ψ(αx) > ψ(x) for all α > 1 and for all x ∈ K with |x| = R.

(c)

{
ϕ(x) ≤ ϕ(Nx) if |x| = r,

ψ(x) ≥ ψ(Nx) if |x| = R.

Then N has a fixed point in Kr,R.

For other generalizations of Krasnosel’skĭı’s fixed point theorem in cones see
the papers [2] , [8] and [12].

For applications of Krasnosel’skĭı’s fixed point theorem in cones, the reader
may see the papers [4]–[6] and [13].

In our paper we are concerned to use conditions of type

ϕ(u) ≥ ϕ(Nu) if ϕ(u) = r,

instead of condition |u| ≥ |Nu| if |u| = r, that is assumed in Krasnosel’skĭı’s
fixed point theorem.

2. The main results

In this section we will assume throughout that (X, | · |) is a normed linear
space, K ⊂ X is a positive cone, “�” is the order relation induced by K , ”≺”
the strict order relation induced by K and R+ := [0,∞), R∗+ := (0,∞).
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Theorem 2.1. Let Kr,R = {x ∈ K : r ≤ ϕ(x) ≤ R} be nonempty, where
r,R ∈ R∗+, r < R and ϕ,ψ:K → R+ continuous functionals. Assume that
N :Kr,R → K is a completely continuous operator with N(Kr,R) relatively com-
pact, ϕ(0) = 0 and ϕ is strictly increasing with respect to order relation induced
by K (in the sense that x, y ∈ K with x < y implies ϕ(x) < ϕ(y)). Also, let
ϕ−1(0) := {x ∈ K : ϕ(x) = 0} and assume that the following conditions are
satisfied:

(a) ψ ≥ ϕ on K,
(b) ϕ(αx) = αϕ(x), for all x ∈ K and for all α ∈ (0,∞),
(c) ψ(αx) = αψ(x) for all x ∈ K and for all α ∈ (0, 1),
(d) ψ(αx) ≥ αψ(x) for all x ∈ K with ψ(x) ≥ R and for all α ∈ (1,∞),
(e) N(ϕ−1(r)) bounded, where ϕ−1(r) := {x ∈ K : ϕ(x) = r}
(f) ϕ(x) ≤ ϕ(Nx) if ϕ(x) = r and ψ(x) ≥ ψ(Nx) if ψ(x) ≥ R.

Then N has a fixed point u∗in Kr,R.

Proof. Let h ∈ K \ ϕ−1(0) and N1:K → K be defined as

N1(u) =



h if ϕ(u) = 0,(
1− ϕ(u)

r

)
h+

ϕ(u)
r

N

(
r

ϕ(u)
u

)
if 0 < ϕ(u) < r,

N(u) if r ≤ ϕ(u) ≤ R,

N

(
R

ϕ(u)
u

)
if ϕ(u) > R.

Since N is completely continuous and ϕ is continuous, (a)–(c), (e) and (f) imply
that N1 is completely continuous ((b) and (e) imply that

lim
ϕ(u)→0

N1(u) = lim
ϕ(u)→0

(
1− ϕ(u)

r

)
h+ lim

ϕ(u)→0

ϕ(u)
r

N

(
r

ϕ(u)
u

)
= h = N1(v),

where ϕ(u) → 0 if and only if u → v ∈ ϕ−1(0) since ϕ is continuous). We
have that N1(K) ⊂ conv({h} ∪N(Kr,R)). Since N(Kr,R) is relatively compact
it follows that conv({h} ∪ N(Kr,R)) is relatively compact by Mazur’s lemma.
So N1(K) is a relatively compact set. From our hypothesis we have that K
is a convex and closed set and since N1(K) ⊂ K is relatively compact, from
Schauder’ s theorem it follows that there exists u∗ ∈ K with N1(u∗) = u∗. We
have to consider three cases.

Case 1. Suppose that ϕ(u∗) = 0. We have u∗ = N1(u∗) = h, so ϕ(h) = 0,
h ∈ ϕ−1(0), a contradiction with h ∈ K \ ϕ−1(0).
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Case 2. Suppose that 0 < ϕ(u∗) < r. We obtain(
1− ϕ(u∗)

r

)
h+

ϕ(u∗)
r

N

(
r

ϕ(u∗)
u∗

)
= u∗,(

r

ϕ(u∗)
− 1

)
h+N

(
r

ϕ(u∗)
u∗

)
=

r

ϕ(u∗)
u∗.

Let λ := r/ϕ(u∗) − 1, u0 := (r/ϕ(u∗))u∗. Because ϕ(u∗) < r we have that
r/ϕ(u∗) > 1, so λ > 0. Also, from (b) we have

ϕ

(
r

ϕ(u∗)
u∗

)
=

r

ϕ(u∗)
ϕ(u∗) = r,

so ϕ(u0) = r. We obtain λh+N(u0) = u0 so, ϕ(u0) = ϕ(N(u0) + λh).
Because λ > 0 we have λh > 0 and N(u0) + λh > N(u0). Since ϕ is

strictly increasing we obtain ϕ(N(u0) + λh) > ϕ(N(u0)), so ϕ(u0) > ϕ(N(u0))
for ϕ(u0) = r, a contradiction with (f).

Case 3. Suppose that ϕ(u∗) > R. It follows that

N

(
R

ϕ(u∗)
u∗

)
= u∗.

So we obtain that β := ϕ(u∗)/R > 1. We have

N

(
R

ϕ(u∗)
u∗

)
=

(
R

ϕ(u∗)
u∗

)
ϕ(u∗)
R

.

Let
u1 :=

R

ϕ(u∗)
u∗ =

1
β
u∗ with

1
β
< 1.

So

(2.1) N(u1) = βu1

and from (a), (c) we obtain

ψ

(
R

ϕ(u∗)
u∗

)
=

R

ϕ(u∗)
ψ(u∗) ≥ R,

so ψ(u1) ≥ R. From (d) we have

(2.2) ψ(βu1) ≥ βψ(u1) > ψ(u1).

From (2.1) and (2.2) we obtain

ψ(N(u1)) > ψ(u1) for ψ(u1) ≥ R,

a contradiction with (f). So u∗ ∈ K with r ≤ ϕ(u∗) ≤ R. It follows N(u∗) = u∗

with u∗ ∈ Kr,R. �

Remark 2.2. (a) Let | · |, ‖ · ‖ be two norms with |y| < |x| if y < x and
|x| ≤ ‖x‖ for all x ∈ K. Then ϕ(x) := |x| and ψ(x) := ‖x‖ are examples of
functionals that satisfy the hypothesis of Theorem 2.1.
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(b) We note that the conditions on ϕ from Theorem 2.1 generalize the con-
dition on | · | from Theorem 1.6.

Theorem 2.3. Let Kr,R = {x ∈ K : r ≤ ϕ(x) ≤ R} be nonempty, where
r,R ∈ R∗+, r < R and ϕ,ψ:K → R+ continuous functionals. Assume that
N :Kr,R → K is a completely continuous operator with N(Kr,R) relatively com-
pact, ϕ(0) = 0. Let ϕ−1(0) := {x ∈ K : ϕ(x) = 0} and assume that there
exists h ∈ K \ ϕ−1(0) such that ϕ(λh) > 0 for all λ > 0. Also, assume that the
following conditions are satisfied:

(a) ψ ≥ ϕ on K,
(b) ϕ(αx) = αϕ(x) for all x ∈ K and for all α ∈ (0,∞),
(c) ϕ(x+ y) ≥ ϕ(x) + ϕ(y), for all x, y ∈ K,
(d) ψ(αx) = αψ(x) for all x ∈ K and for all α > 0,
(e) N(ϕ−1(r)) bounded, where ϕ−1(r) := {x ∈ K : ϕ(x) = r},
(f) ϕ(x) ≤ ϕ(Nx) if ϕ(x) = r and ψ(x) ≥ ψ(Nx) if ψ(x) ≥ R.

Then N has a fixed point u∗ ∈ Kr,R.

