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TWO POSITIVE SOLUTIONS
FOR ONE-DIMENSIONAL p-LAPLACIAN

WITH A SINGULAR WEIGHT

Ryuji Kajikiya — Yong-Hoon Lee — Inbo Sim

Abstract. We investigate a bifurcation problem for one-dimensional p-

Laplace equation with a singular weight under Dirichlet boundary condi-
tion. Using super-subsolution method and mountain pass lemma, we prove

the existence of at least two positive solutions, at least one positive solution

and no positive solution according to the range of a bifurcation parameter.

1. Introduction

In this paper, we study one-dimensional p-Laplacian with a singular weight

(Pλ)

{
ϕp(u′(t))′ + λh(t)f(u(t)) = 0 a.e. in (0, 1),

u(0) = u(1) = 0,

where ϕp(s) = |s|p−2s, p > 1, λ is a nonnegative parameter, h is a nonnegative
measurable function on (0, 1), h 6≡ 0 on any open subinterval in (0, 1) which may
be singular at t = 0, 1 and f ∈ C(R, R).
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We will prove the existence of two positive solutions, one positive solution
and no positive solution according to different ranges of λ. As for the singularity
of h, we suppose:

(A1)
∫ 1

0

tp−1(1− t)p−1h(t) dt < ∞.

We also assume conditions on f as follows:

(A2) sf(s) > 0 for s 6= 0 and f is odd,
(A3) 0 < f0 ≡ lim

s→0+
f(s)/sp−1 < ∞,

(A4) lim
s→∞

f(s)/sp−1 = ∞,

(A5) there exists s∗ > 0 such that f(s) < f0s
p−1 for s ∈ (0, s∗).

It is easy to see that if h ∈ L1(0, 1), then all solutions of (Pλ) are in C1[0, 1].
On the other hand, if h /∈ L1(0, 1), then this regularity of solutions is not true in
general, for example if we take h(t) = (p − 1)t−1|1 + ln t|p−2, p > 2 and λ = 1,
f ≡ 1, then h /∈ L1(0, 1) but h satisfies (A1) and the solution u is given by
u(t) = −t ln t which is not in C1[0, 1]. But Proposition 2.6 in [11] guarantees to
consider C1[0, 1]-solution of (Pλ) when h holds (A1) and specially f holds (A2)
and (A3). Therefore, in this paper we will study the existence of C1[0, 1]-solution
for (Pλ). We call u a solution of (Pλ) if u ∈ C1

0 [0, 1], ϕp(u′) ∈ W 1,1(0, 1) and
u satisfies (Pλ). Here W 1,1(0, 1) denotes the usual L1 Sobolev space of the first
order and C1

0 [0, 1] is defined by

C1
0 [0, 1] := {u ∈ C1[0, 1] : u(0) = u(1) = 0}.

By (A3), (Pλ) near u = 0 is approximated by

(Eλ)

{
ϕp(u′(t))′ + λf0h(t)ϕp(u(t)) = 0 a.e. in (0, 1),

u(0) = u(1) = 0.

This is an eigenvalue problem with a singular weight. We call u an eigenfunction
with an eigenvalue λ if u ∈ C1

0 [0, 1], ϕp(u′) ∈ W 1,1(0, 1) and u 6≡ 0 satisfies (Eλ).
Assumption (A1) is essential for the existence of discrete eigenvalues of (Eλ)
with C1-eigenspace, indeed, we have the following known result.

Theorem 1.1 ([11, Theorem 2.1]). Assume (A1). Then the eigenvalues
of (Eλ) consist of a countable set {µk : k ∈ N} which satisfies the following
assertions:

(a) µk is strictly increasing on k and diverges to ∞ as k →∞.
(b) Each eigenspace is one dimensional in C1

0 [0, 1].
(c) Any eigenfunction corresponding to µk has exactly k − 1 simple zeros

in (0, 1).
(d) If µ(6= µk, k ∈ N) is an eigenvalue, then its eigenspace is not of C1.
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In [13], among other results about sign-changing solutions, we have proved
the existence of positive solutions for (Pλ).

Theorem 1.2 ([13, Theorem 2.3]). Assume (A1)–(A5). Then there exist
λ1, λ1 ∈ (µ1,∞) with λ1 ≥ λ1 such that (Pλ) has at least two positive solutions
for λ ∈ (µ1, λ1), at least one positive solution for λ ∈ (0, µ1] and no positive
solutions for λ ∈ (λ1,∞).

The above theorem has been proved by using Rabinowitz’s global bifurca-
tion method in the space (λ, u) ∈ (0,∞) × C1

0 [0, 1] mainly due to the following
proposition.

Proposition 1.3 ([12, Theorem 1.1] and [13]). Assume (A1)–(A5). Let S
denote the closure of the set of nontrivial solutions (λ, u) ∈ (0,∞) × C1

0 [0, 1]
for (Pλ). Then there exists an unbounded subcontinuum C1 in S bifurcating from
(µ1, 0) which satisfies the following:

(a) C1 ∩ (R× {0}) = {(µ1, 0)} and each (λ, u) ∈ C1 \ {(µ1, 0)} is a positive
solution.

(b) C1 intersects {λ} × (C1
0 [0, 1] \ {0}) for any λ ∈ (0, µ1).

(c) There exists Λ1 >0 such that (Pλ) has no positive solution when λ>Λ1.
(d) Let (λ, u) be a positive solution with ‖u‖∞ < s∗. Then λ > µ1, where

s∗ is given in (A5).

Here ‖ · ‖∞ denotes the L∞(0, 1)-norm. By (d), we see that the bifurcation
branch starting from (µ1, 0) grows to the right in a small range, which with (b)
guarantees the existence of at least two positive solutions for λ slightly larger
than µ1. In Theorem 1.2, there may be a gap between λ1 and λ1. The purpose
of this paper is to study when λ1 = λ1. The proof of this assertion is not
obvious and to this end, we assume an additional condition, so called Ambrosetti–
Rabinowitz condition (see [2, p. 363] or [16, p. 19] for p = 2) such as:

(A6) There exist α ∈ (p,∞) and M > 0 such that

(1.1) αF (s) ≤ sf(s) for s ≥ M,

where F (s) is defined by

(1.2) F (s) :=
∫ s

0

f(τ) dτ.

We now state our main result.

Theorem 1.4. Assume (A1)–(A6). Then there is λ1 ∈ (µ1,∞) such that
(Pλ) has at least one positive solution for λ ∈ (0, µ1], at least two distinct positive
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solutions u0 and u1 satisfying u0 ≤ u1 on (0, 1) for λ ∈ (µ1, λ1), at least one
positive solution for λ = λ1, and no positive solutions for λ ∈ (λ1,∞).

