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NOTE ON PERIODIC SOLUTIONS
OF RELATIVISTIC PENDULUM TYPE SYSTEMS

Kazuya Hata — Jiaquan Liu — Zhi-Qiang Wang

Abstract. We establish multiplicity results of periodic solutions for rela-

tivistic pendulum type systems of ordinary differential equations. We pro-

vide a different approach to the problems and answer some questions raised
in [6], [7] by Brezis and Mawhin recently.

1. Background and main result

In a series of interesting papers ([1]–[3], [6], [7], [24], [25]) the problem on the
existence and multiplicity of periodic solutions for relativistic pendulum equa-
tions and related systems of similar type have been studied in recent years. This
has been done mainly by fixed point theorem method. In [6], [7] variational
arguments have been explored by using minimization methods in convex sets of
Banach spaces. The current paper is inspired by these work in particular by [6]
and [7] of Brezis and Mawhin. In [6], [7] some open questions were raised con-
cerning multiplicity of periodic solutions for these type of systems of equations.
In this paper we propose a different approach mainly in variational nature and
our new approach enable us to give positive answers to some questions raised
in [6], [7] and also to generalize the existing results to a broader class of systems.

To motivate the discussion let us consider the following equation

(1.1) (φ(u′))′ +A sinu = h(x)
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where φ: (−a, a) → R is an increasing homeomorphism satisfying φ(0) = 0, A is
a constant, h ∈ L1

T (R) (i.e. T -periodic) and
∫ 2π

0
h(x) dx = 0. This contains the

so-called relativistic pendulum equation coming from models for dynamics of
special relativity when φ(t) = t/

√
1− t2 and a = 1:

(1.2)
(

u′√
1− (u′)2

)′

+A sinu = h(x).

This class of equations has received much attention in recent years starting from
papers of Torres [24], [25]. This belongs to a family of equations of relativistic
type equations of the form

(1.3) (φ(u′))′ − g(x, u) = h(x),

when φ: (−a, a) → R is an increasing homeomorphism, g is T -periodic in x and
2π-periodic in u, and h is T -periodic and has mean value zero, module some
smoothness conditions. For the following relativistic equation with continuous
periodic forcing h and arbitrary dissipation f

(φ(u′))′ + f(u)u′ +A sinu = h(x).

it was proved in [24], [25] that the existence of at least two T -periodic solutions
when

(1.4) aT < 2
√

3 and |h| < A

(
1− aT

2
√

3

)
,

and of at least one T -periodic solution when

(1.5) aT = 2
√

3 and h = 0.

A Schauder fixed-point theorem approach was used in [24], [25]. The assumptions
have been improved in [3] by using a Leray–Schauder degree argument. Another
multiplicity result was given in [3] using a upper and lower solution method.

In a different direction, in recent papers of [6], [7] Brezis and Mawhin em-
ployed variational arguments to study the existence of periodic solutions of (1.3)
and they established as corollary the existence of a T -periodic solution for (1.2)
under the conditions that A ∈ R and h = 0. Thus the conditions (1.4), (1.5)
are removed, and this was done by a minimization arguments in closed convex
subsets of a Banach space.

More precisely, the following conditions are assumed in [6]:

(HΦ1) Φ is continuous on [−a, a], of class C1 on (−a, a), strictly convex, and
φ := Φ′: (−a, a) → R is a homeomorphism such that φ(0) = 0.

(Hg) g is a Carathéodory funciton, bounded on R2, g( · , u) is T -periodic for
any u ∈ R and some T > 0, g(x, · ) is 2π-periodic for almost every x ∈ R,
G(x, u) :=

∫ u

0
g(x, s) ds is bounded on R2, and G(x, · ) is 2π-periodic

for almost every x ∈ R.
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Theorem 1.1 ([6]). Under conditions (HΦ1) and (Hg), (1.3) has a classical
periodic solution.

In fact this solution can be formulated as a minimizer of a minimization
problem over a closed convex set.

In [7] the variational methods were further explored to treat the correspond-
ing relativistic type systems of equations. Consider

(1.6) (φ(u′))′ = ∇uF (x, u) + h(x), u(0) = u(T ), u′(0) = u′(T ).