Proof. Let N1:K → K,

N1(u) =



h if ϕ(u) = 0,(
1− ϕ(u)

r

)
h+

ϕ(u)
r

N

(
r

ϕ(u)
u

)
if 0 < ϕ(u) < r,

N(u) if r ≤ ϕ(u) ≤ R,

N

(
R

ϕ(u)
u

)
if ϕ(u) > R.

Since ϕ is continuous and N is completely continuous, from (a), (b), (e) we
obtain that N1 is completely continuous. Using the same arguments like in
Theorem 2.1, by Schauder’s theorem we have that there exists u∗ ∈ K so that
N1(u∗) = u∗.We have to analyze three cases.

Case 1. If ϕ(u∗) = 0, we have u∗ = N1(u∗) = h, so ϕ(h) = 0, h ∈ ϕ−1(0),
a contradiction with h ∈ K \ ϕ−1(0).

Case 2. If 0 < ϕ(u∗) < r. We have(
1− ϕ(u∗)

r

)
h+

ϕ(u∗)
r

N

(
r

ϕ(u∗)
u∗

)
= u∗,(

r

ϕ(u∗)
− 1

)
h+N

(
r

ϕ(u∗)
u∗

)
=

r

ϕ(u∗)
u∗.

Let
u0 :=

r

ϕ(u∗)
u∗ and λ :=

r

ϕ(u∗)
− 1 > 0.

From (b) we obtain

ϕ(u0) = ϕ

(
r

ϕ(u∗)
u∗

)
=

r

ϕ(u∗)
ϕ(u∗) = r.
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Also u0 = λh+N(u0), so

(2.3) ϕ(u0) = ϕ(λh+N(u0)).

From (c) we obtain that

(2.4) ϕ(λh+N(u0)) ≥ ϕ(λh) + ϕ(N(u0)) > ϕ(N(u0)).

From (2.3) and (2.4) we have thatϕ(u0) > ϕ(N(u0)) for ϕ(u0) = r, a contradic-
tion with (f).

Case 3. If ϕ(u∗) > R. We have that β := ϕ(u∗)/R > 1, and let u1 :=
(R/ϕ(u∗))u∗. We have that

N

(
R

ϕ(u∗)
u∗

)
= u∗ =

(
R

ϕ(u∗)
u∗

)
ϕ(u∗)
R

,

so N(u1) = βu1. From (d) and (a) we obtain

(2.5) ψ(u1) = ψ

(
1
β
u∗

)
=

1
β
ψ(u∗) =

R

ϕ(u∗)
ψ(u∗) ≥ R.

From (d) we have that

(2.6) ψ(N(u1)) = ψ(βu1) = βψ(u1) > ψ(u1)

From (2.5) and (2.6) we obtain a contradiction with (f).
It follows that N(u∗) = u∗ with r ≤ ϕ(u∗) ≤ R. �

Remark 2.4. If X := C([0, 1],R+), I ⊂ [0, 1], I 6= [0, 1], η > 0, ‖x‖ :=
max

t∈[0,1]
x(t), K := {x ∈ X : x(t) ≥ η‖x‖ for all t ∈ I} then ϕ(x) := min

t∈I
x(t) and

ψ(x) := max
t∈[0,1]

x(t) are functionals that satisfy Theorem 2.3.

Theorem 2.5. Let ϕ,ψ:K → R+ be continuous functionals, ϕ(0) = 0,
ϕ−1(0) := {x ∈ K : ϕ(x) = 0} and there exists h ∈ K \ ϕ−1(0) such that
ϕ(λh) > 0 for all λ > 0. Also assume that ψ ≥ ϕ on K and let Kr,R := {x ∈
K : r ≤ ϕ(x) ≤ ψ(x) ≤ R} be nonempty, where r,R ∈ R∗+, r < R. Assume
that N :Kr,R → K is a completely continuous operator with N(Kr,R) relatively
compact. Also, assume that the following conditions are satisfied:

(a) ϕ(αx) = αϕ(x) for all x ∈ K and for all α ∈ (1,∞),
(b) ϕ(x+ y) ≥ ϕ(x) + ϕ(y), for all x, y ∈ K,
(c) ψ(αx) = αψ(x) for all x ∈ K and for all α ≥ 0,
(d) Rϕ(x) ≥ rψ(x) for all x ∈ K,
(e) N(ϕ−1(r)) bounded, where ϕ−1(r) := {x ∈ K : ϕ(x) = r},
(f) ϕ(x) ≤ ϕ(Nx) if ϕ(x) = r and ψ(x) ≥ ψ(Nx) if ψ(x) = R.

Then N has a fixed point u∗ ∈ Kr,R.
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Proof. Let N1:K → K,

N1(u) =



h if ϕ(u) = 0,(
1− ϕ(u)

r

)
h+

ϕ(u)
r

N

(
r

ϕ(u)
u

)
if 0 < ϕ(u) < r and ψ(u) ≤ R,

N(u) if r ≤ ϕ(u) ≤ ψ(u) ≤ R,

N

(
R

ψ(u)
u

)
if ψ(u) > R.

N1 is well defined. Indeed, if 0 < ϕ(u) < r and ψ(u) ≤ R, from (a) and (c), we
have that

ϕ

(
r

ϕ(u)
u

)
=

r

ϕ(u)
ϕ(u) = r ≤ ψ

(
r

ϕ(u)
u

)
=

r

ϕ(u)
ψ(u) ≤ R

(from (d)), so (r/ϕ(u))u ∈ Kr,R and N((r/ϕ(u))u) is defined.
Since ϕ is continuous and N is completely continuous, from (a) and (e),

we obtain that N1 is completely continuous (we use the same argument like in
Theorem 2.1). Using the same arguments like in Theorem 2.1, by Schauder’s
theorem we have that there exists u∗ ∈ K so that N1(u∗) = u∗. We have to
analyze three cases.

Case 1. If ϕ(u∗) = 0, we have u∗ = N1(u∗) = h, so ϕ(h) = 0, h ∈ ϕ−1(0),
a contradiction with h ∈ K \ ϕ−1(0).

Case 2. Suppose that 0 < ϕ(u∗) < r and ψ(u∗) ≤ R. We obtain(
1− ϕ(u∗)

r

)
h+

ϕ(u∗)
r

N

(
r

ϕ(u∗)
u∗

)
= u∗,(

r

ϕ(u∗)
− 1

)
h+N

(
r

ϕ(u∗)
u∗

)
=

r

ϕ(u∗)
u∗.

Let
u0 :=

r

ϕ(u∗)
u∗ and λ :=

r

ϕ(u∗)
− 1 > 0,

because ϕ(u∗) < r. From (a) we obtain

ϕ(u0) = ϕ

(
r

ϕ(u∗)
u∗

)
=

r

ϕ(u∗)
ϕ(u∗) = r,

since r/ϕ(u∗) > 1. Also, u0 = λh+N(u0), so using (b), we have that

ϕ(u0) = ϕ(λh+N(u0)) ≥ ϕ(N(u0)) + ϕ(λh) > ϕ(N(u0)),

so
ϕ(u0) > ϕ(N(u0)) for ϕ(u0) = r,

a contradiction with (f).

Case 3. Suppose that ψ(u∗) > R. Then

N

(
R

ψ(u∗)
u∗

)
= u∗
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and let β := ψ(u∗)/R > 1. We have that

N

(
R

ψ(u∗)
u∗

)
=

(
R

ψ(u∗)
u∗

)
ψ(u∗)
R

.

Let

u1 :=
R

ψ(u∗)
u∗ =

1
β
u∗.

So

(2.7) N(u1) = βu1

and from (c) we obtain

(2.8) ψ(u1) = ψ

(
R

ψ(u∗)
u∗

)
=

R

ψ(u∗)
ψ(u∗) = R.