Our approach for proof is based on combining a super-subsolution method
and a mountain pass lemma. Such a combination is originated by Brezis and
Nirenberg [4]. See [1] and [6] also. As for p-Laplacian problems, one may refer
to [7] and [9]. These papers focused on problems of the form

fλ(x, u) = λa(x)uq−1 + b(x)ur−1,

where 1 < q < p < r and weight functions a, b are continuous. We see that
fλ(x, u) is sublinear near u = 0 and superlinear near u = ∞ and in this case,
we know that the bifurcation occurs at λ = 0. We notice that our nonlinear
term is more generalized than previous ones. Indeed, examples of f satisfying
(A1)–(A6) are

f(u) = up−1 − uq−1 + ur−1, f(u) = up−1(1 + u log u),

where 1 < p < q < r. Moreover, in our case weight function h may be singular
at t = 0 and/or 1. Because of this singularity, we have to prove additional
lemmas and theorems which are somehow obvious when h is continuous on [0, 1],
e.g. the strong comparison principle, the C1-regularity theorem of a W 1,p

0 (0, 1)-
weak solution, and the theorem that a C1

0 [0, 1]-local minimizer of a Lagrangian
functional becomes a W 1,p

0 (0, 1)-local minimizer etc.
To complete these arguments, we organize this paper as follows. In Sec-

tion 2, we state several preliminary lemmas. In Section 3, we prove the existence
of a positive solution by using the super-subsolution method. In Section 4, we
obtain the second positive solution by using the mountain pass lemma. In Sec-
tion 5, we prove that the first solution is different from the second one.

2. Preliminary lemmas

In this section, we give some lemmas, which will be useful in the later sections.
The first one is related to the Sobolev imbedding of W 1,p

0 (0, 1).

Lemma 2.1 ([12, Lemma 2.2]). For any u ∈ W 1,p
0 (0, 1) and t ∈ [0, 1], we

have

(2.1) |u(t)|p ≤ (2t(1− t))p−1

∫ 1

0

|u′(s)|p ds.

The next lemma says that any nontrivial solution of (Pλ) has no double zeros.

Lemma 2.2 ([12, Lemma 4.1]). Assume (A1)–(A3). If (λ, u) is a solution
of (Pλ) with u(t0) = u′(t0) = 0 at some t0 ∈ [0, 1], then u identically vanishes
on [0, 1].



Solutions for One-Dimensional p-Laplacian 431

In the next lemma, we see that a bounded subset of solutions in R×C1
0 [0, 1]

is relatively compact.

Lemma 2.3 ([12, Corollary 2.5]). Assume (A1)–(A3). If a sequence of solu-
tions {(λn, un)} for (Pλ) is bounded in (0,∞)×C1

0 [0, 1], then it has a subsequence
converging to a solution of (Pλ).

The next lemma implies that when a sequence {un} of solutions converges
in C1

0 [0, 1], the number of their zeros is invariant for all large enough n.

Lemma 2.4 ([12, Lemma 4.5]). Assume (A1)–(A3). Let {(λn, un)} and
(λ, u) be solutions of (Pλ) such that λn > 0, λ > 0, un 6≡ 0 and {(λn, un)}
converges to (λ, u) strongly in R × C1

0 [0, 1]. Then there exists n0 ∈ N such that
all un with n ≥ n0 have the same number of zeros in (0, 1). Moreover, if u 6≡ 0,
then the number of zeros of un for n ≥ n0 coincides with that of u. If u ≡ 0,
then λ is equal to a certain eigenvalue µk and un with n ≥ n0 has exactly k − 1
zeros in (0, 1).

For a solution (λ, u) of (Pλ), a boundedness of λ implies that of u.

Lemma 2.5 ([13, Lemma 4.4]). Assume (A1)–(A4). Then for any compact
interval J ⊂ (0,∞), there exists M(J) > 0 such that if (λ, u) is a positive
solution of (Pλ) with λ ∈ J , then ‖u‖C1 ≤ M(J).

3. Existence of first solution u0

In what is to follow, we assume conditions (A1)–(A6) for all lemmas and
theorems. The key step to complete the proof of our main result (Theorem 1.4)
can be stated as follows:

Theorem 3.1. Suppose that (Pλ) has a positive solution u at λ ∈ (µ1,∞)
and let λ ∈ (µ1, λ). Then (Pλ) has at least two distinct positive solutions u0 and
u1 satisfying u0(t) ≤ u1(t), for all t ∈ (0, 1).

Since λ1 in Theorem 1.2 does not give sufficient information for λ1 in Theo-
rem 1.4, we need to find two positive solutions of (Pλ) for all λ ∈ (µ1, λ), where
λ is in Theorem 3.1. In this section, we find first solution u0 by using the super-
subsolution method. For reader’s convenience, we give the fundamental theorem
of super-subsolution.

Theorem 3.2. Assume (A1). Let α and β be a subsolution and a superso-
lution of problem (Pλ), respectively such that α(t) ≤ β(t) for all t ∈ [0, 1]. Then
problem (Pλ) has at least one solution u such that α(t) ≤ u(t) ≤ β(t) for all
t ∈ [0, 1].

The proof can be done by obvious combination from Lee [14] and Lü–
O’Regan [15].
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Lemma 3.3. Let φ be the first eigenfunction of (Eλ) such that φ > 0 in
(0, 1) and ‖φ‖∞ = 1. Let u be as in Theorem 3.1. Then u(t) := εφ(t) with ε > 0
small enough is a subsolution of (Pλ) which satisfies u(t) ≤ u(t), for t ∈ (0, 1).
Therefore there exists a positive solution u0 of (Pλ) such that u(t) ≤ u0(t) ≤ u(t),
for t ∈ (0, 1).

Proof. Although this lemma has been proved in paper [13], we give a proof
for the reader’s convenience. Since µ1 < λ, we choose c0 > 0 satisfying µ1f0/λ <

c0 < f0 and ε > 0 so small that

f(s)/sp−1 > c0 for 0 < s ≤ ε.

Since ‖u‖∞ = ε, we have c0ϕp(u) ≤ f(u). Since φ is an eigenfunction for µ1, so
is u. Thus we have

−ϕp(u′)′ = µ1f0h(t)ϕp(u) ≤ λh(t)f(u),

i.e. u is a subsolution of (Pλ). It holds that u(t) < u(t) after ε > 0 is replaced by
a smaller constant. Therefore by the fundamental theorem of super-subsolution,
there exists a positive solution u0 such that u(t) ≤ u0(t) ≤ u(t). �

For the p-Laplacian, it is proved in [3] and [8] that the strong comparison
theorem holds under assumptions different from ours. Because of the singularity
of h at t = 0, 1, we must prove the strong comparison theorem for our equation,
i.e. u(t) < u0(t) < u(t) as follows.

Lemma 3.4. Let u, u and u0 be as in Lemma 3.3. Then u(t) < u0(t) < u(t)
for all t ∈ (0, 1) and 0 < u′(0) < u′0(0) < u′(0), u′(1) < u′0(1) < u′(1) < 0.

Proof. Let us show u0(t) < u(t) for t ∈ (0, 1). Suppose on the contrary
that u0(t0) = u(t0) at some t0 ∈ (0, 1). Since u(t)− u0(t) attains a minimum at
t = t0, we have u′0(t0) = u′(t0). Integrating (Pλ) over (t0, t), we have

ϕp(u′0(t))− ϕp(u′0(t0)) = −λ

∫ t

t0

hf(u0) ds.

