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A GENERAL DEGREE FOR FUNCTION TRIPLES

Martin Väth

Abstract. Consider a fixed class of maps F for which there is a degree

theory for the coincidence problem F (x) = ϕ(x) with compact ϕ. It is
proved that under very natural assumptions this degree extends to a degree

for function triples which in particular provides a degree for coincidence

inclusions F (x) ∈ Φ(x).

1. Introduction

In the paper [15], we proposed a general procedure which allows to extend
any degree theory (satisfying certain axioms) for coincidences of function pairs
F (x) = ϕ(x) with

(1.1) Y
F←−−−− X

ϕ−−−−→ Y

to a related degree for coincidences of function triples F (x) ∈ q(p−1(x)) with

(1.2) Y
F←−−−− X

p←−−−− Γ q−−−−→ Y

Here, roughly speaking, admissibility of homotopies, additivity of the degree
and other related notions are meant with respect to the space X (and therefore,
despite one could interpret the above diagram also differently, the triple degree
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is in some sense a measure of the number of solutions of the inclusion F (x) ∈
q(p−1(x)) which in general is rather different than the number of solutions of the
coincidence equation F (p(z)) = q(z), although the existence of solutions of both
equations are equivalent).

The motivation for this extension to triples was explained in [15] and is not
repeated here in detail. One motivation is that this extension allows a unified
treatment of the single- and multivalued case, and one obtains as a special case a
degree theory for inclusions F (x) ∈ Φ(x) (identifying Φ with a map q◦p−1 where
in the simplest case p and q are obtained from Φ as the projections of the graph
of Φ). We just point out that the case that F is the identity map is well-studied:
In this case our theory is essentially contained in the fixed point theory of so-
called admissible pairs (p, q) for which a Lefschetz number was introduced in [5]
and also a corresponding fixed point index was developed, see e.g. [6, Section 47
or 52].

Unfortunately, the assumptions concerning the map p (and thus the map Φ)
in the extension procedure of [15] are rather technical. Essentially, the only
situation where these assumptions can be verified in current practice is the case
when p is a Vietoris map (i.e. Φ is acyclic or – with a more complicated choice
of p and q – a composition of acyclic maps) and the image space Y is a finite-
dimensional vector space.

It is the aim of this paper to drop the assumption that Y has finite di-
mension. We do this essentially by approximating compact maps by maps in
finite-dimensional subspaces in the spirit of Leray–Schauder’s construction of
the degree from the Brouwer degree. However, the situation is not so simple,
because this approximation procedure does not necessarily lead to “close” maps
for the given original degree, and so our main difficulty is to prove that our new
degree is well-defined anyway.

Of course, in any case we have to pay a price for our approach. We have to
require that the original degree for (1.1) allows a finite-dimensional reduction at
all: It is not known whether all of the examples of the degree theories proposed
in [15] satisfy the corresponding reduction axiom which we require later. So,
roughly speaking, the classes of maps F for which the theory in this paper is
applicable is by current knowledge restricted to the following cases:

(i) Linear Fredholm operators of index 0 or of positive index: If F has
such a form, one can use for function pairs (1.1) the Mawhin degree [10]
(see also [3], [13]) or the Nirenberg degree [4], [11], [12], respectively.
The reduction property for finite-dimensional subspaces for this degree
is well-known (see e.g. [9]).
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(ii) Nonlinear Fredholm operators of index 0: A corresponding degree for
(1.1) with the reduction property for finite-dimensional subspaces has
been obtained in [1].

It seems likely that also the degree of [17] for nonlinear Fredholm operators
of positive index satisfies the reduction property for finite-dimensional subspaces,
but this is far from being obvious and requires further investigations. On the
other hand, it seems unlikely that the Skrypnik-Browder degree for monotone
maps F satisfies the reduction property for finite-dimensional subspaces.

In this paper, we restrict our attention to compact function triples (F, p, q)
(i.e. to the case when q is a compact map). This is completely sufficient, because
any degree theory for such compact triples automatically extends to a degree
theory for noncompact triples by the procedure developed in [16].

Roughly speaking, this paper is one part of a trilogy which in a sense re-
sembles the development of the Leray–Schauder degree: While in [15] a degree
for finite-dimensional Y was developed and in [16] the extension from compact
triples to noncompact triples was studied, it is the main purpose of this paper
to study the missing “link” from the finite-dimensional case to compact maps.
Although this is an easy step in the definition of the Leray–Schauder degree
(when F = p is the identity map), this is rather nontrivial in the general case,
because it seems that in contrast to the Leray–Schauder degree one cannot sim-
ply use an approximation argument.

