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ON PARAMETRIC EQUILIBRIUM PROBLEMS

Marcel Bogdan — József Kolumbán

Abstract. The goal of this article is to study a kind of stability property

of a sequence of solutions to parametric equilibrium problems. The main

result gives sufficient conditions for this purpose, in the presence of the
topological pseudomonotonicity in the limit problem.

1. Introduction

One of the most studied topics in nonlinear analysis is the equilibrium prob-
lem. Several well known problems in optimization, Nash equilibrium theory,
variational inequalities, fixed point theory, etc. can be considered as particular
cases. In this paper we consider equilibrium problems of the following type:

(EP) Find an element a ∈ X such that

f(a, b) + Φ(a, b) ≥ Φ(a, a), for all b ∈ X,

where (X,σ) is a Hausdorff topological space, while f( · , · ):X×X → R
and Φ( · , · ):X ×X → R ∪ {∞} are given functions.
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As a result of changes in the problem data, the solutions behavior is always
of concern. For instance, a sequence of functions may provide a sequence of so-
lutions, therefore we are interested to study a certain stability of this sequence.
For this reason, besides this problem, for a given n ∈ N, we consider the following
parametric equilibrium problem:

(EP)n Find an element an ∈ X such that

fn(an, b) + Φn(an, b) ≥ Φn(an, an), for all b ∈ X,

where fn( · , · ):X × X → R, Φn( · , · ) : X × X → R ∪ {∞} are given
functions.

Denote by S(n) the set of the solutions for a fixed n and suppose that, for
all n ∈ N, S(n) 6= ∅.

Problem (EP) is called the limit problem and can be viewed as the ”homo-
genized problem” of (EP)n. Denote by S(∞) the set of its solutions.

We pose the following question on the stability of solutions:

(Q) If an ∈ S(n) and (an)n σ-converges to a in X as n→∞, is it true that
a ∈ S(∞)?

Some answers for the question (Q) have been given for the particular case
of Φn = Φ = 0 (see for instance [3], [16]). Such problems also appear by the
regularization method in [19], [22]. For problem (EP), in the general case, Lignola
and Morgan [18] gave sufficient conditions on fn, f , Φn, Φ so that the answer
for (Q) is positive. However, the result from [18] cannot be applied for some
important cases, for instance in the case of variational inequalities governed by
nonlinear pseudomonotone operators [14], [15], [25], [26]. Our goal is to remove
this inconvenient: in this paper we shall give sufficient conditions for the stability
of solutions, different from that given in [18]. More, we do not require any linear
structure of the space X.

The paper is organized as follows. In Section 2 we prove our main result
on the stability of solutions. In Section 3 this result is applied to three par-
ticular cases. In Subsection 3.1 we study the convergence of solutions to the
so-called quasiequilibrium problems. Subsection 3.2 contains the case of para-
metric hemivariational inequalities governed by pseudomonotone operators. The
last subsection considers the particular case of parametric minimum problems in
a relationship with Γ-convergence.

2. Main result

The following notion is a generalization of the topological pseudomonotoni-
city, introduced by Brézis [5] for variational inequalities and utilized in several
monographs (see for instance [24]–[27], [29]) and articles (e.g. [6], [7], [11]–[13],
[19], [21], [28]).
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Definition 2.1 ([1, p. 410]). A function f :X × X → is said to be topo-
logically pseudomonotone with respect to the first variable if, for each sequence
(an)n∈N ⊂ X with (an)n σ-converging to a in X, lim inf

n
f(an, a) ≥ 0 implies

lim sup
n

f(an, b) ≤ f(a, b), for all b ∈ X.

Now, we state our main result.

Theorem 2.2. Let X be a Hausdorff topological space with σ and τ topolo-
gies on X such that σ ⊆ τ , i.e. σ is weaker than τ . Suppose that S(n) 6= ∅, for
each n ∈ N, and the following conditions hold:

(a) for any (an)n∈N σ-converging to a ∈ X, with an ∈ S(n), one has

lim inf
n

Φn(an, an) ≥ Φ(a, a);

(b) for any b ∈ X and any sequence (an)n∈N σ-converging to a ∈ X, with
an ∈ S(n), there exists a sequence (bn)n∈N τ -converging to b, such that

lim sup
n

Φn(an, bn) ≤ Φ(a, b);

(c) the functions fn, f :X ×X → R (n ∈ N) verify condition:
(C) For each sequences (an)n∈N and (bn)n∈N with an ∈ S(n), (an)n

σ-converging to a, and (bn)n τ -converging to b, one has

lim inf
n

(f(an, b)− fn(an, bn)) ≥ 0;

(d) the function f : X ×X → R is topologically pseudomonotone w.r.t. the
first variable.