Since u is a solution of (Pλ) at λ, we have the same identity as above with λ

replaced by λ and u0 by u. Subtracting these identities, we get

(3.1) ϕp(u′0(t))− ϕp(u′(t)) = (λ− λ)
∫ t

t0

hf(u) ds + λ

∫ t

t0

h(f(u)− f(u0)) ds.

Put a = u(t0) and choose ε > 0 so small that (λ− λ)(f(a)/2) > ελ. Then there
is δ > 0 such that

(3.2)
1
2
f(a) < f(u(s)) < 2f(a), |f(u(s))− f(u0(s))| < ε,
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for s ∈ (t0 − δ, t0 + δ). The right-hand side of (3.1) can be estimated as

[(λ− λ)(f(a)/2)− ελ]
∫ t

t0

h(s) ds > 0 for t ∈ (t0, t0 + δ).

Thus u′0(t) > u′(t) for t ∈ (t0, t0+δ). Since u0(t0) = u(t0), we obtain u0(t) > u(t)
for t ∈ (t0, t0 + δ). This contradicts the fact that u0(t) ≤ u(t). Consequently,
it holds that u0(t) < u(t) for t ∈ (0, 1). In the proof of Lemma 3.3, we have
already obtained

ϕp(u′)′ + (µ1f0/c0)h(t)f(u) ≥ 0.

Using this inequality with the similar argument as in the proof of u0(t) < u(t),
we can prove that u(t) < u0(t).

Next, we shall show that u′0(0) < u′(0). Suppose on the contrary that u′0(0) =
u′(0). Then (3.1) with t0 = 0 is valid, i.e.

(3.3) ϕp(u′0(t))− ϕp(u′(t)) = (λ− λ)
∫ t

0

hf(u) ds + λ

∫ t

0

h(f(u)− f(u0)) ds.

Putting a = u′0(0), which is positive by Lemma 2.2, we may write u and u0 of
the form

u(t) = at + ξ(t)t, u0(t) = at + η(t)t,

for some functions ξ and η satisfying ξ(t), η(t) → 0 as t → 0. Let 0 < ε <

(1/2) min{a, f0}. We shall determine ε later on. By (A3), there is δ > 0 such
that

(3.4) |f(s)− f0s
p−1| ≤ εsp−1 for s ∈ (0, δ).

Choose t0 > 0 so small that

0 < u(t), u0(t) < δ, |ξ(t)|, |η(t)| < ε for t ∈ (0, t0).

We will estimate the right-hand side of (3.3). By (3.4) and the fact u(t) =
at + ξ(t)t ≥ at− at/2 = at/2, we have

(3.5) f(u(t)) ≥ (f0/2)u(t)p−1 ≥ (f0/2)(at/2)p−1 = btp−1,

where b = (f0/2)(a/2)p−1. We use (3.4) and the fact u(t) ≤ 2at, to get

|f(u(t)) − f(u0(t))|(3.6)

≤ |f(u)− f0u
p−1|+ f0|up−1 − up−1

0 |+ |f0u
p−1
0 − f(u0)|

≤ 2pap−1εtp−1 + f0|u(t)p−1 − u0(t)p−1|.

Let us estimate the last term. Let p ≥ 2. Then the mean-value theorem guar-
antees an x ∈ (u0(t), u(t)) such that

|u(t)p−1 − u0(t)p−1| =(p− 1)xp−2|u(t)− u0(t)|(3.7)

≤ (p− 1)u(t)p−2|ξ(t)− η(t)|t ≤ εctp−1,
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where c = 2(2a)p−2(p− 1). Let 1 < p < 2. Then we have

(3.8) |u(t)p−1 − u0(t)p−1| ≤ |u(t)− u0(t)|p−1 ≤ (2εt)p−1.

By (3.6)–(3.8), we obtain

(3.9) |f(u(t))− f(u0(t))| ≤ C(ε + εp−1)tp−1 for t ∈ (0, t0),

where C > 0 is independent of ε and t. By (3.3), (3.5) and (3.9), we have

ϕp(u′0(t))− ϕp(u′(t)) ≥ [(λ− λ)b− λC(ε + εp−1)]
∫ t

0

h(s)sp−1 ds > 0,

where we have chosen ε > 0 so small that the coefficient of the integral is positive.
Hence u′0(t) > u′(t) for t ∈ (0, t0). However, this contradicts the fact that u0(t) ≤
u(t) and u0(0) = u(0) = 0. Accordingly, we get u′0(0) < u′(0). By the similar
argument, we can prove that u′(0) < u′0(0) and u′(1) < u′0(1) < u′(1) < 0. �

4. Existence of second solution u1

In this section, we find the second solution in Theorem 3.1 by using varia-
tional method. We define norm ‖ · ‖1,p of W 1,p

0 (0, 1) by

‖u‖1,p :=
( ∫ 1

0

|u′|p dt

)1/p

.

We put

(4.1) ρ(t) := (t(1− t))p−1.

Then assumption (A1) is equivalent to hρ ∈ L1(0, 1). By (2.1), we have

(4.2) |u(t)| ≤ 2(p−1)/pρ(t)1/p‖u‖1,p,

for t ∈ [0, 1] and u ∈ W 1,p
0 (0, 1). To obtain another positive solution, we define

f̃(t, s) :=

{
f(u0(t)) if s < u0(t),

f(s) if s ≥ u0(t),

g̃(t, s) :=


f(u0(t)) if s < u0(t),

f(s) if u0(t) ≤ s ≤ u(t),

f(u(t)) if u(t) < s,

F̃ (t, u) :=
∫ u

0

f̃(t, s) ds, G̃(t, u) :=
∫ u

0

g̃(t, s) ds,

where u and u0 are given in Lemma 3.3 Moreover, we define

I(u) :=
∫ 1

0

(
1
p
|u′|p − λh(t)F̃ (t, u)

)
dt,

J(u) :=
∫ 1

0

(
1
p
|u′|p − λh(t)G̃(t, u)

)
dt.



Solutions for One-Dimensional p-Laplacian 435

Lemma 4.1. I(u) and J(u) are C1-functionals on W 1,p
0 (0, 1) and satisfy the

Palais-Smale condition.

Proof. We deal with I(u) only because the same argument can be applied
for J(u) also. We prove that h( · )F̃ ( · , u( · )) is integrable on (0, 1) when u ∈
W 1,p

0 (0, 1). Recall that W 1,p
0 (0, 1) is imbedded in L∞(0, 1). Let u ∈ W 1,p

0 (0, 1).
Then by (A3), there is a constant A > 0 depending on ‖u‖∞ such that

|F̃ (t, s)| ≤ A(|s|p + u0(t)p) for |s| ≤ ‖u‖∞.

This inequality with (4.2) shows

|h(t)F̃ (t, u(t))| ≤ 2p−1Ah(t)ρ(t)(‖u‖p
1,p + ‖u0‖p

1,p).

