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CARATHÉODORY CONVEX SELECTIONS
OF SET-VALUED FUNCTIONS IN BANACH LATTICES

Jerzy Motyl

Abstract. Let T be a measurable space, X a Banach space while Y

a Banach lattice. We consider the class of “upper separated” set-valued
functions F : T × X → 2Y and investigate the problem of the existence of

Carathéodory type selection, that is, measurable in the first variable and
order-convex in the second variable.

1. Introduction

In general, investigating deterministic or stochastic inclusions an appropriate
kind of regularity of their multivalued structure is required. Regular selections
have attracted considerable interest as a useful tool for proving the existence of
solutions of such inclusions. The investigation of Carathéodory selections of mul-
tifunctions (i.e. selections which are measurable in the first variable and continu-
ous in second one) was initiated by Castaing [3], Cellina [4] and Fryszkowski [8],
and continued among others by Ioffe [11], Ricceri [18], Rybiński [19], Kucia [13],
Fierro, Martinez and Morales [7]. The existence of classical Carathéodory se-
lections, so valuable in the theory of differential inclusions is not appriopriate
enough in the investigation of stochastic inclusions. Such problems require the
existence of more regular selections. Hermes [9], Belov and Chistyakov [2] and
Chistyakov [5] treated problems of the existence of selections of multifunctions

2010 Mathematics Subject Classification. 22B15, 28B20, 54C65.

Key words and phrases. Banach lattice, upper separated multifunction, Carathéodory
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of one real variable which are of bounded variation, Lipschitz or absolutely con-
tinuous. Using these results Nowak and Chistyakov in [6] discussed the existence
of Carathéodory type selections which are measurable in the first variable and
preserve the regularity mentioned above with respect to their second variable.

Motyl and Michta in [15] introduced the new class of multifunctions taking
their values in Banach lattices and called “upper separated”. They proved that
such multifunctions admit order-convex and locally Lipschitz selections.

In the paper we study the problem of the existence of the Carathéodory type
selections being measurable in the first variable and order-convex and locally
Lipschitz in the second variable.

2. Notation and preliminary facts

We begin our considerations with auxiliary definitions and facts needed in
the sequel.

Let X be a Banach space and let Y be a Banach lattice. Let K+ denote
a cone of positive elements in Y . We will use the notation x � y if y − x ∈ K+.
(Y,�) is an order-complete if every nonempty and majorized subset of Y has
a supremum in Y . A set A in a Banach lattice is called order-bounded if it
is contained in some order interval [a, b] = {y ∈ Y : a � y � b}. A set A in
a Banach lattice is called order-convex (or full) if for each x, y ∈ A the order
interval [x, y] is contained in A.

We adjoin to Y the greatest element +∞ together with the lowest element
−∞ and extend the vector space operations in a natural way. Let Y = Y ∪{±∞}.

Let us consider an extended function f :X → Y . Let Dom f = {x ∈ X :
f(x) 6= ±∞} and define the epigraph of f by the formula

Epi(f) = {(x, a) ∈ X × Y : f(x) � a}.

Definition 2.1. A function f :X → Y is order-convex if for every x, y in X

and λ ∈ [0, 1]
f(λx + (1− λ)y) � λf(x) + (1− λ)f(y).

A function f :X → Y is locally order-Lipschitz if and only if for every x0 ∈ X

there exist an open neighbourhood Ux0 and y ∈ K+ such that

|f(x)− f(z)| � y‖x− z‖ for every x, z ∈ Ux0 .

A set-valued function F :X → 2Y is majorized in a neighbourhood of x0 if there
exist an open neighbourhood Ux0 and y ∈ Y such that for each x ∈ Ux0 and
every a ∈ F (x) the inequality a � y holds.

Let Cl Y (resp. CompY , ConvY ) denote the family of all closed, (resp. com-
pact, convex) and nonempty subsets of Y .

Comp ConvY := CompY ∩ ConvY, Cl ConvY := Cl Y ∩ ConvY.
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By L(X, Y ) we denote the space of all linear and continuous operators from
X to Y .

A set-valued function F from the measurable space (T,M) to Cl Y is said to
be measurable if F−1(U) = {t ∈ T : F (t) ∩ U 6= ∅} ∈ M for every open subset
U of Y .