We point out that for the case that F is a linear Fredholm operator of non-
negative index, a corresponding degree for function triples (1.2) was already
developed in [2], so for this particular class of maps F our degree is not new.
Nevertheless, even in this case our approach is new: In contrast to [2], we do not
have to invoke deep results from infinite-dimensional cohomotopy theory to de-
fine the degree. As a minor extension, even in this linear case, we can often avoid
to work in Banach spaces so that our theory applies also e.g. to maps in locally
convex spaces (or, more general, in so-called admissible spaces).

The plan of this paper is as follows: The announced result about the exten-
sion of a degree from function pairs to function triples will be presented in two
variants in Theorems 4.10 and 4.11 in Section 4. The crucial step for the proof
is the introduction of a new notion of a relative degree theory for which we es-
tablish some technical preliminaries in Sections 2 and 3. Somewhat surprisingly,
this relative degree theory, which is a bit technical to formulate but for a fixed
class of maps easier to establish than an “ordinary” (we will call it for clarity
“absolute”) degree theory, can be used directly to obtain such an absolute degree
theory and the desired extension for triples. Hence, actually our main result is
that a relative degree theory for pairs induces (uniquely) an absolute degree for
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triples. This result is presented in two variants in Theorems 4.7 and 4.8 (the an-
nounced Theorems 4.10 and 4.11 are easy consequences). In all these theorems
only a mild form of the homotopy invariance is proved and needed. Therefore,
we discuss in the last Section 5 a variant of the homotopy invariance which one
will probably use in practice if one wants to work with the new theory.

2. Absolute and relative degree theories for function pairs

As explained in the introduction, we want to extend a given coincidence
degree for function pairs to function triples. Let us first explain what we mean
by such a degree for function pairs. Roughly speaking, this is a map which
associates to a certain class of function pairs (F,ϕ) a “number” such that certain
axioms described below are fulfilled. These axioms ensure that this “number”
is some “topological measure” for the number of coincidence points of F and
ϕ. Typical examples are the Leray–Schauder degree of F − ϕ or the Brouwer
coincidence degree for maps between (finite-dimensional) manifolds.
Unfortunately, in order to formulate the following reduction property, which

will be crucial in our considerations, we have to be precise and observe that
the degree depends also on the underlying spaces. This makes the following
definition (and our notation) even more technical than in [15].
Throughout this paper, let X and Y be fixed topological spaces (not neces-

sarily Hausdorff), and G be a commutative semigroup with neutral element 0.
G is the set of values of the degree.
Let O be a family of open subsets Ω ⊆ X, and F be a nonempty family

of pairs (F,Ω) with Ω ∈ O and F : Ω→ Y . We require that for each (F,Ω) ∈ F
and each Ω0 ⊆ Ω with Ω0 ∈ O also (F |Ω0 ,Ω0) ∈ F .
The “canonical” situation one should have in mind is that X and Y are

normed spaces (or X even a Banach manifold) O the system of all open (or all
open and bounded) subsets of X, and the functions F are from a certain class
like e.g. (linear or nonlinear oriented) Fredholm operators. We point out that we
do not require that F is continuous (typically, our later requirements are already
satisfied if F is sequentially demicontinuous).
In view of the crucial reduction property, we consider a fixed family Y

of nonempty closed subsets Y0 ⊆ Y . In the most important examples, Y is
a Banach space (or a topological vector space) and Y the family of all finite-
dimensional subspaces of Y .
By a compact map we always mean a map whose range is contained in a com-

pact subset of Y (recall that we do not assume that Y is Hausdorff, so that this is
a weaker requirement than to assume that the closure of the range is compact).
We use the notation

(2.1) coinA(F,ϕ) := {x ∈ A : F (x) = ϕ(x)}.
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It will be convenient to use this notation also (with the obvious meaning) if A
is larger than the domain of definition of F or ϕ.

Definition 2.1. By Fabs0 , we denote the system of all (F,ϕ,Ω) where (F,Ω)
in F , and ϕ: Ω→ Y is continuous and compact and coin∂Ω(F,ϕ) = ∅.
We say that F provides an absolute degree deg:Fabs0 → G for Y if deg has

the following properties:

(a) (Existence) deg(F,ϕ,Ω) 6= 0 implies coinΩ(F,ϕ) 6= ∅.
(b) (Homotopy Invariance) If (F,Ω) ∈ F , Y0 ∈ Y, and h: [0, 1] × Ω → Y0
is continuous and compact and such that (F, h(t, · ),Ω) ∈ Fabs0 for each
t ∈ [0, 1], then

deg(F, h(0, · ),Ω) = deg(F, h(1, · ),Ω).