Therefore h( · )F̃ ( · , u( · )) is integrable and I(u) is well-defined in W 1,p
0 (0, 1). In

the usual way, it can be proved that I(u) is of class C1.
To show the Palais–Smale condition, let {un} be a sequence in W 1,p

0 (0, 1)
such that |I(un)| is bounded and ‖I ′(un)‖ converges to zero, where ‖ · ‖ means
the norm of dual space of W 1,p

0 (0, 1). Since

(4.3) I ′(u)v =
∫ 1

0

(|u′|p−2u′v′ − λh(t)f̃(t, u)v) dt,

we have a relation

(4.4) αI(un)− I ′(un)un = β‖un‖p
1,p − λ

∫ 1

0

h(t)(αF̃ (t, un)− unf̃(t, un)) dt,

where α is the constant in (A6) and we put β = (α− p)/p. We will estimate the
integral on the right-hand side. Choose ε > 0 so small that

(4.5) 2p−1λε

∫ 1

0

hρ dt ≤ β/4.

Observe that F̃ (t, s) = f(u0(t))s, if s < u0(t) and F̃ (t, s) = F (s)+f(u0(t))u0(t)−
F (u0(t)), if s ≥ u0(t), where F is defined by (1.2). We choose a constant M > 0
which satisfies (A6), M > ‖u0‖∞ and moreover

α(f(u0)u0 − F (u0)) ≤ εMp.

Then we use (A6) to get

αF̃ (t, s)− sf̃(t, s) = αF (s) + α(f(u0)u0 − F (u0))− sf(s) ≤ ε|s|p,

for s ≥ M , and

αF̃ (t, s)− sf̃(t, s) = (α− 1)f(u0)s ≤ 0, for s ≤ −M.

In any case, we obtain

(4.6) αF̃ (t, s)− sf̃(t, s) ≤ ε|s|p, for |s| ≥ M.
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By (A3), there is a constant B > 0 such that

(4.7) |αF̃ (t, s)− sf̃(t, s)| ≤ B(|s|p + u0(t)p), for |s| ≤ M.

We choose δ > 0 so small that

(4.8) 2p−1λB

( ∫ δ

0

hρ dt +
∫ 1

1−δ

hρ dt

)
≤ β/4.

Fix n ∈ N arbitrarily. We define

P := {t ∈ [0, 1] : |un(t)| ≥ M},
Q := {t ∈ (δ, 1− δ) : |un(t)| < M},
R := {t ∈ [0, δ] ∪ [1− δ, 1] : |un(t)| < M}.

First, by (4.6), (4.2) and (4.5), we have

(4.9) λ

∫
P

h(t)(αF̃ (t, un)− unf̃(t, un)) dt

≤ λε

∫
P

h|un|p dt ≤ 2p−1λε‖un‖p
1,p

∫ 1

0

hρ dt ≤ β

4
‖un‖p

1,p.

Second, we get

(4.10) λ

∫
Q

h(t)(αF̃ (t, un)− unf̃(t, un)) dt

≤ λ sup
|s|≤M

|αF̃ (t, s)− sf̃(t, s)|
∫ 1−δ

δ

h(t) dt.

Finally, using (4.7) and (4.8), we have

(4.11) λ

∫
R

h(t)(αF̃ (t, un)− unf̃(t, un)) dt

≤ λB

∫
R

h|un|p dt + C0 ≤ (β/4)‖un‖p
1,p + C0.

Here C0 =
∫ 1

0
λBh(t)u0(t)p dt. Denoting the right-hand side of (4.10) by C1 and

combining (4.9)–(4.11), we obtain

λ

∫ 1

0

h(t)(αF̃ (t, un)− unf̃(t, un)) dt ≤ (β/2)‖un‖p
1,p + C0 + C1.

Substituting the above inequality into (4.4) and using the boundedness of |I(un)|
and ‖I ′(un)‖, we have a constant C > 0 such that

C + C‖un‖1,p ≥ (β/2)‖un‖p
1,p − C0 − C1.

Thus ‖un‖1,p is bounded and it has a subsequence (denoted by un again) con-
verging to a limit u∞ weakly in W 1,p

0 (0, 1). The compact imbedding assures
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that un converges to u∞ strongly in C[0, 1]. To prove the strong convergence in
W 1,p

0 (0, 1), we prepare two inequalities for x, y ∈ R,

(|x|p−2x− |y|p−2y)(x− y) ≥ 2−(p−2)|x− y|p if p ≥ 2,(4.12)

(|x|p−2x− |y|p−2y)(x− y) ≥ (p− 1)|x− y|2

(|x|+ |y|)2−p
if 1 < p < 2.(4.13)

(4.12) follows from an easy calculation. (4.13) is obtained by the mean-value
theorem

|x|p−2x− |y|p−2y

x− y
= (p− 1)|z|p−2,

with a certain z lying between x and y. Since |z| < |x|+ |y| and p < 2, we have

|x|p−2x− |y|p−2y

x− y
≥ (p− 1)(|x|+ |y|)p−2.

This proves (4.13). By (4.3), we make a relation

I ′(un)(un − u∞) − I ′(u∞)(un − u∞)(4.14)

=
∫ 1

0

(|u′n|p−2u′n − |u′∞|p−2u′∞)(u′n − u′∞) dt

− λ

∫ 1

0

h(t)(f̃(t, un)− f̃(t, u∞))(un − u∞) dt.

Since ‖I ′(un)‖ converges to zero and un to u∞ weakly in W 1,p
0 (0, 1), the left-hand

side converges to zero. We will show that the second integral on the right-hand
side converges to zero. Since ‖un‖1,p is bounded, we use (A3) with (4.2) to get
a constant C > 0 such that

|h(t)(f̃(t, un)− f̃(t, u∞))(un − u∞)| ≤ Ch(t)ρ(t) ∈ L1(0, 1).

By the Lebesgue convergence theorem, the second integral on the right-hand side
in (4.14) converges to zero. Therefore we have

(4.15) lim
n→∞

∫ 1

0

(|u′n|p−2u′n − |u′∞|p−2u′∞)(u′n − u′∞) dt = 0.

Let p ≥ 2. By (4.12), we have

2−(p−2)

∫ 1

0

|u′n − u′∞|p dt ≤
∫ 1

0

(|u′n|p−2u′n − |u′∞|p−2u′∞)(u′n − u′∞) dt.

Hence ‖un − u∞‖1,p converges to zero. Let 1 < p < 2. Putting w = |u′n|+ |u′∞|,
q = (2− p)p/2, r = 2/(2− p) and using the Hölder inequality, we get∫ 1

0

|u′n − u′∞|p dt ≤
( ∫ 1

0

|u′n − u′∞|2w−2q/p dt

)p/2( ∫ 1

0

wqr dt

)1/r

≤
( ∫ 1

0

|u′n − u′∞|2(|u′n|+ |u′∞|)−(2−p) dt

)p/2

(‖un‖1,p + ‖u∞‖1,p)(2−p)p/2.
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Thus from (4.13) and (4.15), we see that ‖un − u∞‖1,p converges to zero. Con-
sequently, I(u) satisfies the Palais–Smale condition. �

Lemma 4.2. If u is a critical point of I, then u0(t) ≤ u(t) for t ∈ (0, 1) and
u becomes a solution of (Pλ) in the distribution sense.