From (c) we have that

(2.9) ψ(βu1) = βψ(u1) > ψ(u1)

From (2.7)–(2.9) we obtain

ψ(N(u1)) > ψ(u1) for ψ(u1) = R,

a contradiction with (f). The conclusion follows. �

Theorem 2.6. Let r, R be with 0 < r < R and ϕ,ψ:K → R+ continuous
functionals, ψ(0) = 0, ψ−1(0) := {x ∈ K : ψ(x) = 0} and there exists h ∈ K \
ψ−1(0) such that ψ(λh) > 0 for all λ > 0. Also, assume that ψ ≥ ϕ, Rϕ ≥ rψ on
K and c1 := r/R, c2 := R/r. We define Kr,R := {x ∈ K : r ≤ ψ(x), ϕ(x) ≤ R}
and suppose that is a nonempty set. Assume that N :Kr,R → K is a completely
continuous operator with N(Kr,R) relatively compact. Also, assume that the
following conditions are satisfied:

(a) ψ(αx) = αψ(x) for all x ∈ K and for all α ≥ 0,
(b) ψ(x+ y) ≥ ψ(x) + ψ(y) for all x, y ∈ K,
(c) ϕ(αx) = αϕ(x) for all x ∈ K and for all α ≥ 0,
(d) N(ψ−1(r)) bounded, where ψ−1(r) := {x ∈ K : ψ(x) = r},
(e) ϕ and ψ are increasing on K,
(f) c1N(x) ≤ N(c1x) for all x ∈ Kr,R with ψ(x) = R and c2N(x) ≥ N(c2x)

for all x ∈ Kr,R with ϕ(x) = r,
(g) ϕ(x) ≥ ϕ(Nx) if ϕ(x) = r and ψ(x) ≤ ψ(Nx) if ψ(x) = R.

Then N has a fixed point u0 ∈ Kr,R.

Proof. Let ϕ′, ψ′:K → R+ be continuous functionals

ϕ′(u) := ϕ(c2u), ψ′(u) := ψ(c1u).
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Firstly we prove that

(2.10) ψ′(u) ≤ ϕ′(u),

which is, using (a), (c) and the definitions of ψ′, ϕ′,

r

R
ψ(u) ≤ R

r
ϕ(u),

(
r

R

)2

ψ(u) ≤ ϕ(u),

which is true since

ϕ(u) ≥ r

R
ψ(u) ≥

(
r

R

)2

ψ(u),

from our hypothesis.
Now define K ′

r,R := {x ∈ K : c1r ≤ ψ′(x) ≤ ϕ′(x) ≤ c2R}. We have that
x0 ∈ K ′

r,R if and only if

c1r ≤ ψ′(x0) ≤ ϕ′(x0) ≤ c2R,

which may be written equivalently (basing on (2.10))

c1r ≤ c1ψ(x0) and c2ϕ(x0) ≤ c2R,

r ≤ ψ(x0) and ϕ(x0) ≤ R,

which is x0 ∈ Kr,R. It follows that

(2.11) K ′
r,R = Kr,R 6= Φ

We have that ϕ(u) = r if and only if

ϕ′(u)
c2

= r,
r

R
ϕ′(u) = r, ϕ′(u) = R.

So, from (g) we deduce, if ϕ′(u) = R, that

ϕ(u) ≥ ϕ(Nu), c2ϕ(u) ≥ c2ϕ(Nu), ϕ(c2u) ≥ ϕ(c2Nu)

and from (e) and (f) we have that ϕ(c2Nu) ≥ ϕ(N(c2u)) and it follows that
ϕ(c2u) ≥ ϕ(N(c2u)).

Since ϕ′(c2u) = c2ϕ
′(u) = c2R if and only if ϕ′(u) = R, we deduce that

ϕ(x1) ≥ ϕ(N(x1)) if ϕ′(x1) = c2R,

c2ϕ(x1) ≥ c2ϕ(N(x1)) if ϕ′(x1) = c2R,

ϕ(c2x1) ≥ ϕ(c2N(x1)) if ϕ′(x1) = c2R,

which is

(2.12) ϕ′(x1) ≥ ϕ′(N(x1)) if ϕ′(x1) = c2R.
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We have that ψ(u) = R if and only if

ψ′(u)
c1

= R,
R

r
ψ′(u) = R, ψ′(u) = r.

So, from (g) we deduce, if ψ′(u) = r, that

ψ(u) ≤ ψ(Nu), c1ψ(u) ≤ c1ψ(Nu), ψ(c1u) ≤ ψ(c1Nu),

and from (e) and (f) we have that ψ(c1Nu) ≤ ψ(N(c1u)) it follows that

ψ(c1u) ≤ ψ(N(c1u)).

Since ψ′(c1u) = c1ψ
′(u) = c1r if and only if ψ′(u) = r, we deduce that

ψ(x2) ≤ ψ(N(x2)) if ψ′(x2) = c1r,

c1ψ(x2) ≤ c1ψ(N(x2)) if ψ′(x2) = c1r,

ψ(c1x2) ≤ ψ(c1N(x2)) if ψ′(x2) = c1r,

which is

(2.13) ψ′(x2) ≤ ψ′(N(x2)) if ψ′(x2) = c1r.

From (a)–(c) and the definitions of ϕ′, ψ′ we deduce the following relations:

ψ′(αu) = αψ′(u) for all u ∈ K and all α ≥ 0,(2.14)

ψ′(x+ y) ≥ ψ′(x) + ψ′(y) for all x, y ∈ K,(2.15)

ϕ′(αu) = αϕ′(u) for all u ∈ K and all α ≥ 0,(2.16)

ψ′(0) = 0 and ψ′(λh) > 0 for all λ > 0.(2.17)

We have ψ′(h) 6= 0 if and only if ψ(h) 6= 0. Also, since ψ(x) = r if and only if
ψ′(x) = c1r, from (d) we deduce that

(2.18) N((ψ′)−1(c1r)) is bounded, where (ψ
′
)−1(c1r) := {x ∈ K : ψ′(x) = c1r},

Also, since ψ ≥ ϕ, we have that c2Rc1ψ(x) ≥ c1rc2ϕ(x) which is

(2.19) (c2R)ψ′(x) ≥ (c1r)ϕ′(x)

From the relations (2.12)–(2.19) we deduce that ϕ′, ψ′, K ′
r,R and N satisfy the

hypothesis of Theorem 2.5 with ϕ′ instead of ψ, ψ′ instead of ϕ and K ′
r,R instead

of Kr,R. So, from Theorem 2.5 it follows that N has a fixed poit u0 ∈ K ′
r,R and

from (2.11) we obtain that u0 ∈ Kr,R and the proof is completed. �



Generalizations of Krasnosel’skĭı’s Fixed Point Theorem 35

Theorem 2.7. Let ϕ,ψ, δ:K → R+ be continuous functionals, δ(0) = 0,
δ−1(0) := {x ∈ K : δ(x) = 0} and there exists h ∈ K\δ−1(0) such that ϕ(λh) > 0
for all λ > 0. Let Kr,R := {x ∈ K : r ≤ δ(x) ≤ R} be nonempty, where r,R ∈
R∗+, r < R. Assume that N :Kr,R → K is a completely continuous operator
with N(Kr,R) relatively compact. Also, assume that the following conditions are
satisfied:

(a) δ(αx) = αδ(x) for all x ∈ K and for all α ≥ 0,
(b) ϕ(x+ y) ≥ ϕ(x) + ϕ(y), for all x, y ∈ K,
(c) ψ(αx) ≥ αψ(x) for all x ∈ K with δ(x) = R and for all α ∈ (1,∞),
(d) ψ(x) > 0 for all x ∈ K with δ(x) = R,
(f) N(δ−1(r)) bounded, where δ−1(r) := {x ∈ K : δ(x) = r},
(g) ϕ(x) ≤ ϕ(Nx) if δ(x) = r and ψ(x) ≥ ψ(Nx) if δ(x) = R.

Then N has a fixed point u∗ ∈ Kr,R.

Proof. Let N1:K → K, be

N1(u) =



h if δ(u) = 0,(
1− δ(u)

r

)
h+

δ(u)
r

N

(
r

δ(u)
u

)
if 0 < δ(u) < r,

N(u) if r ≤ δ(u) ≤ R,

N

(
R

δ(u)
u

)
if δ(u) > R.