A set-valued function F :X → Cl Y is called lower semicontinuous (lsc) if
F−1(U) is open for every open subset U of Y . If F−1(V ) is closed for every
closed set V ∈ Y , then F is called upper semicontinuous (usc). F is continuous
if it is usc and lsc.

A function f :X → Y is called a selection of F if f(x) ∈ F (x) for every
x ∈ X.

Remark 2.2. Since the Banach lattice Y admits two structures, order and
norm, we use in the paper the following convention: all properties like closedness,
convexity, compactness, continuity etc. mean properties with respect to the
norm, while properties with respect to the order or order-topology are denoted
by the symbol “order-property”.

Let V,W :X → Y be defined by formulas V (x) = sup{a : a ∈ F (x)} and
W (x) = inf{b : b ∈ F (x)}.

Let ΠF (x)(a) denote the metric projection of a point a ∈ Y onto the set F (x).
We define

V (x) :=

{
ΠF (x)(V (x)) for x ∈ Dom V,

+∞ for x /∈ Dom V,

W (x) :=

{
ΠF (x)(W (x)) for x ∈ Dom W,

−∞ for x /∈ Dom W.

Definition 2.3. A set-valued function F :X → Cl ConvY is upper separated
if each point (x,W (x)−ε) can be separated from the set Epi(V ) in the following
sense: for every x ∈ X and each ε ∈ K+ \ {0} there exist A ∈ L(X, Y ), a ∈ R1

and δ ∈ K+ \ {0} such that for every y ∈ Dom V and each b ∈ K+ the condition

A(x)−A(y) + a(W (x)− V (y)− ε− b)− δ ∈ K+

holds.

Example 2.4. Let X = C([a, b], R1) and let Y be an arbitrary order com-
plete Banach lattice with a positive cone K+. Var(x) denotes a total Jordan
variation of the function x on the interval [a, b]. Let z ∈ K+ \ {0} be arbitrary
fixed. We define a set-valued function F :C[a, b] → 2Y by the formula:

F (x) =

{
[0, z] for x such that Var(x) < ∞,

[−z, 0] for x such that Var(x) = ∞.
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Observe that V (y) is equal to z for Var(y) < ∞ and takes on the value 0
otherwise. Similarly W (x) takes on 0 or −z as its values. Therefore, taking
A ≡ 0, a = −1, δ = ε in Definition 2.3, and noting that W (x) = W (x),
V (y) = V (y) we obtain the inequality

∀x, y ∈ C([a, b], R1) ∀ b ∈ K+ V (y) + b � W (x).

which is clearly fulfiled because of

V (y) + b � min{z, 0} � max{0,−z} � W (x).

This means that F is upper separated. Since finite variation functions and
infinite variation functions form dense subsets of C([a, b], R1) the above defined
F is neither upper nor lower semicontinuous in any point x ∈ C([a, b], R1).

Let Z be a locally compact metrizable and separable topological space. By
C(Z, Y ) we denote the space of all continuous functions from Z to Y endowed
with the topology of of the uniform convergence on compact subsets of Z. Then
C(Z, Y ) is a Polish space. Let β(C(Z, Y )) denote the σ-field of Borel measurable
subsets of C(Z, Y ). β(Z) and β(Y ) denote the Borel σ-fields of subsets of Z

and Y , respectively.

Definition 2.5. Let N ∗ and N , respectively, denote the sets of all finite
and infinite sequences of positive integers. A family M of sets satisfies Suslin

property if for each function f :N ∗ →M the set
⋃

σ∈N

∞⋂
n=1

f(σ1, . . . , σn) belongs

to M.

Remark 2.6. Let (T,M) be a measurable space. If M satisfies Suslin prop-
erty then for each Polish space Z and each A ∈M⊗ β(Z) its projection ΠT (A)
belongs to M. Moreover, let us note that every complete (with respect to a σ-
finite measure) σ-field M satisfies Suslin property.

Definition 2.7. A set-valued function F :T ×Z → Cl Y is Carathéodory if
F ( · , z) is M-measurable for all z ∈ Z and F (t, · ) is continuous for every t ∈ T .