Then, for each sequence (an)n∈N with an ∈ S(n), (an)n σ-converging to a and
Φ(a, a) <∞, imply a ∈ S(∞).

Proof. Let (an)n∈N be a sequence such that an ∈ S(n) and let (an)n be
σ-converging to a. From (b), there exists a sequence (an)n∈N, such that (an)n

is τ -converging to a and

(2.1) lim sup
n

Φn(an, an) ≤ Φ(a, a).

First use (a), then replacing b with an in (EP)n we obtain by (2.1)

Φ(a, a) ≤ lim inf
n

Φn(an, an) ≤ lim inf
n

[fn(an, an) + Φn(an, an)]

≤ lim inf
n

fn(an, an) + lim sup
n

Φn(an, an) ≤ lim inf
n

fn(an, an) + Φ(a, a),

hence lim infn fn(an, an) ≥ 0. By condition (C), for bn := an, we have

lim inf
n

f(an, a) ≥ 0.
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Now, we apply (d) to get

(2.2) lim sup
n

f(an, b) ≤ f(a, b), for all b ∈ X.

Let b ∈ X be arbitrary. By (b), there exists (bn)n τ -converging to b to have

lim sup
n

Φn(an, bn) ≤ Φ(a, b).

Due to (2.2), condition (C), and (a) we obtain

f(a, b) + Φ(a, b) ≥ lim sup
n

f(an, b) + Φ(a, b)

≥ lim sup
n

fn(an, bn) + lim inf
n

(f(an, b)− fn(an, bn)) + Φ(a, b)

≥ lim sup
n

fn(an, bn) + lim sup
n

Φn(an, bn)

≥ lim inf
n

[fn(an, bn) + Φn(an, bn)]

≥ lim inf
n

Φn(an, an) ≥ Φ(a, a),

to conclude a ∈ S(∞). �

Remark 2.3. It is easy to see that if Φn = Φ = 0, for all n ∈ N, then in
Theorem 2.2 condition (C) can be weakened to:

(C′) For each sequence (an)n∈N, if an ∈ S(n), (an)n is σ-converging to a,
and b ∈ X, then there exists a sequence (bn)n∈N such that (bn)n is
τ -converging to b and

lim inf
n

(f(an, b)− fn(an, bn)) ≥ 0.

3. Applications

In this section we derive from Theorem 2.2 some results for parametric
quasiequilibrium problems, parametric hemivariational inequalities, and para-
metric minimum problems.

3.1. Parametric quasiequilibrium problems. For a given n ∈ N we
consider the following parametric quasiequilibrium problem:

(QEP)n Find an element an ∈ X such that an ∈ Dn(an) and

fn(an, b) ≥ 0, for all b ∈ Dn(an),

where Dn is a non-empty set-valued function from X to X.

Along with the problems above we consider the following one:

(QEP) Find an element a ∈ X such that a ∈ D(a) and

f(a, b) ≥ 0, for all b ∈ D(a),

where D is a non-empty set-valued function from X to X.
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Usually, the term of equilibrium problems is used when D and Dn, n ∈ N,
do not depend on the points a and an, respectively. We use the expression
“quasiequilibrium” problem inspired by the commonly used “quasivariational”
inequality.

As in Section 1, denote by S(n) the set of the solutions of (QEP)n for a fixed
n and by S(∞) the set of the solutions for problem (QEP).

From Theorem 2.2 we obtain the following result.

Corollary 3.1. Let X be a Hausdorff topological space with σ and τ topolo-
gies on X, σ ⊆ τ . Let (Dn)n∈N be a sequence of non-empty set-valued functions
from X to X, and D be a set-valued function from X to X such that D(a) is
non-empty for any a ∈ X. Suppose that S(n) 6= ∅, for each n ∈ N, and the
following conditions hold:

(a′) for any sequence (an)n∈N σ-converging to a ∈ X, with an ∈ S(n), if
there exists a subsequence (ank

)k∈N such that ank
∈ Dnk

(ank
), then

a ∈ D(a);
(b′) for any a ∈ X and any sequence (an)n∈N σ-converging to a with an ∈

S(n), and any b ∈ D(a), there exists a sequence (bn)n∈N τ -converging
to b such that bn ∈ Dn(an);

(c) fn, f :X ×X → R (n ∈ N) verify condition (C);
(d) f : X×X → R is topologically pseudomonotone w.r.t. the first variable.