Since δ:K → R+ is continuous functional, δ(0) = 0, N is a completely continuous
operator and from (a), (e) we have that N1 is completely continuous. From our
hypothesis, using the same arguments like in Theorem 2.1, by Schauder’s theorem
we have that there exists u∗ ∈ K such that N1(u∗) = u∗.

We have to consider three cases.

Case 1. Suppose that δ(u∗) = 0. We have u∗ = N1(u∗) = h, so δ(h) = 0,
h ∈ δ−1(0), a contradiction with h ∈ K \ δ−1(0).

Case 2. Suppose that 0 < δ(u∗) < r. Then(
1− δ(u∗)

r

)
h+

δ(u∗)
r

N

(
r

δ(u∗)
u∗) = u∗,(

r

δ(u∗)
− 1

)
h+N

(
r

δ(u∗)
u∗

)
=

r

δ(u∗)
u∗.

Let

u0 :=
r

δ(u∗)
u∗, λ :=

r

δ(u∗)
− 1.

We obtain λ > 0 and

(2.20) λh+N(u0) = u0.
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From (a) we have that

(2.21) δ(u0) = δ

(
r

δ(u∗)
u∗

)
=

r

δ(u∗)
δ(u∗) = r.

From (2.20) and (b) we obtain

(2.22) ϕ(u0) = ϕ(λh+N(u0)) ≥ ϕ(λh) + ϕ(N(u0)) > ϕ(N(u0)).

From (2.21) and (2.22) it follows ϕ(u0) > ϕ(N(u0)) if δ(u0) = r, a contradiction
with (f).

Case 3. Suppose that δ(u∗) > R. Then

N

(
R

δ(u∗)
u∗

)
= u∗.

Let

u1 :=
R

δ(u∗)
u∗, β :=

δ(u∗)
R

> 1.

We obtain that

N

(
R

δ(u∗)
u∗

)
=

(
R

δ(u∗)
u∗

)
δ(u∗)
R

,

so

(2.23) N(u1) = βu1

From (a) we have that

(2.24) δ(u1) = δ

(
R

δ(u∗)
u∗

)
=

R

δ(u∗)
δ(u∗) = R.

Using (c), (d), (2.23) and (2.24) we obtain that

(2.25) ψ(N(u1)) = ψ(βu1) ≥ βψ(u1) > ψ(u1).

From (2.24) and (2.25) it follows ψ(N(u1)) > ψ(u1) for δ(u1) = R, a contradic-
tion with (f). So u∗ ∈ Kr,R with N(u∗) = u∗, the conclusion. �

Theorem 2.8. Let ϕ,ψ, δ:K → R+ be continuous functionals, δ(0) = 0,
δ−1(0) := {x ∈ K : δ(x) = 0} and there exists h ∈ K\ δ−1(0) such that ψ(λh) >
0 for all λ > 0. Let Kr,R := {x ∈ K : r ≤ δ(x) ≤ R} be nonempty, where r,R ∈
R∗+, r < R. Assume that N :Kr,R → K is a completely continuous operator
with N(Kr,R) relatively compact. Also, assume that the following conditions are
satisfied:

(a) δ(αx) = αδ(x) for all x ∈ K and for all α ≥ 0,
(b) ψ(x+ y) ≥ ψ(x) + ψ(y), for all x, y ∈ K,

(c) ψ

(
R

r
x

)
=
R

r
ψ(x) for all x ∈ K,

(d) ϕ(x) > 0 for all x ∈ K with δ(x) = R,
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(e)


ϕ

(
r

R
x

)
=

r

R
ϕ(x) for all x ∈ K,

ϕ(αx) ≥ αϕ(x) for all x ∈ K with δ(x) = R

and for all α ∈ (1,∞),

(f) N(δ−1(R)) bounded, where δ−1(R) := {x ∈ K : δ(x) = R},
(g) ϕ(x) ≥ ϕ(Nx) if δ(x) = r and ψ(x) ≤ ψ(Nx) if δ(x) = R.

Then N has a fixed point u0 ∈ Kr,R.

Proof. Let be N∗:Kr,R → K be defined as

N∗(u) =
(
R+ r

δ(u)
− 1

)−1

N

((
R+ r

δ(u)
− 1

)
u

)
.

Also, let be

λ :=
(
R+ r

δ(u)
− 1

)−1

.

So we have that

N∗(u) = λN

(
1
λ
u

)
.

If δ(u) = r we obtain λ = r/R and using (a) we have that

(2.26) δ

(
1
λ
u

)
=

1
λ
δ(u) = R

From (2.26) and (g) we deduce that

ψ

(
1
λ
u

)
≤ ψ

(
N

(
1
λ
u

))
= ψ

(
1
λ
N∗(u)

)
and from (c) we have that

1
λ
ψ(u) ≤ 1

λ
ψ(N∗(u)),

so

(2.27) ψ(u) ≤ ψ(N∗(u)) if δ(u) = r.

If δ(u) = R we have that λ = R/r and using (a) we have that

(2.28) δ

(
1
λ
u

)
=

1
λ
δ(u) = r

From (2.28) and (g) we deduce that

ϕ

(
1
λ
u

)
≥ ϕ

(
N

(
1
λ
u

))
= ϕ

(
1
λ
N∗(u)

)
and from (e) we have that

1
λ
ϕ(u) ≥ 1

λ
ϕ(N∗(u)),
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so

(2.29) ϕ(u) ≥ ϕ(N∗(u)) if δ(u) = R.

Since N∗(u) = λN(uλ), from (2.27), (2.29) and (f) we deduce that N∗ satisfies
the conditions (e)–(f) from Theorem 2.7. Also, the conditions (a)–(e) imply that
ϕ, ψ and δ satisfy the conditions the conditions (a)–(d) and (f) from Theorem 2.7,
with ϕ and ψ changing their places. So, we may apply Theorem 2.7 and we obtain
that there exists u∗ ∈ Kr,R such that N∗(u∗) = u∗, so

N

(
1
λ
u∗

)
=

1
λ
u∗, where λ =

(
R+ r

δ(u∗)
− 1

)−1

.

Let be

u0 :=
1
λ
u∗ =

(
R+ r

δ(u∗)
− 1

)
u∗.

We have that

(2.30) N(u0) = u0

and from (a) we obtain

δ(u0) = δ

((
R+ r

δ(u∗)
− 1

)
u∗

)
=

(
R+ r

δ(u∗)
− 1

)
δ(u∗) = R+ r − δ(u∗)

and, since r ≤ δ(u∗) ≤ R, we obtain that

(2.31) r ≤ δ(u0) ≤ R.

From (2.30) and (2.31) the conclusion follows. �

Remark 2.9. Notice that function ψ from Theorem 2.5 does not satisfies
neither Property A1, nor Property A2. Also, ϕ from Theorem 2.6 does not
satisfies neither Property A1, nor Property A2. Thus our theorems clearly extend
Theorem 1.7.

3. Applications

In this section we will give some applications of the theorems from previous
section. We are concerned with the existence of at least one positive solution for
the second order boundary value problem,

u′′(t) + f(t, u(t)) = 0, 0 ≤ t ≤ 1,(3.1)

u(0) = u(1) = 0,(3.2)

where f : [0, 1] × R+ → [0,∞) is continuous. We look for solutions u ∈ C2[0, 1]
of (3.1) with (3.2) which are both nonnegative and concave on [0, 1]. We will
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apply theorems from previous section to a completely continuous operator whose
kernel G(t, s) is the Green’s function for

(3.3) u′′ = 0,

satisfying (3.2). We have that

(3.4) G(t, s) =

{
t(1− s) if 0 ≤ t ≤ s ≤ 1,

s(1− t) if 0 ≤ s ≤ t ≤ 1.

G(t, s) has the following properties, which are necessary to our results:

(3.5)


G(t, s) ≤ G(s, s), if 0 ≤ t, s ≤ 1,
1
4
G(s, s) ≤ G(t, s) if 0 ≤ s ≤ 1,

1
4
≤ t ≤ 3

4
,∫ 1

0

G(s, s) ds =
1
6
,

∫ 3/4

1/4

G(s, s) ds =
11
96
.