Here it is assumed that

(HΦ2) φ a homeomorphism from Ba ⊂ Rn onto Rn such that φ(0) = 0, φ = ∇Φ
with Φ:Ba → (−∞, 0] of class C1 on Ba, continuous and strictly convex
on Ba.

(HF ) F ( · , u) is measurable on [0, T ] for every u ∈ Rn, F (x, · ) is continually
differentiable on Rn for almost every x ∈ [0, T ], and ∇uF satisfies the
L1-Carathéodory conditions (e.g. [20]).

Theorem 1.2 ([7]). Under (HΦ2) and (HF ) and if F is also periodic in each
component of u and h̄ = 0 the system (1.6) has at least one periodic solution.

For the classical pendulum equations and systems while there was the original
paper [12] there was a surge of interests in the existence and more in multiplicity
of periodic solutions in the 1980’s ([8], [9], [11], [13], [14], [19], [22], [26] and re-
ferences therein). In particular for the classical pendulum systems the existence
of n + 1 periodic solutions was given in [9], [14], [22] independently. With this
background Brezis and Mawhin raised an open problem on the multiplicity of
periodic solutions for the relativistic pendulum type systems (1.6). More pre-
cisely, the question is whether there exist n + 1 periodic solutions for (1.6) in
the setting of Theorem 1.2. Several other open problems were also raised in [7]
concerning existence of periodic solutions of the relativistic systems.

This paper is motivated by the results in [6], [7] and devoted to the exis-
tence of multiplicity results of periodic solutions. We give a positive answer
to the above question. We use a different method and our method applies to
more general situations than those treated in the above mentioned papers. Our
approach allows us to give an answer to another open problem in [7] for anti-
coercive potentials. See Remarks 2.2 and 2.3. The main idea is to introduce
Hamiltonian coordinates to study the first order version of the systems of equa-
tions for which a more standard variational formulation exists and for which we
can use an abstract theorem in [13] by Liu on multiplicity of critical points for
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functionals defined on product spaces of a linear space and a manifold. We make
the following assumptions.

(H1) φ:Ba → Rn is a homeomorphism with ψ := φ−1 : Rn → Ba and there is
a C1 function Ψ: Rn → R such that ∇Ψ = ψ and Ψ is bounded below.

Example 1.3.

φ(x) =
x√

1− |x|2
, ψ(x) =

x√
1 + |x|2

and Ψ(x) =
√

1 + |x|2.

For conditions on potentials we shall consider a more general case and prove
a more general theorem which contains both Theorems 1.1 and 1.2 with slightly
stronger smoothness condition. Our result answers a couple of open problems in
[7] (see Remarks 2.2 and 2.3 below).

(H2) F ∈ C1(S,Rn). For an integer 0 ≤ k ≤ n, F is T -periodic in x,
2π-periodic in u1, . . . , uk and ∇uF is bounded. h ∈ (L2

T (R))n is 2π-
periodic in x and

∫ T

0
hi(x) dx = 0 for i = 1, . . . , k. Writing u = (v, w)

with v ∈ Rk and w ∈ Rn−k. Assume
∫ T

0
(F (x, u) + h(x)u) dx→ −∞ as

|w| → ∞ uniformly in v ∈ R.

Theorem 1.4. Assume (H1) and (H2). Then the system (1.6) has as least
k + 1 classical T -periodic solutions.

2. The proof and further remarks

For the proof of our main theorem we will transform the second order system
to a first order system. For the first order system we follow closely the methods
developed in [10] which was also used in [9], [13] in late 1980’s.

First we use the idea of relativistic kinetic momentum and set v = φ(u′). Due
to the condition (H1) we have u′ = ψ(v). Now the original system is equivalent
to the following first order Hamiltonian system

u′ = ψ(v), v′ = ∇uF (x, u) + h(x), u(0) = u(T ), v(0) = v(T ).

It is well known that under (HF ), (H1), weak solutions of (1.6) are classical.
Thus we just need to consider the weak solutions. Without loss of generality
we assume T = 2π. The Euler–Lagrange functional associated with the above
system is

I(u, v) =
∫ T

0

u′v dx−
∫ T

0

Ψ(v) dx+
∫ T

0

F (x, u) dx+
∫ T

0

h(x)u dx

The functional I is defined on the product space H1/2(S,Rn)×H1/2(S,Rn) with
S := R/{2πZ}.