Then, for each sequence (an)n∈N with an ∈ S(n), (an)n σ-converging to a implies
a ∈ S(∞).

Proof. It takes only to consider the functions Φ and Φn, n ∈ N defined by

Φ(a, b) = ψD(a)(b), Φn(a, b) = ψDn(a)(b),

where ψK is, for any subset K of X, the indicator function of K, i.e. the function
which takes the value 0 on K and ∞ otherwise. �

Remark 3.2. Following the classical article [20], we say that a sequence of
sets (Dn)n∈N Mosco converges to D if:

(a) for every subsequence (nk)k∈N, ank
∈ Dnk

and (ank
)k σ-converging to

a imply a ∈ D;
(b) for every b ∈ D, there exists (bn)n∈N, such that bn ∈ Dn and (bn)n

τ -converges to b.

Let us note that, assumptions (a′) and (b′) in Corollary 3.1 amount to saying
that for any a ∈ X and any sequence (an)n∈N with an ∈ S(n) and (an)n σ-
converging to a, the sequence of sets (Dn(an))n∈N Mosco converges to D(a).
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3.2. Parametric hemivariational inequalities. For a given n ∈ N we
consider the following parametric problem:

(HVI)n Find an element un ∈ D such that, for all v ∈ D,

(3.2)
∫

Ω

{ n∑
i=1

gn
i (x, un(x),∇un(x)) · ∂i(v − un)(x)

}
dx

+
∫

Ω

gn
0 (x, un(x),∇un(x))(v − un)(x) dx

+
∫

Ω

ln(x;un(x), v(x)− un(x)) dx+ ϕn(v) ≥ ϕn(un),

where Ω is a bounded open subset of RN with Lipschitz boundary, D is
a nonempty subset of the Sobolev space H1(Ω), gn

i : Ω × R × RN → R,
ln: Ω× R× R → R, and ϕn:D → R ∪ {∞} are given functions.

Suppose that the functions gn
i , i ∈ {0, . . . , N} have the following properties:

(P1n) gn
i (x, η, ξ) is measurable in x ∈ RN and continuous in (η, ξ) ∈ R× RN ,

for each i ∈ {0, . . . , N};
(P2n) |gn

i (x, η, ξ)| ≤ c(k(x) + |η| + ‖ξ‖N ), for almost every x ∈ RN , for all
η ∈ R, for all ξ ∈ RN , for each i ∈ {0, . . . , N}, with c a positive
constant and k a function in L4

loc(RN ).

For every n ∈ N we consider the function hn:H1(Ω)×H1(Ω) → R given by

hn(u,w) =
∫

Ω

{ N∑
i=1

gn
i (x, u(x),∇u(x)) · ∂iw(x)

}
dx

+
∫

Ω

gn
0 (x, u(x),∇u(x))w(x) dx.

Suppose that ln(x; · , · ) is upper semi-continuous for almost every x ∈ Ω and
ln( · ; y, z) is measurable for all y, z ∈ R. Further, let Ln:H1(Ω) × H1(Ω) → R
be given by

Ln(u, v) =
∫

Ω

ln(x;u(x), v(x)) dx.

Therefore, (3.2) becomes

hn(un, v − un) + Ln(un, v − un) + Φn(un, v) ≥ Φn(un, un), for all v ∈ D,

where Φn(u, v) = ϕn(v), n ∈ N.
Let us construct the limit problem. Suppose that the functions gi: Ω × R ×

RN → R, i ∈ {0, . . . , N} have the following properties:

(P1) gi(x, η, ξ) is measurable in x ∈ RN and continuous in (η, ξ) ∈ R × RN ,
for each i ∈ {0, . . . , N};
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(P2) |gi(x, η, ξ)| ≤ cN (kN (x) + |η| + ‖ξ‖N ), for almost every x ∈ RN , for
all η ∈ R, for all ξ ∈ RN , for each i ∈ {0, . . . , N}, with cN a positive
constant and kN a function in L4

loc(RN );
(P3) for almost every x ∈ RN , for all η ∈ R, for all ξ, ξ̃ ∈ RN and ξ 6= ξ̃

N∑
i=1

(gi(x, η, ξ)− gi(x, η, ξ̃))(ξi − ξ̃i) > 0;

(P4) for almost every x ∈ RN , for all η ∈ R, for all ξ ∈ RN , with c1, . . . , c4
positive constants,
N∑

i=1

gi(x, η, ξ)ξi ≥ c1‖ξ‖2N − c2 and gn
0 (x, η, ξ)η ≥ c3|η|2 − c4.