Proof. Suppose on the contrary that D := {t ∈ (0, 1) : u(t) < u0(t)} 6= ∅.
Since f̃(t, u(t)) = f(u0(t)) in D, we have

−ϕp(u′(t))′ = λh(t)f(u0(t)) = −ϕp(u′0(t))
′ in D.

Since u0 ≡ u on ∂D, from the comparison theorem it follows that u ≡ u0 in D.
This is a contradiction. Therefore u0(t) ≤ u(t) for all t, and f̃(t, u) = f(u).
Consequently, u is a solution of (Pλ) in the distribution sense. �

In the next lemma, we show the C1-regularity for a critical point of I(u).

Lemma 4.3. Let u ∈ W 1,p
0 (0, 1) satisfy (Pλ) in the distribution sense and

u(t) > 0 for t ∈ (0, 1). Then u ∈ C1
0 [0, 1], ϕp(u′) ∈ W 1,1(0, 1) and u satisfies

(Pλ) almost everywhere in (0, 1).

Proof. Since h ∈ L1
loc(0, 1), it is easy to verify that u ∈ C1(0, 1). We shall

show the C1-regularity at t = 0 and 1. Since u > 0 in (0, 1), it is concave,
and so u(t)/t is decreasing and moreover u′(t) > 0 for t > 0 small enough.
To prove u ∈ C1[0, 1), it is enough to show that u(t)/t is bounded above as
t → 0. By (A3), there exists a constant A > 0 depending on ‖u‖∞ such that
|f(u(t))| ≤ A|u(t)|p−1 in [0, 1]. We remind the well-known inequality

(4.16) (x + y)1/(p−1) ≤ Cp(x1/(p−1) + y1/(p−1)) for x, y ≥ 0,

where Cp = 1 if p ≥ 2 and Cp = 2(2−p)/(p−1) if 1 < p < 2. Choose ε > 0 so small
that Cpε < (p − 1)/p. Then we take a small δ > 0 such that u′(t) > 0 in (0, δ)
and

λA

∫ δ

0

h(τ)τp−1 dτ ≤ εp−1.

Integrating (Pλ) over (t, δ) and using the decrease of u(t)/t, we have

u′(t)p−1 ≤u′(δ)p−1 + λA

∫ δ

t

h(τ)up−1 dτ

≤u′(δ)p−1 + λA

∫ δ

t

h(τ)τp−1 dτ(u(t)/t)p−1

≤u′(δ)p−1 + εp−1(u(t)/t)p−1.

We use (4.16) to get

u′(t) ≤ Cpu
′(δ) + Cpε(u(t)/t).
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Rewriting Cpε by a and Cpu
′(δ) by C, we get (t−au(t))′ ≤ Ct−a. Integrating

both sides over (s, t), we obtain

t−au(t) ≤ s−au(s) + (C/(1− a))(t1−a − s1−a) for 0 < s < t ≤ δ.

By (2.1) with a < (p− 1)/p, s−au(s) converges to zero as s → 0. Thus we get

u(t) ≤ (C/(1− a))t for 0 < t ≤ δ.

This implies that u(t)/t is bounded as t → 0. Consequently, u ∈ C1[0, 1). The
argument above remains valid for the proof of the C1-regularity at t = 1.

Since u ∈ C1
0 [0, 1], there is C > 0 such that |u(t)| ≤ Ct(1 − t). We use

|f(u(t))| ≤ A|u(t)|p−1 to get

|hf(u)| ≤ ACp−1h(t)(t(1− t))p−1 ∈ L1(0, 1),

which implies that ϕp(u′)′ = −λh(t)f(u) ∈ L1(0, 1). Thus ϕp(u′) ∈ W 1,1(0, 1).�

To prove Theorem 3.1, we use Brezis–Nirenberg’s method [4]. For p = 2,
see [1] and [6]. For p 6= 2, one may refer to [7] and [9]. They studied the
N -dimensional problem, but we investigate the one-dimensional case. However,
since we have a singular weight h and a different nonlinear term f(u) from theirs,
the proofs of lemmas below are more complicated.

Lemma 4.4. J(u) has a global minimizer u1 in W 1,p
0 (0, 1). Moreover, u1 be-

comes a positive solution of (Pλ) belonging to C1
0 [0, 1] which satisfies 0 < u′1(0) <

u′(0), u′(1) < u′1(1) < 0 and

(4.17) u0(t) ≤ u1(t) < u(t) in (0, 1).

Proof. By the definition of G̃(t, s) with (A3), there is C > 0 such that

(4.18) |G̃(t, s)| ≤ Cu(t)p−1|s| for t ∈ [0, 1], s ∈ R.

By (4.18) with (4.2), J(u) can be estimated as;

J(u) ≥ 1
p
‖u‖p

1,p−λC

∫ 1

0

hup−1|u| dt ≥ 1
p
‖u‖p

1,p−2p−1λC

∫ 1

0

hρ dt‖u‖p−1
1,p ‖u‖1,p.

Thus J(u) is bounded from below, and it has a global minimizer u1 because of
the Palais-Smale condition (see [16, Theorem 2.7]). Therefore u1 is a critical
point of J(u), i.e.

(4.19)
ϕp(u′1)

′ + λh(t)g̃(t, u1) = 0 in (0, 1),

u1(0) = u1(1) = 0.

By the same method as in Lemma 4.2, it follows that u0 ≤ u1 ≤ u in [0, 1]. Thus
g̃(t, u1) = f(u1) and u1 becomes a solution of (Pλ). By Lemma 4.3, u1 belongs
to C1

0 [0, 1]. By the same way as in Lemma 3.4, we have 0 < u′1(0) < u′(0),
u′(1) < u′1(1) < 0 and we obtain (4.17) also. �
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Lemma 4.5. u1 is a local minimizer of I(u) in C1
0 [0, 1].

Proof. Since u1 is a global minimizer of J(u) in W 1,p
0 (0, 1), it is clear that

J(u1) ≤ J(u) for all u ∈ C1
0 [0, 1]. By Lemma 4.4, there is ε > 0 such that

u(t) < u(t) in (0, 1) if u ∈ Bε,

where Bε := {u ∈ C1
0 [0, 1] : ‖u− u1‖C1 < ε}.

Since G̃(t, s) = F̃ (t, s) when s < u(t), I(u) ≡ J(u) in Bε. Therefore u1 is
a local minimizer of I(u) in C1

0 [0, 1]. �

Lemma 4.6. u1 is a local minimizer of I(u) in W 1,p
0 (0, 1).

The above lemma is not trivial since C1
0 [0, 1] is a proper subspace of W 1,p

0 (0, 1).
We need some subsidiary lemmas for the proof of Lemma 4.6.