(c) (Reduction) If ϕ(Ω) ⊆ Y0 ∈ Y and ψ: Ω→ Y0 is continuous and compact
with ϕ(x) = ψ(x) on Ω ∩ F−1(Y0) then

deg(F,ϕ,Ω) = deg(F,ψ,Ω).

An absolute degree might or might not possess the following properties.

(d) (Restriction) If (F,ϕ,Ω) ∈ Fabs0 and Ω0 ∈ O is contained in Ω with
coinΩ(F,ϕ) ⊆ Ω0, then

(2.2) deg(F,ϕ,Ω) 6= 0 =⇒ deg(F,ϕ,Ω0) = deg(F,ϕ,Ω).

(e) (Excision) As the restriction property, but with (2.2) replaced by

deg(F,ϕ,Ω0) = deg(F,ϕ,Ω).

(f) (Additivity) If (F,ϕ,Ω) ∈ Fabs0 and Ω1,Ω2 ∈ O are disjoint with Ω =
Ω1 ∪ Ω2, then

deg(F,ϕ,Ω) = deg(F,ϕ,Ω1) + deg(F,ϕ,Ω2).

Examples of absolute degrees with Y = {Y } have been given in [15]. How-
ever, if Y is a topological vector space and Y a family of finite-dimensional
subspaces, the reduction property is a rather nontrivial requirement. This pro-
perty is satisfied e.g. by the Leray–Schauder degree. It is also satisfied for the
degree for linear Fredholm maps in Banach spaces, if F consists of a single map F
(and its restrictions), and if Y denotes the family of all finite-dimensional linear
subspaces which are transversal to F , see e.g. [9, Theorem 5.25(iv)].
If F is a fixed nonlinear Fredholm map of index 0, deg denotes the degree

from [1], then the condition of the reduction property holds for those Y0 ∈ Y with
the additional property that they are transversal to F ′(x) for all x in a neigh-
bourhood of coinΩ(F,ϕ).
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Unfortunately, if F ′ is not constant, it may thus happen that Y0 can depend
on ϕ which is not admissible. Therefore, in order to apply our theory in that case,
one needs an additional consideration which we sketch here only; details will be
given elsewhere: Assume for simplicity that F consists of only one (continuous
extension of a) nonlinear Fredholm map F : Ω→ Y of index 0 and its restrictions.
One can show that each compact subset of Ω has an open neighbourhood Ω0 such
that there is a finite-dimensional subspace Y0 ⊆ Y which is transversal to F ′(x)
for all x ∈ Ω0. Then the reduction property holds if Y denotes the family of
all finite-dimensional subspaces containing Y0 and O the family of all open sets
Ω0 ⊆ Ω with the property that Y0 is transversal to F ′(x) for all x ∈ Ω0. A similar
assertion holds if F constists of all maps from a fixed Fredholm homotopy.
The theory of this paper will then provide a triple degree theory with this

restricted family O (and F). Afterwards, one can use the excision property of
the obtained degree to obtain a more satisfactory theory for all open subsets
of Ω. Since this can be done for any fixed Fredholm map/homotopy, one obtains
finally a degree theory for function triples involving the class of all nonlinear
Fredholm maps of index 0. However, details for the latter will be published
elsewhere.
In contrast, it is unknown whether the reduction property (or at least some

sufficient variant of it) holds for the homotopically defined degree of 0-epi maps
or for the Skrypnik-Browder degree for monotone maps with a reasonable large
class Y.
Actually, we will not need an absolute degree but only a relative degree. The

latter is a slightly less restrictive requirement as we will see.

Definition 2.2. By F rel0 , we denote the system of all (F,ϕ,Ω, Y0) where
(F,Ω) ∈ F , Y0 ∈ Y, and ϕ: Ω ∩ F−1(Y0) → Y0 is continuous and compact and
coin∂Ω(F,ϕ) = ∅.
We say that F provides a relative degree deg:F rel0 → G for Y if the following

properties hold (we use the more suggestive notation degY0(F,ϕ,Ω) for the degree
of (F,ϕ,Ω, Y0) ∈ F rel0 ).
(a) (Existence) degY0(F,ϕ,Ω) 6= 0 implies coinΩ(F,ϕ) 6= ∅.
(b) (Homotopy Invariance) If (F,Ω) ∈ F , Y0 ∈ Y, and if the homotopy

h: [0, 1]× (Ω∩F−1(Y0))→ Y0 is continuous and compact and such that
(F, h(t, · ),Ω, Y0) ∈ F rel0 for each t ∈ [0, 1], then

degY0(F, h(0, · ),Ω) = degY0(F, h(1, · ),Ω).