Let be

(3.6)


I :=

[
1
4
,
3
4

]
,

K :=
{
u ∈ C[0, 1] : u ≥ 0 on [0, 1], u(t) ≥ 1

4
‖u‖ for all t ∈ I

}
,

ϕ, ψ:K → R+, ϕ(u) := mint∈I u(t), ψ(u) := maxt∈[0,1] u(t) = ‖u‖.

This technique with min and max functionals is also used in [1] and many other
papers.

It is obviously that K is a cone. Also, u ∈ K is a solution of (3.1) with (3.2)
if and only if

(3.7) u(t) =
∫ 1

0

G(t, s)f(s, u(s)) ds.

Firstly, we will impose conditions on f which ensure the existence of at least one
positive solution of (3.1) with (3.2) by applying Theorem 2.5.

Theorem 3.1. Let be the positive numbers M, r and R such that 0 < r < R,
r ≤ M/35, 64r/11 ≤ R and define f1: [0, 1]×K → [0,∞), f1(s, x) = f(s, x(s)).
Also, suppose f1 satisfies the following conditions:

(a) f1(s, x) ≤M for all s ∈ [0, 1], for all x ∈ K with ϕ(x) = r,
(b) f1(s, x) ≥ 384r/11 for all s ∈ I, for all x ∈ K with ϕ(x) = r,
(c) f1(s, x) ≤ 6R for all s ∈ [0, 1], for all x ∈ K with ψ(x) = R.

Then (3.1) with (3.2) has a solution u∗ such that

r ≤ min
t∈[1/4,3/4]

u∗(t) ≤ max
t∈[0,1]

u∗(t) ≤ R.
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Proof. Let be Kr,R := {u ∈ K : r ≤ ϕ(u) ≤ ψ(u) ≤ R}. Define the
completely continuous operator N by

N(u)(t) =
∫ 1

0

G(t, s)f(s, u(s)) ds.

Basing on (3.7), we seek a fixed poit of N and we show that N satisfies the
conditions of the Theorem 2.5. For u ∈ K we have, using (3.5), that, for t ∈ I,

N(u)(t) =
∫ 1

0

G(t, s)f(s, u(s)) ds ≥ 1
4

∫ 1

0

G(s, s)f(s, u(s)) ds

≥ 1
4

∫ 1

0

max
t∈[0,1]

G(t, s)f(s, u(s)) ds

≥ 1
4

max
t∈[0,1]

∫ 1

0

G(t, s)f(s, u(s)) ds =
1
4
‖N(u)‖,

so N(u) ∈ K. It follows that N :Kr,R → K is well defined and completely
continuous.

For u ∈ Kr,R we have that ψ(u) = ‖u‖ ≤ R, so Kr,R is bounded, so it follows
that N(Kr,R) is relatively compact, since N is completely continuous.

From (3.6) we deduce that (for ‖u‖ > 0)

ϕ

ψ
≥ 1

4
on K

and from our hypothesis we have that r/R ≤ 1/4, so

ϕ

ψ
≥ r

R
on K, Rϕ ≥ rψ on K,

so ϕ and ψ satisfy the conditions (a)–(d) from Theorem 2.5. Also, the condition
(a) of our hypothesis implies that N satisfies the conditions (e) of Theorem 2.5.

From (b) and (3.5) we deduce, for ϕ(u) = r, that

(3.8) ϕ(Nu) = min
t∈I

∫ 1

0

G(t, s)f(s, u(s)) ds ≥
∫ 1

0

min
t∈I

G(t, s)f(s, u(s)) ds

≥ 1
4

∫ 3/4

1/4

G(s, s)
384
11

r ds =
(

96
11

∫ 3/4

1/4

G(s, s) ds
)
r = r = ϕ(u).

From (c) and (3.5) we deduce, for ψ(u) = R, that

(3.9) ψ(Nu) = max
t∈[0,1]

∫ 1

0

G(t, s)f(s, u(s)) ds ≤
∫ 1

0

max
t∈[0,1]

G(t, s)f(s, u(s)) ds

≤
∫ 1

0

G(s, s) max
s∈[0,1]

f(s, u(s)) ds = 6R
∫ 1

0

G(s, s) ds = R = ψ(u).

Now (3.8) and (3.9) imply the condition (f) from Theorem 2.5. So we may apply
Theorem 2.5 and the conclusion follows. �
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Example 3.2. Function

f(s, x) =
s+ 1
s+ 2

· x+ 2
x+ 3

is an example of function that satisfies Theorem 3.1. Indeed,(
x+ p

x+ q

)′
=

q − p

(x+ q)2
> 0 for q > p,

so f( · , · ) is increasing in both of its variables. It is obvious that f(s, x) < 1, for
all s ∈ [0, 1] and all x ∈ [0,∞), which implies (a).

For ϕ(x) = min
s∈I

x(s) = r, since f is increasing, we obtain that

(3.10) f(s, x(s)) ≥ f(s, r) for all s ∈ I.

We are looking for r > 0 such that

(3.11) f(s, r) ≥ 384
11

r for all s ∈ I.

Since
s+ 1
s+ 2

≥ 1
2

for all s ∈ I,

(3.11) is satisfied if we find r > 0 such that

r + 2
r + 3

· 1
2
≥ 385

11
r = 35r, 70r2 + 209r − 2 ≤ 0.

We have that ∆ = 2092 + 560 = 44241 and r1,2 = (−209±
√

∆)/140, so 0 <
r < max{r1, r2}. For r := 0.0095, (3.11) is satisfied and from (3.10) we obtain
condition (b) from Theorem 3.1.

For ψ(x) = max
s∈[0,1]

x(s) = R, since f is increasing, we obtain that

(3.12) f(s, x(s)) ≤ f(s,R), for all s ∈ [0, 1].

We are looking for R > 64r/11 such that

(3.13) f(s,R) ≤ 6R, for all s ∈ [0, 1].

and since s+1
s+2 ≤ 1 for all s ∈ [0, 1], (3.13) is satisfied if we find R > 64

11r such
that

R+ 2
R+ 3

≤ 6R, 0 ≤ 6R2 + 17R− 2.

We have that ∆′ = 172 + 48 and R1,2 = (−17±
√

∆′)/12, so R ≥ max{R1, R2}.
For R ≥ 0.12, (3.13) is satisfied and from (3.12) we obtain condition (c) from
Theorem 3.1.

So f satisfies Theorem 3.1, for r := 0.0095 and R := 0.12.

Now we give an application of Theorem 2.7.
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Theorem 3.3. Let be the positive numbers M , r and R such that 0 < r < R,
0 < M , r ≤ M/35 and define f1: [0, 1] × K → [0,∞), f1(s, x) = f(s, x(s)).
Suppose f1 satisfies the following conditions:

(a) f1(s, x) ≤M for all s ∈ [0, 1], for all x ∈ K with δ(x) = r,
(b) f1(s, x) ≥ 384r/11 for all s ∈ I, for all x ∈ K with δ(x) = r,
(c) f1(s, x) ≤ 6R for all s ∈ [0, 1], for all x ∈ K with δ(x) = R, where

δ(x) := (ϕ(x) + ψ(x))/2.

Then (3.1) with (3.2) has a solution u∗ such that

(3.14) r ≤
min

t∈[1/4,3/4]
u∗(t) + max

t∈[0,1]
u∗(t)

2
≤ R

and

(3.15) r ≤ max
t∈[0,1]

u∗(t) ≤ 4R and
r

4
≤ min

t∈[1/4,3/4]
u∗(t) ≤ R.

Proof. Let Kr,R := {x ∈ K : r ≤ δ(x) ≤ R}. Define the completely
continuous operator N by

N(u)(t) =
∫ 1

0

G(t, s)f(s, u(s)) ds.