Lemma 4.7. Let {νn} be a nonnegative sequence and let un, v, wn ∈ C[0, 1]
satisfy

(4.20) ϕp(un(t)) + νnϕp(un(t)− v(t)) = wn(t) on [0, 1].

If {νn} converges and {wn} uniformly converges on [0, 1], then so does {un}.

Proof. Put Φ(s, r, ν) := ϕp(s) + νϕp(s − r) for s, r ∈ R and ν ≥ 0. For
any r ∈ R and ν ≥ 0 fixed, Φ(s, r, ν) is strictly increasing with respect to s

and Φ( · , r, ν) is surjective on R. Hence t = Φ(s, r, ν) has an inverse function
s = Ψ(t, r, ν). Moreover, it is easy to verify that Ψ(t, r, ν) is continuous in three
variables. Relation (4.20) is rewritten as un(t) = Ψ(wn(t), v(t), νn). There-
fore the convergence of {νn} and the uniform convergence of {wn} imply that
of {un}. �

Lemma 4.8. Let u ∈ W 1,p
0 (0, 1) satisfy

(4.21) ϕp(u′)′ + νϕp(u′ − u′1)
′ + λhf̃(t, u) = 0,

in the distribution sense with a certain ν ≥ 0. Then u belongs to C1
0 [0, 1] and

|u′(t)| ≤ C on [0, 1], where C depends only on ‖u‖∞ and not on ν.

Proof. Since {ϕp(u′) + νϕp(u′ − u′1)}′ = −λhf̃(t, u) ∈ L1
loc(0, 1), we see

that ϕp(u′) + νϕp(u′ − u′1) ∈ W 1,1
loc (0, 1). Therefore (4.21) is satisfied almost

everywhere in (0, 1). By definition, f̃(t, s) is nonnegative for all s ∈ R. Thus
(4.21) implies that ϕp(u′) + νϕp(u′ − u′1) is non-increasing. Since u1 is concave,
−u′1 is non-decreasing. Therefore u′ is non-increasing, i.e. u is concave in (0, 1).
Since u(t) = 0 at t = 0, 1, we have either u ≡ 0 or u > 0 in (0, 1). The conclusion
is clear when u ≡ 0 so that we suppose u > 0. Then by (A3), there exists A > 0
depending only on ‖u‖∞ such that

|f̃(t, u(t))| ≤ A(u(t)p−1 + u0(t)p−1) on [0, 1].



Solutions for One-Dimensional p-Laplacian 441

Integrating (4.21) over (s, t), we have

(4.22) ϕp(u′(s)) + νϕp(u′(s)− u′1(s))

= ϕp(u′(t)) + νϕp(u′(t)− u′1(t)) + λ

∫ t

s

h(τ)f̃(τ, u) dτ,

for s, t ∈ [0, 1]. Fix t and denote the right-hand side by w(s). Then the relation
above is rewritten as u′(s) = Ψ(w(s), u′1(s), ν), where Ψ is defined in the proof
of Lemma 4.7. Since w ∈ C(0, 1), u belongs to C1(0, 1), we shall show that
u ∈ C1[0, 1]. Let ε and δ be as in the proof of Lemma 4.3 with u′(t) > 0, u′1(t) > 0
in (0, δ). Then employing the inequality

xp−1 ≤ ϕp(x) + νϕp(x− y) + νyp−1 for x, y ≥ 0,

and using the decrease of u(t)/t, we estimate (4.22) with t = δ as

u′(s)p−1 ≤C + λA

∫ δ

s

h(τ)up−1 dτ

≤C + λA

∫ δ

s

h(τ)τp−1 dτ(u(s)/s)p−1 ≤ C + εp−1(u(s)/s)p−1.

Here

C = |u′(δ)|p−1 + ν|u′(δ)− u′1(δ)|p−1 + ν‖u1‖p−1
C1 + λA

∫ 1

0

h(τ)up−1
0 dτ.

Following the proof of Lemma 4.3, we can show that u(t)/t is bounded as t → 0.
Similarly, u(t)/(1− t) is bounded as t → 1. Thus u ∈ C1[0, 1].

We shall show an a priori estimate of |u′(t)|. Choose a ∈ (0, 1/2) so small
that

(4.23)
∫ a

0

h(τ)τp−1 dτ +
∫ 1

1−a

h(τ)(1− τ)p−1 dτ ≤ 1
2λA

.

Since u is concave, it has a unique critical point t0 ∈ (0, 1). Putting t = t0 in
(4.22), we have

(4.24) ϕp(u′(s)) + νϕp(u′(s)− u′1(s)) = −νϕp(u′1(t0)) + λ

∫ t0

s

h(τ)f̃(τ, u) dτ,

for s ∈ [0, 1]. First, we deal with the case where 0 ≤ ν ≤ 1. Using the inequality

|x|p−1 ≤ |ϕp(x) + νϕp(x− y)|+ |y|p−1 for x, y ∈ R,

we reduce (4.24) to

(4.25) |u′(s)|p−1 ≤ B + λA

∣∣∣∣∫ t0

s

h(τ)u(τ)p−1 dτ

∣∣∣∣ ,
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for s ∈ [0, 1]. Here we put

B = 2‖u′1‖p−1
∞ + λA

∫ 1

0

h(t)u0(t)p−1 dt.

Since u is concave, we have

(4.26) 0 ≤ u(τ) ≤ τu′(0) for τ ∈ [0, 1].

We divide the proof into two cases.

Case 1. 0 < t0 ≤ 1− a, where a is determined by (4.23).
Putting s = 0 in (4.25) and using (4.26) with t0 ≤ 1− a, we have

|u′(0)|p−1 ≤ B + λA|u′(0)|p−1

∫ a

0

h(τ)τp−1 dτ + λA

∫ 1−a

a

h(τ)dτ‖u‖p−1
∞ .

Using (4.23), we have

(1/2)|u′(0)|p−1 ≤ B + λA

∫ 1−a

a

h(τ) dτ‖u‖p−1
∞ .

Thus |u′(0)| has an a priori bound depending only on ‖u‖∞.

Case 2. 1− a < t0 < 1.
By the concavity of u, we have u(τ) ≤ (1−τ)|u′(1)|. Putting s = 1 in (4.25),

we have

|u′(1)|p−1 ≤ B + λA|u′(1)|p−1

∫ 1

1−a

h(τ)(1− τ)p−1 dτ,

which with (4.23) implies |u′(1)| ≤ (2B)1/(p−1) ≡ C. Thus we have u(τ) ≤
(1− τ)|u′(1)| ≤ C(1− τ). From (4.25) with s = 0, we estimate

|u′(0)|p−1 ≤B + λA|u′(0)|p−1

∫ a

0

h(τ)τp−1 dτ

+ λA

∫ 1−a

a

h(τ)dτ‖u‖p−1
∞ + λACp−1

∫ 1

1−a

h(τ)(1− τ)p−1 dτ.

By (4.23), |u′(0)| has an a priori bound depending on ‖u‖∞. In both Cases 1
and 2, |u′(0)| has an a priori bound C. Similarly, we have |u′(1)| ≤ C also. Since
u is concave, it follows that

|u′(t)| ≤ max(|u′(0)|, |u′(1)|) ≤ C for t ∈ [0, 1].