We will need the following results in the sequel:

Theorem 2.8 ([15]). Let F :X → Cl ConvY . If F is upper separated, then
there exists an order-convex function f :X → Y such that f(x) ∈ F (x) in each
point x for which the set F (x) is order-bounded and order-convex.

Theorem 2.9 ([14]). Let (T,M) be a measurable space satisfying Suslin
property, let Z be a Polish space and F :T → 2Z a set-valued function. If GrF

is M⊗ β(Z) measurable, then F has a measurable selector.
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Theorem 2.10 ([13]). Let (T,M) be a measurable space, let Z be a locally
compact metrizable and separable topological space and Y a separable Banach
space. If φ from T × Z into closed and convex subsets of Y is Carathéodory,
then φ is M⊗ β(Z)-measurable.

Lemma 2.11 ([8]). Let (T,M) be a measurable space satisfying Suslin pro-
perty, let Z be a locally compact metrizable and separable topological space and
Y a separable Banach space. If P from T × Z into closed and convex subsets
of Y is M⊗ β(X)-measurable and lsc in z, then the map t → P (t) = {φ ∈
C(Z, Y ) : φ(z) ∈ P (t, z) for each z ∈ Z} is M-measurable set-valued map from
T into closed and convex subsets of C(Z, Y ).

3. Carathéodory convex selections

Throughout this section (T,M) stands for a measurable space satisfying
Suslin property, X denotes a locally compact Banach space (i.e. X is finite-
dimensional by Riesz Theorem) and Y is a separable Banach lattice with an
order unit e. Since X is locally compact, then there exists a sequence (Xm)m∈N

of relatively compact and open subsets of X such that X =
∞⋃

m=1
Xm and for each

m ∈ N Xm ⊂ Xm+1.
For every m ∈ N define the function fm:C(X, Y ) → Y by the formula:

fm(u) = sup
x1,x2∈Xm, λ∈[0,1]

{u(λx1 + (1− λ)x2)− [λu(x1) + (1− λ)u(x2)]}.

Lemma 3.1. For every m ∈ N the function fm is continuous.

Proof. Let X̃m = Xm × Xm × [0, 1]. For x̃ = (x1, x2, λ) ∈ X̃m we take
‖x̃‖ = ‖x1‖+ ‖x2‖+ λ and define vm

u : X̃m → Y by the formula:

vm
u (x̃) = u(λx1 + (1− λ)x2)− [λu(x1) + (1− λ)u(x2)].

By the continuity of u it is easy to verify that vm
u ∈ C(X̃m, Y ).

We have fm(u) = sup
ex∈ eXm

vm
u (x̃). Since Y is a Banach lattice with an order

unit, then every compact subset of Y admits supremum (see e.g. [17, Propo-
sition 2.3.10]). But the set vm

u (X̃m) is compact by the continuity of vm
u and

therefore the function fm is well defined.
Let us take arbitrary elements u, u0 ∈ C(X, Y ). Define sets A,B ∈ Y by the

formulas

A = {vm
u (x̃) : x̃ ∈ X̃m} and B = {vm

u0
(x̃) : x̃ ∈ X̃m}

and assume

‖vm
u − vm

u0
‖C( eXm,Y ) = sup

ex∈ eXm

‖vm
u (x̃)− vm

u0
(x̃)‖ < δ.
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We have to show that ‖ supA − supB‖ < ε. Let ε > 0 be arbitrary taken,
let n be such great that 3/n < ε and take δ < 1/n. Let C = A ∪ B. Since
C is compact in Y , then there exists a sequence (xk) in C with the following
property:

• for every n ∈ N there exists Nn such that C ⊂
Nn⋃
k=1

B(xk, 1/n), where

B(xk, 1/n) denotes the ball in Y of a radius 1/n centered at xk.

Let W be a class of all finite subsets of the set {1, . . . , Nn}. Choose a set
W = {k1, . . . , kr} ∈ W such that:

(i) for every x ∈ C there exists kj ∈ W such that x ∈ B(xkj
, 1/n),

(ii) for every kj ∈ W B(xkj , 2/n) ∩A 6= ∅ and B(xkj , 2/n) ∩B 6= ∅.