From (a) it follows the condition (e) from Theorem 2.7. From ϕ, ψ and δ

definitions we deduce the conditions (a)–(d) from Theorem 2.7.
If x ∈ Kr,R we have that δ(x) ≤ R, so min

t∈[1/4,3/4]
x(t) ≤ R (on the contrary,

we obtain max
t∈[0,1]

x(t) ≥ min
t∈[1/4,3/4]

x(t) > R and min
t∈[1/4,3/4]

x(t) + max
t∈[0,1]

x(t) > 2R,

δ(x) > R, a contradiction). From (3.6) we obtain ‖x‖/4 ≤ R, so ‖x‖ ≤ 4R
and Kr,R is bounded. It follows that N(Kr,R) is relatively compact, since N is
completely continuous.

If δ(u) = r we have ϕ(u) ≤ r (on the contrary, we obtain ϕ(u) := min
t∈[1/4,3/4]

u(t)

> r, so max
t∈[0,1]

u(t) ≥ min
t∈[1/4,3/4]

u(t) > r and min
t∈[1/4,3/4]

u(t) + max
t∈[0,1]

u(t) > 2r,

δ(u) > r, a contradiction) and from (b) we obtain that

ϕ(Nu) = min
t∈[1/4,3/4]

∫ 1

0

G(t, s)f(s, u(s)) ds

≥
∫ 1

0

min
t∈[1/4,3/4]

G(t, s)f(s, u(s)) ds ≥ 1
4

∫ 3/4

1/4

G(s, s)
384
11

r ds = r ≥ ϕ(u),

so

(3.16) ϕ(u) ≤ ϕ(Nu) if δ(u) = r.

If δ(u) = R we have ψ(u) ≥ R (on the contrary, we obtain ψ(u) := max
t∈[0,1]

u(t) <

R, so min
t∈[1/4,3/4]

u(t) ≤ max
t∈[k0,1]

u(t) < R and min
t∈[1/4,3/4]

u(t) + max
t∈[0,1]

u(t) < 2R,
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δ(u) < R, a contradiction) and from (c) we obtain that

ψ(Nu) = max
t∈[0,1]

∫ 1

0

G(t, s)f(s, u(s)) ds ≤
∫ 1

0

max
t∈[0,1]

G(t, s)f(s, u(s)) ds

≤
∫ 1

0

G(s, s) max
s∈[0,1]

f(s, u(s)) ds = 6R
∫ 1

0

G(s, s) ds = R ≤ ψ(u),

so

(3.17) ψ(u) ≥ ψ(Nu) if δ(u) = R.

From (3.16) and (3.17) we deduce that N , ϕ, ψ and δ satisfy (a)–(f) from The-
orem 2.7. So it follows that there exists u∗ ∈ Kr,R with N(u∗) = u∗.

For u∗ ∈ Kr,R we obtain that

2r ≤ min
t∈[1/4,3/4]

u∗(t) + max
t∈[0,1]

u∗(t) ≤ 2R.

Since

2 min
t∈[1/4,3/4]

u∗(t) ≤ min
t∈[1/4,3/4]

u∗(t) + max
t∈[0,1]

u∗(t) ≤ 2 max
t∈[0,1]

u∗(t)

and
1
4

max
t∈[0,1]

u∗(t) ≤ min
t∈[1/4,3/4]

u∗(t),

we obtain that
r

4
≤ min

t∈[1/4,3/4]
u∗(t) ≤ R and r ≤ max

t∈[0,1]
u∗(t) ≤ 4R.

The conclusion follows. �

Example 3.4. f(s, x) := (s+ 1)/(x+ 1) is an example of funtion that satis-
fies the hypothesis of Theorem 3.3. Indeed, f(s, · ) is decreasing and f(s, x) ≤ 2
for all s ∈ [0, 1] and for all x ≥ 0, so it follows the condition (a) from Theorem 3.3.

If δ(x) = r it follows that

1
4
‖x‖ ≤ min

t∈I
x(t) ≤ r, ‖x‖ := max

t∈[0,1]
x(t) ≤ 4r

and since f(s, · ) is decreasing it follows that

(3.18) f(s, x(s)) ≥ f(s, 4r) =
s+ 1
4r + 1

≥ 1
4r + 1

for all s ∈ [0, 1] and for all x ≥ 0. We search for r > 0 such that

(3.19)
1

4r + 1
≥ 35r >

384
11

r, 0 ≥ 140r2 + 35r − 1,

which is true for r ∈ (0, (
√

1785− 35)/280]. So, from (3.18) and (3.19), it follows
that

(3.20) f(s, x(s)) ≥ 384
11

r for all s ∈ [0, 1] and for all x ≥ 0,
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If δ(x) = R we choose R > 0 such that

2 ≤ 6R,
1
3
≤ R.

Since f(s, x) ≤ 2 for all s ∈ [0, 1] and for all x ≥ 0, we obtain that

(3.21) f(s, x(s)) ≤ 6R for all s ∈ [0, 1] and for all x ≥ 0.

From (3.20) and (3.21) we obtain (b) and (c) from Theorem 3.3. So r =
(
√

1785− 35)/280, R = 1/3 and f(s, x) := (s+ 1)/(x+ 1) satisfy Theorem 3.3,
so (3.1) with (3.2) has a solution u∗ with

√
1785− 35

280
≤

min
t∈[1/4,3/4]

u∗(t) + max
t∈[0,1]

u∗(t)

2
≤ 1

3
,

and
√

1785− 35
280

≤ max
t∈[0,1]

u∗(t) ≤ 4
3

and
√

1785− 35
1120

≤ min
t∈[1/4,3/4]

u∗(t) ≤ 1
3
.

Let be ϕ1, ψ1:K → R+ be defined as follows:

ψ1(u) := min
t∈I

u(t), ϕ1(u) := max
t∈[0,1]

u(t) = ‖u‖.

Now we give an application of Theorem 2.8.

Theorem 3.5. Let r and R be positive numbers such that 0 < r < R and
define f1: [0, 1] × K → [0,∞), f1(s, x) = f(s, x(s)). Suppose f1 satisfies the
following conditions:

(a) f1(s, x) ≤ 6r for all s ∈ [0, 1], for all x ∈ K with δ(x) = r,
(b) f1(s, x) ≥ 384R/11 for all s ∈ I, for all x ∈ K with δ(x) = R,

where δ(x) := (ϕ1(x) + ψ1(x))/2. Then (3.1) with (3.2) has a solution u∗ such
that

(3.22) r ≤
min

t∈[1/4,3/4]
u∗(t) + max

t∈[0,1]
u∗(t)

2
≤ R

and

(3.23) r ≤ max
t∈[0,1]

u∗(t) ≤ 4R and
r

4
≤ min

t∈[1/4,3/4]
u∗(t) ≤ R.

Proof. Let Kr,R := {x ∈ K : r ≤ δ(x) ≤ R}. Define the completely
continuous operator N by

N(u)(t) =
∫ 1

0

G(t, s)f(s, u(s)) ds.

The definitions of ϕ1, ψ1 and δ imply conditions (a)–(f) from Theorem 2.8.
If δ(u)=R we obtain ψ1(u)≤R (in the contrary we have ϕ1(u)≥ψ1(u)>R

and δ(u) > R, a contradiction), so ||u||/4 ≤ ψ1(u) ≤ R. That is ||u|| =
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max
t∈[0,1]

u(t) ≤ 4R and f(s, u(s)) is bounded since f(s, · ) is continuous. It fol-

lows that N(u) is bounded. Hence condition (g) from Theorem 2.8 is satisfied.
Using the same arguments like in Theorem 3.3 we obtain that N(Kr,R) is

relatively compact.
If δ(u) = r we have that ϕ1(u) := max

t∈[0,1]
u(t) ≥ r (on the contrary, we

obtain ψ1(u) := min
t∈I

u(t) ≤ ϕ1(u) < r, (ϕ1(u) + ψ1(u))/2 < r, so δ(u) < r,

a contradiction). We deduce, using (a), that

ϕ1(Nu) = max
t∈[0,1]

∫ 1

0

G(t, s)f(s, u(s)) ds ≤
∫ 1

0

max
t∈[0,1]

G(t, s)f(s, u(s)) ds

≤
∫ 1

0

G(s, s) max
s∈[0,1]

f(s, u(s)) ds ≤ 6r
∫ 1

0

G(s, s) ds = r ≤ ϕ1(u),

so

(3.24) ϕ1(u) ≥ ϕ1(Nu) if δ(u) = r.