Let us consider the case where ν ≥ 1. Dividing (4.24) by ν, we have

(4.27) ϕp(u′(s)− u′1(s)) + (1/ν)ϕp(u′(s))

= −ϕp(u′1(t0)) + (λ/ν)
∫ t0

s

h(τ)f̃(τ, u) dτ.

Using the inequality

Ap|x|p−1 ≤ |ϕp(x− y) + (1/ν)ϕp(x)|+ |y|p−1 for x, y ∈ R,
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where Ap > 0 depends only on p, we estimate (4.27) as

Ap|u′(s)|p−1 ≤ B + λA

∣∣∣∣ ∫ t0

s

hu(τ)p−1 dτ

∣∣∣∣.
In the similar argument as in Cases 1 and 2, we can obtain the boundedness
of |u′(t)|. �

Lemma 4.9. Let {un} ⊂ W 1,p
0 (0, 1) satisfy (4.21) with a nonnegative se-

quence {νn} and suppose that {un} is bounded in L∞(0, 1). Then a subsequence
of {un} converges strongly in C1

0 [0, 1].

Proof. Suppose that un 6≡ 0 for large n. Then {un} is positive and concave
in (0, 1), which has been shown in the proof of Lemma 4.8. By assumption with
Lemma 4.8, ‖un‖C1 is bounded. Let tn be a critical point of un(t). We divide
the proof into two cases.

Case 1. {νn} is bounded.
After taking a subsequence if needed, we may assume that {tn} and {νn}

converge to limits t∞ and ν∞, respectively, and {un} converges to a certain limit
u∞ strongly in C[0, 1] by the Ascoli-Arzelà theorem. Putting u = un, ν = νn

and t0 = tn in (4.24), we get

(4.28) ϕp(u′n(s)) + νnϕp(u′n(s)− u′1(s))

= −νnϕp(u′1(tn)) + λ

∫ tn

s

h(τ)f̃(τ, un) dτ.

Since un ≥ 0 and |u′n(s)| ≤ C on [0, 1], we see 0 ≤ un(s) ≤ 2Cs(1 − s), for
s ∈ (0, 1). By (A3) with the boundedness of ‖un‖∞, there is a constant A > 0
such that

|f̃(s, un(s))| ≤ A(un(s)p−1 + u0(s)p−1) on [0, 1].

Thus we have a constant B > 0 independent of n such that

|h(s)f̃(s, un)| ≤ Bh(s)(s(1− s))p−1 ∈ L1(0, 1).

By the Lebesgue convergence theorem, the right-hand side of (4.28) converges
uniformly on [0, 1]. By Lemma 4.7, un converges to u∞ strongly in C1

0 [0, 1].

Case 2. {νn} is unbounded.
Taking a subsequence, we assume that {νn} diverges to infinity. Dividing

(4.28) by νn, we get

ϕp(u′n(s)−u′1(s)) = −ϕp(u′1(tn))−(1/νn)ϕp(u′n(s))+(λ/νn)
∫ tn

s

h(τ)f̃(τ, un) dτ.

The right-hand side converges to −ϕp(u′1(t∞)) uniformly on [0, 1], which implies
the uniform convergence of {u′n}. Thus {un} strongly converges in C1

0 [0, 1]. �
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We prove the existence of a minimizer of I(u). The next lemma seems well-
known but for the sake of completeness, we give a proof.

Lemma 4.10. I(u) achieves a minimum on any bounded closed convex subset
of W 1,p

0 (0, 1).

Proof. Let M be a bounded closed convex subset of W 1,p
0 (0, 1). Then I(u)

is bounded on M . Indeed, we choose C > 0 such that ‖u‖1,p ≤ C for u ∈ M .
We note that M is bounded in L∞(0, 1). Thus there exist constants A, C1 > 0
by (4.2) such that

(4.29) |F̃ (t, u(t))| ≤ A(|u(t)|p + |u0(t)|p) ≤ C1(t(1− t))p−1 for u ∈ M,

which shows the boundedness of I(u) on M . We choose a minimizing sequence
{uk}, i.e. uk ∈ M and

inf{I(u) : u ∈ M} = lim
k→∞

I(uk).

Since W 1,p
0 (0, 1) is reflexive and M is bounded closed convex, M is weakly se-

quentially compact. Thus a subsequence of {uk} (denoted by {uk} again) con-
verges weakly to a limit u∞ ∈ M and ‖u∞‖1,p ≤ lim inf

k→∞
‖uk‖1,p. By the compact

imbedding, uk converges to u∞ strongly in C[0, 1]. By the Lebesgue convergence
theorem with (4.29),∫ 1

0

h(t)F̃ (t, uk(t)) dt −→
∫ 1

0

h(t)F̃ (t, u∞(t)) dt.

Accordingly, we have

I(u∞) = (1/p)‖u∞‖p
1,p − λ

∫ 1

0

h(t)F̃ (t, u∞) dt ≤ lim inf
k→∞

I(uk).

Thus u∞ is a minimizer of I(u) on M . �

We denote the closed ball of center u1 with radius r in W 1,p
0 (0, 1) by

Br = B(u1, r) := {u ∈ W 1,p
0 (0, 1) : ‖u− u1‖1,p ≤ r}.

We are now in a position to prove Lemma 4.6.

Proof of Lemma 4.6. It is enough to prove the existence of r > 0 such
that I(u1) ≤ I(u) if ‖u − u1‖1,p ≤ r. Suppose on the contrary that for any
r ∈ (0, 1) there exists vr ∈ Br = B(u1, r) such that I(vr) < I(u1). Then by
Lemma 4.10, there exists a minimizer ur ∈ Br such that I(ur) ≤ I(vr) < I(u1).
Define K(u) by

K(u) :=
1
p
‖u− u1‖p

1,p =
1
p

∫ 1

0

|u′ − u′1|p dt.
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We shall show that there is a sequence {rn} converging to zero such that {urn
} ⊂

C1
0 [0, 1] and it converges strongly in C1

0 [0, 1]. Since ur 6= u1, we have

(4.30) K ′(ur)(ur − u1) = ‖ur − u1‖p
1,p > 0.

Hence K ′(ur) is surjective from W 1,p
0 (0, 1) onto R. Put δ = ‖ur − u1‖1,p. Since

ur is a minimizer of I(u) on the restriction K(u) = δp/p, there is a Lagrange
multiplier νr ∈ R such that

(4.31) I ′(ur) + νrK
′(ur) = 0,

or equivalently

ϕp(u′r)
′ + λhf̃(t, ur) + νrϕp(u′r − u′1)

′ = 0.