The quadratic part defines a linear operator A and the domain of A is
W 1,2(S,R2n). The spectrum of the operator A is σ(A) = Z with each eigenvalue
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being of multiplicity 2n. The eigenspace of A corresponding to the eigenvalue
k ∈ Z is

Ek = exp (ktJ)R2n = ((cos kt)I + (sin kt)J)R2n.

In particular kerA = E0 = R2n. Define

E =
{
u ∈ H1/2(S,Rn)

∣∣∣∣ ∫ T

0

h(x)dx = 0
}
.

Then we have H1/2(S,Rn) = E⊕Rn. By the conditions we have I is translation-
invariant in u1, . . . , uk with integer multiple of 2π. Then I can be regarded as
defined on X = (E ⊕ E ⊕ Rn ⊕ Rn−k)× Rk/{2πZ} = (E ⊕ E ⊕ R2n−k)× Tk.

The quadratic form
∫ T

0
u′v dx has kernel Rn ⊕ Rn and is non-degenerate

on E⊕E. We verify that we can apply the following abstract theorem from [13]
to this functional I to establish the existence of k+ 1 critical points, which give
k + 1 T -periodic solutions up to translations.

Theorem 2.1 ([13]). Let H be a Hilbert space and A be a bounded self-
adjoint operator on H which splits the apace H into H+ = H− +H0 according
to its spectral decomposition. Denote by P± and P0 the orthogonal projections
onto positive, negative spectrum space H± and the kernel of A, H0, respectively.
Assume that

(A1) The restriction A|H± is invertible, i.e. A|H± has a bounded inverse
on H±.

(A2) The space H0 is finite-dimensional.
(A3) G:H×V → R is a C1-function, where V is a finite-dimensional compact

C2-manifold. Suppose that G has a bounded, compact gradient dG and
G(P0x, y) → −∞ (or +∞), uniformly in y as |P0x| → ∞.

Then the functional f :H × V → R defined by

f(x, y) =
1
2
(Ax, x) +G(x, y)

has at least cuplength V + 1 critical points.

With the spectral decomposition of the operator A we may identify A0 =
R2n−k and V = Tk. The fact that cuplength Tk = k gives the result once we
verify the other conditions.

We need to verify the Landersman–Lazer type condition. By (H2) it suffices
to show Ψ(v) → ∞ as |v| → ∞. We may assume ψ(0) = 0. Consider the flow
generated by the negative pseudo-gradient vector field V (η) of Ψ

dη

dt
= −V (η), η(0) = x.

Here V is a pseudo-gradient vector field of Ψ such that

〈V (x), ψ(x)〉 ≥ ||ψ||, ||V (x)|| ≤ 2.
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Since ψ is a homeomorphism from Rn onto Ba, there is δ > 0 such that, for all
v ∈ Rn with |v| ≥ 1,

|∇Ψ(v)| = |ψ(v)| ≥ δ.

First, for each v with |v| = 1, consider the flow line η(t, v). Then, as Ψ is non-
increasing for t and Ψ is bounded from below, there is t0 ≤ 0 such that η(t, v) is
outside B1 for t ≤ t0 and

Ψ(η(t)) ≥ −δt+ Ψ(η(t0, v)) →∞ and |η(t)| → ∞ as t→ −∞.

Now, if there is a C > 0 and wn ∈ Rn such that |wn| → ∞ and Ψ(wn) ≤ C,
there are tn > 0 such that vn = η(tn, wn) ∈ ∂B1 (in fact η(t, w) → 0 as t→ +∞
due to Ψ being bounded below). Then wn = η(−tn, vn).

Assume vn → v0. There is t0 < 0 such that Ψ(η(−t0, v0)) ≥ C + 1. Using
the continuity of the flow in initial values we have

Ψ(η(−t0, vn)) → Ψ(η(−t0, v0)) ≥ C + 1 and Ψ(η(−tn, vn)) ≥ Ψ(η(−t0, vn))

a contradiction for n large.
Applying Theorem 2.1 we complete the proof of the main theorem, estab-

lishing the existence of at least k + 1 critical points of I.