Define Φ(u, v) = ϕ(v). Let us consider a function l: Ω × R × R, such that
l(x; · , · ) is upper semi-continuous for almost every x ∈ Ω and l( · ; y, z) is mea-
surable for all y, z ∈ R. We say that l satisfies the growth condition if there exist
nonnegative functions d1, d2 ∈ L∞(Ω) such that

|l(x; y, z)| ≤ (d1(x) + d2(x)|y|)|z|, for a.e. x ∈ Ω, for all y, z ∈ R.

Let L:H1(Ω)×H1(Ω) → R be given by

L(u, v) =
∫

Ω

l(x;u(x), v(x)) dx.

If l satisfies the growth condition, then L is weakly upper semi-continuous
(see [3]).

Let us consider the function h:H1(Ω)×H1(Ω) → R,

h(u,w) =
∫

Ω

{ N∑
i=1

gi(x, u(x),∇u(x))·∂iw(x)
}
dx+

∫
Ω

g0(x, u(x),∇u(x))w(x) dx.

Along with the parametric problems above (HVI)n, we consider the limit
problem:

(HVI) Find an element u ∈ D such that

h(u, v − u) + L(u, v − u) + Φ(u, v) ≥ Φ(u, u), for all v ∈ D.

We have shown in [2] that condition (C) applies if one has

|gn
i (x, η, ξ)− gi(x, η, ξ)| ≤ α(1/n)[‖ξ‖N + |η|+ k̃(x)],

for all n ∈ N, i ∈ {0, . . . , N}, ξ ∈ RN , η ∈ R, and a.e. x ∈ Ω. Here k̃ has
nonnegative values and belongs to L2(Ω), α is a nonnegative function, continuous
at 0 and α(0) = 0.

When ϕ ≡ 0 and l is the Clarke directional derivative of a locally Lipschitz
function then (HVI) turns out to be a hemivariational inequality. The problem
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of hemivariational inequalities was initiated by Panagiotopoulos and has been
studied by many authors (see [22], [23]). More about some important particular
cases of (HVI) can be found in [25] and [26].

For this subsection we have the following result.

Corollary 3.3. Let D be a nonempty subset of H1(Ω). Suppose that (P1n),
(P2n), and (P1)–(P4) apply and l satisfies the growth condition. Suppose that
the following conditions hold:

(a′′) for any sequence (un)n∈N weakly converging to u ∈ H1(Ω), one has

lim inf
n

ϕn(un) ≥ ϕ(u);

(b′′) for any v ∈ H1(Ω) there exists a sequence (vn)n∈N strongly converging
to v such that

lim sup
n

ϕn(vn) ≤ ϕ(v);

(c) fn = hn + Ln, (n ∈ N) and f = h+ L verify condition (C).

Then, for each sequence (un)n∈N of solutions to (HVI)n, un ⇀ u (weakly) in
H1(Ω) implies that u is a solution to (HVI).

Proof. By hypotheses (a′′) and (b′′), for the functions Φ and Φn defined
above, hypotheses (a) and (b) from Theorem 2.2 apply.

By the well known result, due to Leray-Lions (Theorem 6.1 in [26]), the
function h is topologically pseudomonotone w.r.t. the first variable, therefore
f = h+ L is also topologically pseudomonotone w.r.t. the first variable. �

Remark 3.4. Theorem 2.2 can be applied for Tikhonov–Browder regulariza-
tion methods for variational inequalities (see for instance [17] and the references
therein). But it is not our intention to further detail it in this paper.

Remark 3.5. By some convenient particularizations of ϕn and ϕ one can
inclose boundary value problems of mixed type (see for example [15]) in our
formalism.

The sensitivity of solutions to optimal control problems described by hemi-
variational inequalities was studied in [9] and [10].