Since I(sur + (1 − s)u1) has a minimum at s = 1 on [0, 1], its derivative at
s = 1 is nonpositive, that is, I ′(ur)(ur − u1) ≤ 0. Thus by (4.30) and (4.31),
νr is nonnegative. Since ‖ur − u1‖1,p ≤ r ≤ 1, Lemmas 4.8 and 4.9 assure that
ur ∈ C1

0 [0, 1] and there is a subsequence {rn} converging to zero such that {urn}
converges to u1 strongly in C1

0 [0, 1]. However the fact I(urn
) < I(u1) contradicts

Lemma 4.5 and this completes the proof. �

By Lemma 4.6, u1 is a critical point of I(u) and hence it becomes a solution
of (Pλ) which belongs to C1

0 [0, 1] and satisfies u0 ≤ u1.

5. Distinctness of u0 and u1

In this section, we show u0, u1 known to exist in the previous section are
distinct. Suppose on the contrary that u0(t) = u1(t), for all t ∈ (0, 1). Then u0

is a local minimizer of I(u) in W 1,p
0 (0, 1). We fix δ > 0 so small that

I(u0) ≤ I(u) for all u ∈ B(u0, 2δ).

To get a second positive solution, we divide our discussion into two cases:
Case 1. I(u0) = d,
Case 2. I(u0) < d,

where d is defined by

d := inf{I(u) : u ∈ ∂Bδ}, ∂Bδ := {u ∈ W 1,p
0 (0, 1) : ‖u− u0‖1,p = δ}.

In Case 1, note that the infimum of I on ∂Bδ is equal to that on B2δ. Using
this fact, we shall prove that I achieves a minimum on ∂Bδ although ∂Bδ is not
convex.
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Lemma 5.1. In Case 1, the functional I achieves a minimum on ∂Bδ.

Proof. Let {uk} be a minimizing sequence of I on ∂Bδ. After choosing
a subsequence, we assume that {uk} converges to a limit u∞ weakly in W 1,p

0 (0, 1).
Then

‖u∞ − u0‖1,p ≤ lim inf
k→∞

‖uk − u0‖1,p = δ.

Thus u∞ ∈ Bδ and d = I(u0) ≤ I(u∞). By the compact imbedding, {uk}
converges to u∞ strongly in C[0, 1]. By the Lebesgue convergence theorem with
the boundedness of ‖uk‖1,p, we have the convergence

(1/p)‖uk‖p
1,p = I(uk) + λ

∫ 1

0

hF̃ (t, uk) dt −→ d + λ

∫ 1

0

hF̃ (t, u∞) dt.

The right-hand side is bounded above by

I(u∞) + λ

∫ 1

0

hF̃ (t, u∞) dt = (1/p)‖u∞‖p
1,p.

Consequently, lim sup
k→∞

‖uk‖1,p ≤ ‖u∞‖1,p. From the weak convergence it follows

that lim inf
k→∞

‖uk‖1,p ≥ ‖u∞‖1,p. Accordingly, ‖uk‖1,p converges to ‖u∞‖1,p. Since

W 1,p
0 (0, 1) is uniformly convex, {uk} strongly converges to u∞ in W 1,p

0 (0, 1).
Hence u∞ ∈ ∂Bδ and I(u∞) = d. This completes the proof. �

In Case 1, the Ghoussoub–Preiss version of the mountain pass lemma (see
[10] or p. 140 in [5]) is applicable, however we use Lemma 5.1 directly to get the
second positive solution.

Lemma 5.2. In Case 1, there exists a positive solution u1 different from u0

satisfying u0(t) ≤ u1(t) for t ∈ [0.1].

Proof. By Lemma 5.1, there exists a minimizer u1 of I(u) on ∂Bδ. Thus we
have I(u1) = d = I(u0) ≤ I(u) for u ∈ B(u1, δ). This implies that u1 is a critical
point of I(u). By Lemmas 4.2 and 4.3, u1 is a solution of (Pλ) satisfying u0 ≤ u1.
Moreover, it is different from u0 because ‖u0 − u1‖1,p = δ. �

To deal with Case 2, we apply the mountain pass lemma by Ambrosetti–
Rabinowitz [2]. To this end, we need the following lemma.

Lemma 5.3. There exists φ1 ∈ W 1,p
0 (0, 1) such that ‖φ1 − u0‖1,p > δ and

I(φ1) < I(u0).

Proof. Choose φ ∈ W 1,p
0 (0, 1) such that φ > 0 in (0, 1) and max(u0(t0), 1)

< φ(t0) at some point t0. It is enough to show that I(Rφ) → −∞ as R → ∞.
Put D := {t ∈ (0, 1) : φ(t) > max{u0(t), 1}}. By the definition of F̃ (t, s), we
have

F̃ (t, s) = F (s) + f(u0(t))u0(t)− F (u0(t)) if s > u0(t).
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Since F̃ (t, s) ≥ 0 for all s ≥ 0, we have for R > 1,

(5.1) I(Rφ) ≤ (Rp/p)‖φ‖p
1,p − λ

∫
D

hF̃ (t, Rφ) dt

= (Rp/p)‖φ‖p
1,p − λ

∫
D

hF (Rφ) dt− C,

where
C = λ

∫
D

h(t)(f(u0)u0 − F (u0)) dt.

Put M(R) := inf{F (s)/sp : s ≥ R}. Then (5.1) can be estimated as

I(Rφ) ≤ Rp

[
(1/p)‖φ‖p

1,p − λM(R)
∫

D

hφp dt

]
− C.

Since M(R) diverges to ∞ as R →∞ by (A4), we conclude that I(Rφ) → −∞.
Putting φ1 = Rφ, for large R, we completes the proof. �

Proof of Theorem 3.1. It remains to prove Theorem 3.1 for Case 2,
that is, I(u0) < d = inf{I(u) : ‖u−u0‖1,p = δ}. Let φ1 be as in Lemma 5.3. We
define

Γ := {γ ∈ C([0, 1],W 1,p
0 (0, 1)) : γ(0) = u0, γ(1) = φ1},

c := inf
γ∈Γ

max
0≤θ≤1

I(γ(θ)).

By the definition of c, we see I(u0) < d ≤ c. By the mountain pass lemma [2]
(see [16] also), I(u) has a critical point u1 such that I(u1) = c. Consequently,
u1 is a positive solution of (Pλ) different from u0. �

Proof of Theorem 1.4. Let λ1 be the supremum of λ for which (Pλ) has
a positive solution. Then λ1 is finite by Proposition 1.3(c). By Theorem 1.2,
(Pλ) has at least one positive solution for λ ∈ (0, µ1]. By Theorem 3.1, (Pλ)
for λ ∈ (µ1, λ1) has at least two distinct positive solutions u0 and u1 such that
u0(t) ≤ u1(t) for t ∈ [0, 1]. Let {(λn, un)} be a sequence of positive solutions such
that {λn} converges increasingly to λ1. Then by Lemmas 2.3–2.5, a subsequence
of {un} converges to a limit u∞ strongly in C1

0 [0, 1]. Hence u∞ ≥ 0. Since
λ1 > µ1 and un > 0, Lemma 2.4 assures that u∞ 6≡ 0. By the strong maximum
principle, u∞ is strictly positive. Thus for λ = λ1, there is at least one positive
solution. By the definition of λ1, there are no positive solutions for λ > λ1. �
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