(c) (Reduction) If (F,ϕ,Ω, Y1) ∈ F rel0 and Y0 ∈ Y satisfies ϕ(F−1(Y1)∩Ω) ⊆
Y0 ⊆ Y1 then

degY0(F,ϕ,Ω) = degY1(F,ϕ,Ω).
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A relative degree might or might not possess the following properties.

(d) (Restriction) If (F,ϕ,Ω, Y0) ∈ F rel0 and Ω0 ∈ O is contained in Ω with
coinΩ(F,ϕ) ⊆ Ω0, then

degY0(F,ϕ,Ω) 6= 0 =⇒ degY0(F,ϕ,Ω0) = degY0(F,ϕ,Ω).

(e) (Excision) Under the same assumptions as above:

degY0(F,ϕ,Ω0) = degY0(F,ϕ,Ω).

(f) (Additivity) If (F,ϕ,Ω, Y0) ∈ F rel0 and Ω1,Ω2 ∈ O are disjoint with
Ω = Ω1 ∪ Ω2, then

degY0(F,ϕ,Ω) = degY0(F,ϕ,Ω1) + degY0(F,ϕ,Ω2).

In order to motivate the above definitions, one should think of the case
that X = Y is a Banach space, F the identity map, and Y the system of all
finite-dimensional subspaces of Y . Then the Leray–Schauder degree (of F − ϕ)
is an example of an absolute degree while the Brouwer degree (on the finite-
dimensional subspaces) is an example of a relative degree in the above sense.
In this example, the Brouwer degree is of course only a simple special case

of the Leray–Schauder degree. We will verify soon that this is not accidental: In
practically all natural situations an absolute degree induces in a canonical way
a relative degree.
Although we are mainly interested in extending an absolute degree to func-

tion triples, it appears not possible to do this without first passing to the (sim-
pler) relative degree: We will extend the latter to a relative degree for function
triples. This degree theory in turn gives rise to an absolute degree for func-
tion triples which is then the desired extension of the original absolute degree.
The reason why we have to proceed this way is explained after the proof of
Theorem 4.10.
So in a sense, the relative degree is only an artificial intermediate step, needed

to prove our main result. However, since we thus actually base our considerations
on a relative degree, this has a positive side effect: If one wants to develop a new
degree theory and to apply our results to this new degree, one does not have to
fully develop the corresponding (absolute) degree theory: It suffices that one has
elaborated the corresponding relative degree. By our results one then obtains
automatically the required degree theory, even for function triples. For example,
as a (very simple) special case of our main result we obtain the existence of the
Leray–Schauder degree only from the existence of the Brouwer degree.
Let us show now that each absolute degree indeed gives rise to a relative

degree under a very natural assumption on Y.
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Definition 2.3. We call a subset K ⊆ Y an extensor set for a space M if,
for each closed A ⊆M , each continuous compact map f :A→ Y with f(A) ⊆ K
has an extension to a continuous compact map f :M → Y with f(M) ⊆ K.

Roughly speaking, all sets which are homeomorphic to retracts of convex
subsets of locally convex or normed spaces are extensor sets under mild addi-
tional assumptions; for details, see [7] and [15]. In our applications the following
observation usually suffices which is a straightforward consequence of the Tietze–
Urysohn extension theorem and the fact that all closed convex subsets of Rn are
retracts of Rn.

Proposition 2.4. Assume that K ⊆ Y is closed and an ER, i.e. homeo-
morphic to a retract of Rn (or, equivalently, to a retract of a closed convex subset
of Rn). Then K is an extensor set for each T4 space M .

Now we can prove in a straightforward manner the first of the results which
we had announced before.

Theorem 2.5 (Absolute Degree Induces Relative Degree). Let F provide
an absolute degree deg for Y where each Y0 ∈ Y has the following two properties
for each (F,Ω) ∈ F .

(a) Y0 is an extensor set for [0, 1]× Ω.
(b) F−1(Y0) ∩ Ω is closed.

Then F provides a unique relative degree for Y with the following normalization
property.

• (Normalization) If (F,ϕ,Ω) ∈ Fabs0 and ϕ(Ω) ⊆ Y0 ∈ Y then

degY0(F,ϕ,Ω) = deg(F,ϕ,Ω).

If deg has the restriction, excision or addititivity property, then also the relative
degree has the corresponding property.

Proof. Given (F,ϕ,Ω, Y0) ∈ Y, we extend ϕ to a continuous compact map
ϕ: Ω → Y0. Since ϕ assumes its values only in Y0, this extension automati-
cally satisfies coin∂Ω(F,ϕ) = ∅, and so (F,ϕ,Ω) ∈ F rel0 . By the normalization
property, the only way to define the relative degree is by putting

degY0(F,ϕ,Ω) := deg(F,ϕ,Ω).