If δ(u) = R we have that ψ1(u) := min
t∈I

u(t) ≤ R (on the contrary, we obtain

ϕ1(u) ≥ ψ1(u) > R, (ϕ1(u) + ψ1(u))/2 > R, so δ(u) > R, a contradiction).
Using (3.5) and (b), we deduce that

ψ1(Nu) = min
t∈I

∫ 1

0

G(t, s)f(s, u(s)) ds ≥
∫ 1

0

min
t∈I

G(t, s)f(s, u(s)) ds

≥ 1
4

∫ 3/4

1/4

G(s, s) min
s∈I

f(s, u(s)) ds

≥ 1
4
· 384

11
R

∫ 3/4

1/4

G(s, s) ds = R ≥ ψ1(u),

so

(3.25) ψ1(u) ≤ ψ1(Nu) if δ(u) = R.

From (3.24) and (3.25) we obtain (h) from Theorem 2.8. So we may apply
Theorem 2.8 and there exists u∗ ∈ Kr,R such that N(u∗) = u∗.

For u∗ ∈ Kr,R we obtain that

2r ≤ min
t∈[1/4,3/4]

u∗(t) + max
t∈[0,1]

u∗(t) ≤ 2R

and since

2 min
t∈[1/4,3/4]

u∗(t) ≤ min
t∈[1/4,3/4]

u∗(t) + max
t∈[0,1]

u∗(t) ≤ 2 max
t∈[0,1]

u∗(t)

and
1
4

max
t∈[0,1]

u∗(t) ≤ min
t∈[1/4,3/4]

u∗(t)
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we obtain that

r

4
≤ min

t∈[1/4,3/4]
u∗(t) ≤ R and r ≤ max

t∈[0,1]
u∗(t) ≤ 4R.

The conclusion follows. �

Remark 3.6. In Theorems 3.3 and 3.4 (the relations (3.15) and (3.23)) we
obtain similar localization results with the results from [1]. In this paper the
authors obtain the following localization result (see Theorem 4.1):

(3.26) r ≤ max
t∈[0,1]

u∗(t) and min
t∈[1/2,3/4]

u∗(t) ≤ R.

Now we give an other application of Theorem 2.8, where f( · , · ) may be
unbounded. In our proof we use here, for the first time in literature, a functional
δ that gives a similar result like in (3.26).

Theorem 3.7. Let be the positive numbers r and R such that 0 < 16r < R

and suppose f satisfies the following conditions:

(a) f(s, x) ≤ 6r for all s ∈ [0, 1], for all x ∈ [0, 16r],
(b) f(s, x) ≥ 6144R/11 for all s ∈ I, for all x ∈ [R, 16R].

Then (3.1) with (3.2) has a solution u0 with

r ≤ min
t∈[1/4,3/4]

u0 ≤ 4R and r ≤ max
t∈[0,1]

u0 ≤ 16R.

Proof. Let be Kr,R := {x ∈ K : r ≤ δ(x) ≤ R}. Define the completely
continuous operator N by

N(u)(t) =
∫ 1

0

G(t, s)f(s, u(s)) ds.

Let δ:K → R+,

δ(u) =


(

min
t∈I

u(t)
)2

max
t∈[0,1]

u((t)
if u is not identically zero,

0 if u ≡ 0.

Since it is obviously that

0 ≤

(
min
t∈

u(t)
)2

max
t∈[0,1]

u((t)
≤ min

t∈I
u(t) if u is not identically zero,
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it follows that δ(u) → 0 if u → 0, so δ is a continuous functional. Also, if u is
not identically zero (on the contrary it is obviously), we have that

δ(αu) =

(
min
t∈I

αu(t)
)2

max
t∈[0,1]

αu(t)
=
α2

(
min
t∈I

u(t)
)2

α max
t∈[0,1]

u(t)
= α

(
min
t∈I

u(t)
)2

max
t∈[0,1]

u(t)
= αδ(u)

for all α > 0,

δ(αu) = δ(0) = 0 = αδ(u), for α = 0.

So δ satisfies the hypothesis of Theorem 2.8.
If u ∈ Kr,R we obtain

δ(u) ≤ R,
(

min
t∈I

u(t)
)2

≤ R max
t∈[0,1]

u((t) ≤ 4Rmin
t∈I

u(t), min
t∈I

u(t) ≤ 4R,

and since ‖u‖/4 ≤ min
t∈I

u(t), we obtain ‖u‖ ≤ 16R, so Kr,R is bounded. It follows

that N(Kr,R) is relatively compact since N is completely continuous.

For δ(u) = r we have that
(

min
t∈I

u(t)
)2

= r‖u‖ and since min
t∈I

u(t) ≥ ‖u‖/4
we obtain

(3.27) r‖u‖ ≥ ‖u‖2

16
, ‖u‖ ≤ 16r.

Also we have that

(3.28)
(

min
t∈I

u(t)
)2

= r‖u‖ ≥ rmin
t∈I

u(t), min
t∈I

u(t) ≥ r.

From (3.27) and (a) we deduce that

f(s, u(s)) ≤ 6r for all s ∈ [0, 1],

so from (3.5), above relation and (3.28) it follows

ϕ1(Nu) = max
t∈[0,1]

∫ 1

0

G(t, s)f(s, u(s)) ds ≤
∫ 1

0

G(s, s)f(s, u(s)) ds

≤ 6r
∫ 1

0

G(s, s) ds = r ≤ min
t∈I

u(t) ≤ ‖u‖ = ϕ1(u),

so

(3.29) ϕ1(u) ≥ ϕ1(Nu) if δ(u) = r.

For δ(u) = R we have that, similarly with the relations (3.27) and (3.28), that

R ≤ min
t∈I

u(t) ≤ ‖u‖ ≤ 16R,

so

(3.30) u(s) ∈ [R, 16R] for all s ∈ I.
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It follows, from (b), that

f(s, u(s)) ≥ 6144
11

R for all s ∈ I,

so from (3.5), above relation and (3.30) we deduce, for t ∈ I, that

ψ1(Nu) = min
t∈I

∫ 1

0

G(t, s)f(s, u(s)) ds ≥
∫ 1

0

1
4
G(s, s) min

s∈I
f(s, u(s)) ds

≥
∫ 3/4

1/4

1
4
G(s, s)

6144
11

Rds = 16R ≥ u(t) ≥ min
t∈I

u(t) = ψ1(u),

so

(3.31) ψ1(Nu) ≥ ψ1(u) if δ(u) = R.

Since δ(u) = R implies that ‖u‖ ≤ 16R and f( · , · ) is continuous, it is obviously
that f(s, u(s)) and N(u(t)) are bounded for δ(u) = R.

It follows (g) from Theorem 2.8. Also, (3.29), (3.31) imply that ϕ1 and ψ1

satisfy (h) from Theorem 2.8 (with ϕ1 instead of ϕ and with ψ1 instead of ψ).
Also, since δ(u) = R implies (3.30), it follows that ϕ1(u) := max

t∈[0,1]
u(t) ≥ R > 0

which is (d) from Theorem 2.8.
Applying Theorem 2.8 we obtain that (3.1) with (3.2) has a solution u0 so

that r ≤ δ(u0) ≤ R, so

(3.32) r‖u0‖ ≤
(

min
t∈I

u0(t)
)2

≤ R‖u0‖

and since

(3.33)
1
4
‖u0‖ ≤ min

t∈I
u0(t) ≤ ‖u0‖,

1
16
‖u0‖2 ≤

(
min
t∈I

u0(t)
)2

≤ ‖u0‖2,

from (3.32) and (3.33) we deduce that

1
16
‖u0‖2 ≤ R‖u0‖, ‖u0‖ ≤ 16R and r‖u0‖ ≤ ‖u0‖2, r ≤ ‖u0‖.

So

(3.34) r ≤ ‖u0‖ ≤ 16R.