Remark 2.2. When k = n we get n+1 periodic solutions for the relativistic
systems, answering an open problem in Remark 9.3 of [7].

Remark 2.3. When k = 0 our result answers an open problem raised in
Remark 7.4 of [7] giving the existence of one T -periodic solution. The classical
case was established in [20, Theorem 4.8].

Remark 2.4. When n = 1 and k = 1 we obtain two periodic solutions for
the relativistic pendulum equation. In this case (H1) can be weakened as the
following (Hφ) which does not need Ψ be defined at x = ±a and the convexity
of Φ as in (HΦ1).

(Hφ) φ: (−a, a) → R is a homeomorphism.

Thus we have

Theorem 2.5. Assume (Hφ). For any T > 0, A ∈ R and h ∈ L2
T (R) such

that h = 0, the relativistic pendulum equation (1.1) has at least two classical
T -periodic solutions.

For a proof of this we just need to check (H1). In fact, let ψ = φ−1 then
ψ: R → (−a, a) and ψ(t) → ±a (if φ is increasing) as t → ±∞. Let Ψ(t) =∫ t

0
ψ(s) ds. Then we have Ψ(t) → +∞ as t→∞. Thus (H1) is satisfied.

Remark 2.6. Finally we compare (HΦ2) in [7] and our condition (H1). As
discussed in [7] under condition (HΦ2) the Legendre–Fenchel transform of Φ is
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well defined and is also strictly convex and also of class C1 (e.g. [20]). Further-
more, φ−1 = ∇Φ∗. As Φ is bounded from above and Φ∗ is bounded from below.
Thus (HΦ2) implies (H1). We do not need Φ to be defined on the close ball Ba.

3. Further results and remarks

In [6], [7] the convexity of Φ (and thus Ψ) was assumed. If this is the case,
with our first order systems approach some further results follow immediately
from some classical work as in [20]. These results do not require bounded deriv-
ative of F . We mention a couple of result here.

(A1) There is a l ∈ L4 such that for all x, u, F (x, u) ≥ (l, u).
(A2) There is α ∈ (0, 2π/T ) and γ ∈ L2 such that F (x, u) ≤ α/2|u|2 + γ(x).
(A3)

∫ T

0
F (x, u) dx→ +∞ as |u| → ∞ for u ∈ Rn.

(a) Assume (H1) with Ψ being convex. Assume (A1)–(A3) and assume
−F (x, u) ∈ C1 is convex in u. Then (1.6) has at least one T -periodic solu-
tion. This follows from Theorem 3.5 in [20] because Ψ(v)− F (x, u) is convex in
(u, v) now.

Under stronger conditions one can get subharmonic solutions with large min-
imal periods.

(A4) Uniformly in x, F (x, u)/u2 → 0 and F (x, u) → −∞ as |u| → ∞.

(b) Assume (H1) with Ψ being convex. Assume (A4) and −F (x, u) ∈ C1 is
convex in u. Then for each integer k ≥ 1 (1.6) has a kT -periodic solution uk

with minimal period Tk such that Tk →∞ as k →∞. When F = F (u) for each
large k the minimal period of uk is kT . This follows from Theorem 3.2 in [20].
We refer [20] for more source of references therein.

While finalizing the note we wrote to Professor Jean Mawhin to check on
related references. Professor Mawhin kindly informed of us, among several other
references, his recent paper [17]. In [17] he had used the Hamiltonian approach
and obtained the multiplicity result of n+1 periodic solutions for the relativistic
pendulum type systems (1.6). He also had generalizations to Neumann problems
and difference systems and we refer [16], [18] for his nice surveys on recent
progress and references therein. The treatment in [17] is somewhat different
from ours, based on mainly a result of Szulkin [23] for indefinite functionals.
We also learnt of [4] which gives the existence of two periodic solutions for the
scalar relativistic pendulum type equations, though the method there, based on
a variant of mountain pass theorem (e.g. [19], [21]), may not be suitable for
producing more solutions.
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