Note that, since deg has the reduction property, this definition is actually inde-
pendent of the particular choice of the extension of ϕ. The proof of the other
properties is now straightforward and therefore left to the reader. For the proof
of the homotopy invariance note that we can extend the given homotopy, because
each Y0 ∈ Y is also an extensor set for [0, 1]× Ω. �
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3. Relative degree theories for function triples

Let us now extend the main result of [15] to the relative degree. Essentially,
this result tells us that the relative degree extends in a unique way to a “triple-
degree” which is defined for function triples (F, p, q). Here, (F,Ω) ∈ F , and
p: Γ → X and q: Γ → Y are continuous (with some topological space Γ). We
point out that the space Γ is not fixed (and so we actually speak about classes of
function triples). For such a triple and A ⊆ X we use a notation similar to (2.1):

COINA(F, p, q) = {x ∈ A | F (x) ∈ q(p−1(x))}
= {x ∈ A | ∃z ∈ Γ : x = p(z), F (p(z)) = q(z)}.

Unfortunately, we need for p the following technical assumption whose discussion
we postpone until Theorem 3. Let in the following definition be F :M → Y (with
some M ⊆ X) and Y0, Y1 ⊆ Y .

Definition 3.1. We call the map p an (F,M, Y0, Y1)-compact homotopy
surjection on A ⊆M if p(Γ) ⊇ F−1(Y1) and the following holds.
For each continuous compact q: p−1(F−1(Y1))→ Y0 with COINA(F, p, q) = ∅

there is a continuous map ϕ:F−1(Y1) → Y0 and a continuous compact map
h: [0, 1] × p−1(F−1(Y1)) → Y0 satisfying h(0, · ) = q and h(1, · ) = ϕ ◦ p (on
p−1(F−1(Y1))) such that

COINA(F, p, h(t, · )) = ∅ (0 ≤ t ≤ 1).

Note that ϕ is automatically compact, and coinA(F,ϕ) = ∅.

Definition 3.2. We call the map p an (F,M, Y0, Y1)-compact homotopy
injection on A ⊆ M if each two continuous compact maps ϕ, ϕ̃:F−1(Y1) → Y0
with

coinA(F,ϕ) = coinA(F, ϕ̃) = ∅

which are as in Definition 3.1 (with the same map q) are homotopic in the
following sense.
There is a continuous compact map H: [0, 1]×F−1(Y1)→Y0 with H(0, · )=ϕ

and H(1, · ) = ϕ̃ such that

coinA(F,H(t, · )) = ∅ (0 ≤ t ≤ 1).

If p is also a (F,M, Y0, Y1)-compact homotopy surjection on A, we call p an
(F,M, Y0, Y1)-compact homotopy bijection on A.

Definition 3.3. By T rel, we denote the class of all (F, p,Ω, Y0) where
(F,Ω) ∈ F , Y0 ∈ Y, F−1(Y0) is closed in X, and on each closed A ⊆ Ω with
A ⊇ ∂Ω, the map p is an (F,Ω, Y0, Y0)-compact homotopy bijection.
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By T rel0 , we denote the class of all (F, p, q,Ω, Y0) where (F, p,Ω, Y0) ∈ T rel

and q is a continuous compact function q: p−1(Ω ∩ F−1(Y0))→ Y0 (q might also
be defined on a larger space Γ), and

COIN∂Ω(F, p, q) = ∅.

Theorem 3.4 (Relative Degree Induces Relative Triple-Degree). Let F pro-
vide a relative degree deg:F rel0 → G for Y. Then there is a unique triple-degree
DEG which associates to each (F, p, q,Ω, Y0) ∈ T rel0 an element of G which de-
pends only on (F, p|D, q|D,Ω, Y0) with D := p−1(Ω ∩ F−1(Y0)), such that the
following properties hold for each (F, p, q,Ω, Y0) ∈ T rel0 .

(a) (Normalization) If (F,ϕ,Ω, Y0) ∈ F rel0 and ϕ ◦ p = q, then

DEGY0(F, p, q,Ω) = degY0(F,ϕ,Ω).

(b) (Homotopy Invariance in the Third Argument) If h is (an extension of )
a continuous compact function h: [0, 1] × p−1(Ω ∩ F−1(Y0)) → Y and
(F, p, h(t, · ),Ω, Y0) ∈ T rel0 for each t ∈ [0, 1], then

DEGY0(F, p, h(t, · ),Ω) is independent of t ∈ [0, 1].