Such W exists because from the assumption it follows that for every x ∈ A there
exists y ∈ B with ‖x − y‖ < δ < 1/n and for every y ∈ B there exists x ∈ A

with ‖x− y‖ < δ < 1/n.
From (i) we deduce that for every x ∈ C there exists 1 ≤ j ≤ r such that

x � xkj + 1/n · e. Therefore, every x from C satisfies

x � sup{xkj
: 1 ≤ j ≤ r}+ 1/n · e.

For this reason
supA � sup{xkj

: 1 ≤ j ≤ r}+ 1/n · e
and

supB � sup{xkj
: 1 ≤ j ≤ r}+ 1/n · e.

On the other hand, by (ii) we conclude that that for every 1 ≤ j ≤ r there exist
x ∈ A and y ∈ B such that

xkj
� x + 1/n · e and xkj

� y + 1/n · e.

It means that

xkj � supA + 2/n · e and xkj � supB + 2/n · e

for every 1 ≤ j ≤ r. Therefore,

sup
1≤j≤r

xkj � supA + 2/n · e and sup
1≤j≤r

xkj � supB + 2/n · e.

Combining above inequalities we get

supB � supA + 3/n · e and supA � supB + 3/n · e.

It means that | supA− supB| � 3/n · e. Since Y is a Banach lattice we obtain

‖ supA− supB‖ � 3/n‖e‖ < ε

which means the continuity of fm for m = 1, 2, . . . �



Carathéodory Convex Selections 7

Lemma 3.2. The set U = {u ∈ C(X, Y ) : u(λx1 + (1 − λ)x2) − [λu(x1) +
(1−λ)u(x2)] � 0 for every x1, x2 ∈ X, and each λ ∈ [0, 1]} is closed in C(X, Y )
and therefore, it is β(C(X, Y ))-measurable.

Proof. Since Xm ⊂ Xm+1 for each m ∈ N, then

U =
∞⋂

m=1

{u ∈ C(X, Y ) : u(λx1 + (1− λ)x2)− [λu(x1) + (1− λ)u(x2)] � 0

for every x1, x2 ∈ Xm, and each λ ∈ [0, 1]}

=
∞⋂

m=1

{
u ∈ C(X, Y ) :

sup
x1,x2∈Xm, λ∈[0,1]

{u(λx1 + (1− λ)x2)−[λu(x1) + (1− λ)u(x2)]} � 0
}
.

The existence of the supremum in the above formula follows from the first part
of the proof of Lemma 3.1. Then

U =
∞⋂

m=1

{u ∈ C(X, Y ) : fm(u) � 0} =
∞⋂

m=1

f−1
m (−K+

Y ).

Since the positive cone in Y is closed ([20, Proposition 5.2]), then the set U is
closed in C(X, Y ) by Lemma 3.1. Being closed, U is β(C(X, Y ))-measurable. �

Lemma 3.3. Let F :T×X → Cl ConvY be M⊗β(X)-measurable with order-
bounded and order-convex values. Assume that F (t, · ) is upper separated, ma-
jorized in a neighbourhood of some point x1 and lsc for every t ∈ T . Define
a set-valued function Φ: T → 2C(X,Y ) by

Φ(t) = {u ∈ C(X, Y ) : u( · ) is an order convex selection of F (t, · )}.

Then the graph of Φ is an M⊗ β(C(X, Y )) measurable set in T × C(X, Y ).

Proof. The set Φ(t) is nonempty for every t ∈ T . Indeed, F (t, · ) admits
an order convex selection by Theorem 2.8, this selection is majorized in some
Ux1 and therefore, it is continuous by [16, Theorem 3.1]. We have

Φ(t) = {u ∈ C(X, Y ) : u( · ) ∈ F (t, · )} ∩ {u ∈ C(X, Y ) : u is order convex}
= Φ1(t) ∩ Φ2(t).

Using Lemma 2.11 we deduce that Φ1:T → C(X, Y ) is M-measurable with
closed values in a Polish space C(X, Y ). Then the set Gr (Φ1) isM⊗β(C(X, Y ))
measurable by [10, Theorem 3.5].