3.4. Parametric minimum problems. Let (X,σ) be a topological space
and take τ = σ. Let us consider, for any n ∈ N, the following minimum problems,
as particular case of equilibrium problems:

(M)n Find an element an ∈ X such that gn(an) ≤ gn(b), for all b ∈ X, and
(M) find an element a ∈ X such that g(a) ≤ g(b), for all b ∈ X,

where gn:X → R and g:X → R are given functions.
We take f(a, b) = g(b)− g(a) and fn(a, b) = gn(b)− gn(a).
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Condition (d) from Theorem 2.2 automatically applies if g is lower semi-
continuous. In this case condition (C′) becomes:

(C′′) For each sequence (an)n∈N of solutions for (M)n, an → a and b ∈ X,
there exists a sequence (bn)n∈N such that bn → b and

lim inf
n

[g(b)− gn(bn)− g(an) + gn(an)] ≥ 0.

By Theorem 2.1 we have:

Corollary 3.6. Let (an)n∈N be a sequence of solutions for (M)n and let
an → a. Suppose that g is lower semi-continuous at a and the functions gn, g,
n ∈ N, verify condition (C′′). Then, limit a is solution for (M).

The classical way to study the family of minimum problems (M)n, due to
E. De Giorgi, is to use Γ-convergence. Let us remind its definition (see [4], [8]).

Definition 3.7. A sequence of functions (hn)n∈N, hn:X → R∪{∞} is said
to Γ-converge on X to h:X → R ∪ {∞} if, for all x ∈ X one has:

(a) for each (xn)n∈N convergent to x it follows that

h(x) ≤ lim inf
n

hn(xn);

(b) there exists a sequence (x′n)n∈N convergent to x such that

h(x) ≥ lim sup
n

hn(x′n).

If we define Φ and Φn, n ∈ N, by Φ(a, b) = g(b) and Φn(a, b) = gn(b).
Therefore, when (gn)n∈N is Γ-converging to g we can apply Theorem 2.1 with
fn = f = 0.

On the other hand, it is easy to see that if the difference gn − g Γ-converges
to 0, then condition (C′′) applies. It is worth noting that from condition (C′′)
the Γ-convergence of the difference gn − g to 0 does not follow. Indeed, let
gn(x) = x2/n + (−1)nn, n ∈ N and g(x) = 0, for all x ∈ R. In this case,
condition (C′′) applies with equality, since an = 0 = a is the only possibility.
But, gn − g evidently does not Γ-converge to 0 on R. The same example proves
that condition (C′′) does not imply neither Γ-convergence of gn.

Does Γ-convergence imply condition (C′′) to be verified? The answer is yes,
if g is upper semi-continuous at a, taking into account the following inequalities:

lim inf
n

[g(b)− gn(bn)− g(an) + gn(an)]

≥ lim inf
n

[−g(an) + g(a)] + lim inf
n

[gn(an)− g(a)] ≥ 0.

Nevertheless, without this additional requirement, condition (C′′) is not verified
as the following example shows.
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Take gn(x) = g1(nx), x ∈ R, where

g1(x) =


1 for x = 1,

−1 for x = −1,

0 otherwise.

Then, by Example 1.11 in [4], gn Γ-converges to g on R, where

g(x) =

{
0 for x 6= 0,

−1 for x = 0.

Remark that g is not upper semi-continuous at 0 since

lim sup
n

g(an) = 0 6= −1 = g(0).

Condition (C′′) is not verified. Indeed, an = −1/n are solutions for (M)n and
a = 0 is the solution for (M). If b 6= 0 and bn → b, then we have gn(bn) = 0, for
n sufficiently large. Therefore, we have

lim inf
n

[g(b)− gn(bn)− g(an) + gn(an)] = −1.

4. Concluding remarks

Hypotheses (a) and (b) in Theorem 2.2 define a notion of convergence for a
sequence of bifunctions that can be seen as an extension of Γ-convergence. By
condition (C) one can define another “limit” for the sequence (fn)n∈N (of course,
not unique), but from Subsection 3.3 it follows that these two convergence no-
tions are independent.

In some applications two extreme situations occur: fn = f = 0 or Φn =
Φ = 0. Our Theorem 2.2 insures a treatment if we have none of these two
cases. Applications from Section 3 show that the mixed mathematical model is
important, as well.

In comparison to the paper of Lignola and Morgan [18], we do not require
any convexity assumptions (nor any linear structure) while the hypotheses for Φ
and Φn are less restrictive in our Theorem 2.2.
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