(c) (Existence) DEGY0(F, p, q,Ω) 6= 0 implies COINΩ(F, p, q) 6= ∅.
(d) (Reduction) Let (F, p, q,Ω, Y1) ∈ T rel0 satisfy q(p−1(Ω ∩ F−1(Y1))) ⊆

Y0 ⊆ Y1. If p is even an (F,Ω, Y0, Y1)-compact homotopy surjection on
∂Ω then

DEGY0(F, p, q,Ω) = DEGY1(F, p, q,Ω).

(e) (Strong Independence from Γ) If also (F, p̃, q̃,Ω, Y0) ∈ T rel0 and there is
a continuous map J : p−1(Ω∩ F−1(Y0)))→ p̃−1(Ω∩ F−1(Y0)) such that
p(z) = p̃(J(z)) and q(z) = q̃(J(z)) for all z ∈ p−1(Ω ∩ F−1(Y0)), then

DEGY0(F, p, q,Ω) = DEGY0(F, p̃, q̃,Ω).

The uniqueness of DEG already follows from the first two of these properties. If
deg satisfies in addition the restriction, excision, resp. additivity property, then
DEG automatically satisfies the corresponding property:

(f) (Restriction) If (F, p, q,Ω, Y0) ∈ T rel0 and Ω0 ∈ O is contained in Ω with
COINΩ(F, p, q) ⊆ Ω0, then (F, p, q,Ω0, Y0) ∈ T rel0 , and

DEGY0(F, p, q,Ω) 6= 0 =⇒ DEGY0(F, p, q,Ω0) = DEGY0(F, p, q,Ω).

(g) (Excision) Under the same assumptions as above, (F, p, q,Ω0, Y0) ∈
T rel0 , and

DEGY0(F, p, q,Ω0) = DEGY0(F, p, q,Ω).
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(h) (Additivity) If (F, p, q,Ω, Y0) ∈ T rel0 and Ω1,Ω2 ∈ O are disjoint with
Ω = Ω1 ∪ Ω2, then (F, p, q,Ωi, Y0) ∈ T rel0 , and

DEGY0(F, p, q,Ω) = DEGY0(F, p, q,Ω1) + DEGY0(F, p, q,Ω2.

It appears that the additional requirement on p which we pose in the above
formulation of the reduction property cannot be dropped. This is the reason
why we cannot immediately prove an analogous theorem for the absolute degree
but have to pass to a relative degree theory first.

Proof. Except for the reduction property, we may assume that we have
X = F−1(Y0). To see this, replace X and Ω by their respective intersection with
F−1(Y0) (here we use that F−1(Y0) is closed and Ω is open so that we implicitly
also replace Ω and ∂Ω by their intersection with F−1(Y0)). Hence, except for the
reduction property, we may assume that Y0 = Y , and so all assertions (except
of the reduction property) follow from the main result of [15].
It remains to show that the (uniquely determined!) degree actually satisfies

the reduction property. We apply the assumption that p is an (F,Ω, Y0, Y1)-
compact homotopy surjection on ∂Ω for the map q: Note that indeed q: p−1(Ω∩
F−1(Y1))) → Y0 and COIN∂Ω(F, p, q) = ∅. Let ϕ: Ω ∩ F−1(Y1) → Y0 and
h: [0, 1]×p−1(Ω∩F−1(Y1))→ Y0 be the corresponding maps of Definition 3.1. By
the homotopy invariance in the third argument and the normalization property,
we obtain for i = 0, 1 that

DEGYi(F, p, q,Ω) = DEGYi(F, p, h(0, · ),Ω) = DEGYi(F, p, h(1, · ),Ω)
= DEGYi(F, p, ϕ ◦ p,Ω) = degYi(F,ϕ,Ω).

Since ϕ assumes its values only in Y0 ⊆ Y1, the reduction property of the (rela-
tive) degree implies that the right-hand side is independent of i ∈ {0, 1}. �

Corollary 3.5 (Relative Triple-Degree with the Excision Property). If the
relative degree in Theorem 3.4 has the excision property, then an analogous result
holds where we replace T rel0 by the family of all (F, p, q,Ω, Y0) with q: p−1(Ω ∩
F−1(Y0))→ Y0 and the property that there is some Ω0 ∈ O with

(3.1) COINΩ(F, p, q) ⊆ Ω0 ⊆ Ω

such that (F, p, q,Ω0, Y0) ∈ T rel0 if we require that in such a case

(3.2) DEGY0(F, p, q,Ω) = DEGY0(F, p, q,Ω0).