A function u ∈ C(X, Y ) is order convex if and only if u(λx1 + (1− λ)x2)−
[λu(x1)+(1−λ)u(x2)] � 0 for every x1, x2 in X and λ ∈ [0, 1]. This is equivalent
to the fact that u ∈ U , where U is a set defined in Lemma 3.2. Then Φ2(t) ≡ U
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for every t ∈ T and therefore, Gr (Φ2) = T × U is M⊗ β(C(X, Y )) measurable
by Lemma 3.2. Finally, Gr (Φ) = Gr (Φ1)∩Gr (Φ2), which completes the proof.�

Theorem 3.4. Let (T,M) be a measurable space satisfying Suslin property,
let X be a locally compact Banach space and let Y be a separable Banach lattice
with an order unit e. Let F :T ×X → Cl ConvY be M⊗ β(X)-measurable with
order-convex and order-bounded values. Assume that F (t, · ) is upper separated,
majorized in a neighbourhood of some point x1 ∈ X and lsc for every t ∈ T .
Then there exists a selection f of F satisfying:

(a) f( · , x) is M-measurable for all x ∈ X,
(b) f(t, · ) is order-convex for every t ∈ T .

Moreover, the function f(t, · ) is locally Lipschitz for every t ∈ T .

Proof. Let Φ be defined as in Lemma 3.3. By Theorem 2.9 we deduce that
Φ admits a measurable selection φ:T → C(X, Y ).

Define a function f :T × X → Y by the formula f(t, x) = φ(t)(x). We will
show that f is a required selection of F .

Given any x ∈ X and any open set U ∈ Y let U = {u ∈ C(X, Y ) : u(x) ∈ U}.
Then

(f( · , x))−1(U) = {t ∈ T : f(t, x) ∈ U} = {t ∈ T : φ(t) ∈ U} = φ−1(U).

Since U is open in C(X, Y ) and φ is measurable, then φ−1(U) ∈M which proves
the property (a).

Moreover, since for every t ∈ T φ(t) ∈ Φ(t), then φ(t)( · ) is an order-convex
selection of F (t, · ).

Now we prove the last statement of theorem. Since f(t, x) is majorized in
a neighbourhood Ux of x and order bounded there, then f(t, · ) is locally order-
Lipschitz in X by Theorem 3.2 of [16]. It means that for every t ∈ T and x ∈ X

there exists a neighbourhood Ux such that |f(t, z1) − f(t, z2)| � y‖z1 − z2‖
for some y ∈ K+ and every z1, z2 ∈ Ux. Since Y is a Banach lattice, we get
‖f(t, z1)− f(t, z2)‖ ≤ ‖y‖‖z1 − z2‖ which completes the proof. �

We are able to skip the conditions “F (t, x) is majorized in the neighbourhood
of x1” and “F takes on order bounded values” in the case of Carathéodory set-
valued functions with compact values. The following version of the Theorem 3.4
holds:

Corollary 3.5. Let (T,M) be a measurable space satisfying Suslin pro-
perty, let X be a locally compact Banach space and let Y be a separable Banach
lattice with an order unit e. Let F :T×X → Comp ConvY be a Carathéodory set-
valued function with order-convex values. Assume that F (t, · ) is upper separated
for every t ∈ T . Then there exists a selection f of F satisfying:

(a) f( · , x) is M-measurable for all x ∈ X,
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(b) f(t, · ) is order-convex and locally Lipschitz for every t ∈ T .

Proof. Let Φ be defined as in Lemma 3.3. Let us claim that the set Φ(t)
is nonempty for every t ∈ T . Indeed, let t ∈ T be arbitrary fixed. Every point
x ∈ X admits an open and relatively compact neigbourhood Ux because of the
local compactness of X. F (t, · ) is continuous and compact-valued and therefore,
the set F (t, Ux) is compact in Y for every x ∈ X (e.g. [12, Proposition 2.2.3]).
Since Y has an order unit, then this set admits a supremum by [17, Proposi-
tion 2.3.10]. It means that F (t, x) is majorized in a neighbourhood of x. Then
it is order-bounded there. Now, we deduce that F (t, · ) posesses for every t ∈ T

an order-convex and continuous selection. From Theorem 2.10 it follows that F

is M⊗ β(X)-measurable and the rest of the proof is the same as the proof of
the Theorem 3.4. �
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