Also, from (3.32) and (3.33) it follows that

rmin
t∈I

u0(t) ≤ r‖u0‖ ≤
(

min
t∈I

u0(t)
)2

≤ R‖u0‖ ≤ 4Rmin
t∈I

u0(t),

so

(3.35) r ≤ min
t∈I

u0(t) ≤ 4R.

From (3.34) and (3.35) the conclusion follows. �
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Example 3.8. An example of unbounded function that satisfies the condi-
tons of Theorem 3.7 is

f(s, x) =
s+ 1
s+ 2

x2.

Indeed, for x ∈ [0, 16r] we have that

f(s, x) ≤ (16r)2 ≤ 6r for r ≤ 3
128

.

Also, for x ∈ [R, 16R] and s ∈ I := [1/4, 3/4] we obtain that

f(s, x) ≥

1
4

+ 1

1
4

+ 2
R2 ≥ 6144

11
R

wich is true for R ≥ 1006. So for r ≤ 3/128 and R ≥ 1006, f(s, x) satisfies the
conditions of Theorem 3.7.

As an application of Theorem 3.7 we give the following multiplicity result.

Corollary 3.9. Suppose that there exist positive numbers r1, r2, R1 and
R2 such that 0 < 16r1 < R1 ≤ 11r2/1024, 16r2 < R2 and f satisfies the following
conditions:

(a) f(s, x) ≤ 6r1 for all s ∈ [0, 1], for all x ∈ [0, 16r1],
(b) f(s, x) ≥ 6144R1/11 for all s ∈ I, for all x ∈ [R1, 16R1],
(c) f(s, x) ≤ 6r2 for all s ∈ [0, 1], for all x ∈ [0, 16r2],
(d) f(s, x) ≥ 6144R2/11 for all s ∈ I, for all x ∈ [R2, 16R2],

Then (3.1) with (3.2) has at least two solutions u1 and u2 with

r1 ≤ min
t∈[1/4,3/4]

u1 ≤ 4R1, r1 ≤ max
t∈[0,1]

u1 ≤ 16R1,

r2 ≤ min
t∈[1/4,3/4]

u2 ≤ 4R2, r2 ≤ max
t∈[0,1]

u2 ≤ 16R2.

Example 3.10. An example of function f that satisfies the conditions from
Corollary 3.9 is

f(s, x) =



6r1 exp(x− 16r1) if x ∈ [0, 16r1],

a(x−R1) exp(x− 16r1) +
6144
11

R1 exp(x−R1)

if x ∈ (16r1, R1),
6144
11

R1 exp(x−R1) if x ∈ [R1, 16R1],

6cr2 exp(x− 16r2) + d(x− 16r2) if x ∈ (16R1, 16r2],

6144
11

R2 exp(x−R2) + p(x−R2) exp(x− 16r2)

if x ∈ (16r2, R2),
6144
11

R2 exp(x−R2) if x ∈ [R2,∞),
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where, beside the conditions from Corollary 3.9, r1 and R1 satisfy the conditions{
R1 − 16r1 ≤ 1,
1024
11

R1 exp(16r2 −R1) < r2 (it is posible for R1 small enough),

r2 and R2 satisfying the conditions from Corollary 3.9. Also,

a :=
6r1 − (6144/11)R1 exp(16r1 −R1)

16r1 −R1
,

1 ≥ c >
1024
11

R1

r2
exp(16r2 −R1),

p :=
6cr2 − (6144/11)R2 exp(16r2 −R2)

16r2 −R2
,

d :=
(6144/11)R1 exp(15R1)− 6cr2 exp(16R1 − 16r2)

16R1 − 16r2
.

The values of the constants a, c, p, d assure us that f is continuous.

Finally we give an application of Theorem 2.6.

Theorem 3.11. Let r, R be positive numbers with R > 4r > 0 and c1 :=
r/R, c2 := R/r. Suppose that ϕ,ψ:K → [0,∞), ϕ(x) := (1/4) max

t∈[0,1]
x(t) :=

‖x‖/4, ψ(x) := min
t∈I

x(t) and Kr,R := {x ∈ K : r ≤ ψ(x), ϕ(x) ≤ R}, f(s, x) =

g(s)h(x) where g: [0, 1] → [0,∞), h: [0,∞) → [0,∞) are continuous. Define
h1: [0, 1] × K → [0,∞), h1(s, x) = h(x(s)). Also assume that the following
conditions are satisfied:

(a) h1(s, c1x) ≥ c1h1(s, x) for all s ∈ [0, 1] and all x ∈ K with ψ(x) = R,
h1(s, c2x) ≤ c2h1(s, x) for all s ∈ [0, 1] and all x ∈ K with ϕ(x) = r,

(b) f(s, x) ≤ 24r for all s ∈ [0, 1] and all x ∈ [0, 4r],
(c) f(s, x) ≥ 384R/11 for all s ∈ I and all x ≥ R.

Then (3.1) with (3.2) has a solution u0 with r ≤ min
t∈I

u0(t) ≤ ‖u0‖ ≤ 4R.

Proof. Define the completely continuous operator N :Kr,R → K by

N(u)(t) =
∫ 1

0

G(t, s)f(s, u(s)) ds.

It is obviously that ϕ and ψ are continuous, there exists h ∈ K \ ψ−1{0} such
that ψ(λh) > 0 for all λ > 0 and ψ ≥ ϕ (from (3.6)). Also, ϕ and ψ satisfy the
conditions (a)–(c) and (e) from Theorem 2.6.

If u ∈ Kr,R we obtain that ϕ(u) := (1/4) max
t∈[0,1]

u(t) ≤ R, so ‖u‖ = max
t∈[0,1]

u(t)

≤ 4R, so Kr,R is bounded. It follows that N(Kr,R) is relatively compact, since
N is completely continuous.

From ψ(u) = r we obtain ‖u‖/4 ≤ r, ‖u‖ ≤ 4r and f(s, · ) is bounded. It
follows that N is bounded and (d) from Theorem 2.6 is satisfied.
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From our hyphotesis and (a) it follows (f) from Theorem 2.6. From (3.6) and
our hyphotesis R > 4r we have, for all u ∈ K, that

(3.36) Rϕ(u) =
R

4
max

t∈[0,1]
u(t) ≥ r max

t∈[0,1]
u(t) ≥ rmin

t∈I
u(t) = rψ(u).

If ϕ(u) = r we obtain ‖u‖ = 4r, so u(s) ≤ 4r for all s ∈ [0, 1]. From our
hyphothesis (b) we have that

ϕ(Nu) =
1
4

max
t∈[0,1]

∫ 1

0

G(t, s)f(s, u(s)) ds

≤ 1
4

∫ 1

0

G(s, s) max
s∈[0,1]

f(s, u(s)) ds ≤ 24r
4

∫ 1

0

G(s, s) ds = r = ϕ(u),

so

(3.37) ϕ(u) ≥ ϕ(Nu) if ϕ(u) = r.

If ψ(u) = R we have that u(s) ≥ R for all s ∈ I. From our hyphothesis (c) and
from (3.5) we have that

ψ(Nu) = min
t∈I

∫ 1

0

G(t, s)f(s, u(s)) ds

≥
∫ 3/4

1/4

1
4
G(s, s) min

s∈I
f(s, u(s)) ds ≥ 96R

11

∫ 3/4

1/4

G(s, s) ds = R = ψ(u),

so

(3.38) ψ(u) ≤ ψ(Nu) if ψ(u) = R.

From (3.36)–(3.38) it follows that we are in the conditions of Theorem 2.6. So
(3.1) with (3.2) has a solution u0 with

r ≤ min
t∈I

u0(t) and
1
4

max
t∈[0,1]

u0(t) ≤ R

and the conclusion follows. �

Remark 3.12. Comparing the condition (b) from Theorem 3.11 with the
following condition:

f(x) ≤ 8r for all x ∈ [0, r]

(the condition (b) from Theorem 4.1 from [1]), we note that Theorem 3.11 ex-
tends Theorem 4.1 (from [1]).
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