In particular, the reduction property holds under the requirement that p is an
(F,Ω0, Y0, Y1)-compact homotopy surjection on ∂Ω0 for some set Ω0 ∈ O with
property (3.1).
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Proof. We use the relation (3.2) to define the left-hand side. By the exci-
sion property, this definition is independent of the particular choice of Y0. The
verification of all other properties is straightforward. �

So far, all elements of Y could have been arbitrary closed subsets of Y : We did
not pose any assumptions like finite dimensions or a group structure. However,
we have simply hidden all topological difficulties in the technical definition of
(F,M, Y0, Y1)-compact homotopy bijections. In order to verify this property, we
use a special case of a result of [15] which we formulate now.

We recall that a map p is called proper if preimages of compact sets are
compact. In metric spaces it is equivalent to require that p maps closed sets
onto closed sets and has compact fibres p−1(x).

A topological space Y0 is called a (metric) AR if Y0 is homeomorphic to
a retract of a normed space. A metric space is called Rδ if it is the intersection
of a decreasing sequence of compact AR spaces. A metric space is an Rδ if and
only if it is the intersection of a decreasing sequence of compact contractible
nonempty metric spaces (or, equivalently, if it has the shape of a point). The
continuity of the Čech cohomology implies that each Rδ space is acyclic with
respect to Čech cohomology. (The converse is not true.)

Theorem 3.6. Let Y0, Y1 ⊆ Y . Let M ⊆ X be closed and F :M → Y . Let
p: Γ → X be proper with p(Γ) ⊇ F−1(Y1) (⊆ M). Suppose that the following
holds:

(a) F−1(Y1) and p−1(F−1(Y1)) are both metrizable.
(b) Y0 is homeomorphic to a topological group.
(c) Y0 is an extensor set for F−1(Y1) and for [0, 1]× p−1(F−1(Y1)).
(d) F−1(Y0∩Y1) is closed in F−1(Y1), and the (restricted) map F :F−1(Y0∩

Y1)→ Y0 is continuous.
(e) F−1(Y0 ∩ Y1) is compact.
(f) At least one of the following two requirements holds:
(f1) All fibres p−1(x) (x ∈ F−1(Y1)) are Rδ, and the large inductive di-
mension of F−1(Y1) is finite.

(f2) All fibres p−1(x) (x ∈ F−1(Y1)) are acyclic with respect to Čech co-
homology with coefficients in Z. In addition, there is some y0 ∈ Y
such that Y \ {y0} is homotopically n-simple for each n ≥ 1. More-
over, dim(F−1(Y1)) < ∞ where dim denotes the covering dimen-
sion, and

sup
x∈F−1(Y1)

dim p−1(x) <∞.

Then p is an (F,M, Y0, Y1)-compact homotopy bijection on each closed A ⊆M .
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Proof. In case F−1(Y1) = X, the result follows from [15] with K := {Y0}.
The general case reduces to the special case: To see this, replace X and M by
their intersection with F−1(Y1). �

We point out that the assumption dim(F−1(Y1)) <∞ is rather natural if F
has finite-dimensional fibres and dimY1 <∞, see [14].
Moreover, if F is a nonlinear Fredholm map and Y1 ⊆ Y is a finite-dimensio-

nal submanifold, then F−1(Y1) is contained in a finite-dimensional submanifold
in each sufficiently small neighbourhood of a compact set (since by increasing Y1,
one can assume that Y1 is transverse to F in a neighbourhood of a compact set).
For this reason, Corollary 3.5 is rather important, because it implies that in case
of compact COINΩ(F, p, q) it suffices to restrict attention to such neighbour-
hoods, and so the assumption on finite (inductive or covering) dimension of F−1

is “automatically” satisfied.

4. Absolute degree theories for function triples

In contrast to the previous section, we assume in this section that Y is
a topological Hausdorff vector space which possesses a family Y of subspaces
with the following property.

Definition 4.1. We call a system Y of nonempty closed linear subspaces
Y0 ⊆ Y admissible for Y if the following holds:

(a) Y is directed upwards with respect to inclusion, i.e. for each Y0, Y1 ∈ Y
there is some Y2 ∈ Y with Y2 ⊇ Y0 ∪ Y1.

(b) For each compact K ⊆ Y and each neighbourhood U ⊆ Y of 0 there is
some Y0 ∈ Y and a continuous map π:K → Y0 with π(y) ∈ y + U .

The well-known Schauder projections imply that for each normed space Y
the family Y of all finite-dimensional subspaces is admissible for Y . It is a folklore
result that this also holds for locally convex spaces, but we could not find a proof
in literature. So we provide a proof for the reader’s convenience.

Proposition 4.2. If Y is a locally convex space, then the family Y of all
finite-dimensional subspaces is admissible for Y .

Proof. Let a neighbourhood U ⊆ Y of 0 be given. Choose a neighbourhood
V of 0 with conv V ⊆ U . Since Y is completely regular (see e.g. [8, §15, 2(3)]),
there is a continuous function ϕ:Y → R such that W := {y ∈ Y : ϕ(y) 6= 0} is
an open neighbourhood of 0 with W ⊆ V . For each compact set K ⊆ Y there
are finitey many points y1, . . . , yn ∈ K with K ⊆ (y1 +W ) ∪ . . . ∪ (yn +W ).
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Then the function

π(y) :=

n∑
k=1

ϕ(yk − y)yk

n∑
k=1

ϕ(yk − y)

is defined an continuous on K and assumes its values in span{y1, . . . , yn} ∈ Y.
Moreover, for each y ∈ Y , since yk − y ∈ W for each k with ϕ(yk − y) 6= 0, we
obtain

π(y)− y =

n∑
k=1

ϕ(yk − y)(yk − y)

n∑
k=1

ϕ(yk − y)
∈ convW ⊆ conv V ⊆ U. �

We do not explicitly require that all spaces in Y have finite dimension. How-
ever, the following requirements are usually only satisfied if this is the case.

Definition 4.3. Let (F,Ω) ∈ F , p: Γ → X, and C ⊆ Ω. Then we write
(F, p,Ω) ∈ T abs(C), resp. (F, p,Ω) ∈ T abs if for each Y0 ∈ Y we find some
Ω0 ∈ O with C ⊆ Ω0 ⊆ Ω, resp. Ω0 := Ω such that the following holds:
(a) p is continuous with p(Γ) ⊇ Ω0 ∩ F−1(Y0).
(b) F : Ω→ Y is proper and has a closed graph.
(c) F (Ω0) ∩ Y0 is relatively compact.
(d) Y is metrizable, or for each continuous compact map h: [0, 1]×p−1(Ω)→

Y and each closed A ⊆ Ω the set⋃
{F (x)− h(t, p−1(x)) : t ∈ [0, 1], x ∈ A}

= {F (p(z))− h(t, z) : t ∈ [0, 1], z ∈ p−1(A)}

is closed.
(e) Ω0 ∩ F−1(Y0) is metrizable and closed in X.
(f) p−1(Ω0 ∩ F−1(Y0)) is metrizable and compact.
(g) Y0 is an extensor set for Ω0 and for [0, 1]× p−1(Ω0).
(h) At least one of the following two requirements holds:
(h1) All fibres p−1(x) (x ∈ Ω0 ∩ F−1(Y0)) are Rδ, and the inductive di-
mension of Ω0 ∩ F−1(Y0) is finite.

(h2) All fibres p−1(x) (x ∈ Ω0∩F−1(Y0)) are acyclic with respect to Čech
cohomology with coefficients in Z. Moreover, the covering dimen-
sion dim(Ω0 ∩ F−1(Y0)) is finite and

sup
x∈Ω0∩F−1(Y0)

dim p−1(x) <∞.
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Definition 4.4. Let with the above notation q: Γ → Y be such that the
restriction of q to p−1(Ω) is continuous and compact and such that

C := COINΩ(F, p, q) ⊆ Ω.

If (F, p,Ω) ∈ T abs, resp. (F, p,Ω) ∈ T abs(C), then we write (F, p, q,Ω) ∈ T abs0 ,
resp. (F, p, q,Ω) ∈ T absc .

Clearly, T abs0 ⊆ T absc .
The following lemmas will be proved in a more general setting in the next

section.

Lemma 4.5. Let (F, p,Ω) belong to T abs or to T abs(C). Then for each Y0 ∈
Y the restriction of F to F−1(Y0) is continuous.

Lemma 4.6. Let (F, p,Ω) belong to T abs or to T abs(C). Then for each con-
tinuous compact map h: [0, 1]× p−1(Ω)→ Y and each closed A ⊆ Ω with

COINA(F, p, h(t, · )) = ∅ (0 ≤ t ≤ 1)

there is a neighbourhood U ⊆ Y of 0 with F (p(z)) − h(t, z) /∈ U for each z ∈
p−1(A) and each t ∈ [0, 1].

The main result of this paper can now be formulated as follows.

Theorem 4.7 (Relative Degree Induces an Absolute Triple-Degree). Let Y
be admissible for Y and let F provide a relative degree deg:F rel0 → G for Y.
Then there is a unique degree DEG which associates to each (F, p, q,Ω) ∈ T abs0
an element of G which depends only on (F,Ω) and the restriction of p and q to
p−1(Ω) such that the following properties hold for each (F, p, q,Ω) ∈ T abs0 .

(a) (Normalization) If the range of q is contained in Y0 ∈ Y and there is
some ϕ with (F,ϕ,Ω, Y0) ∈ F rel0 and ϕ ◦ p = q (on p−1(Ω ∩ F−1(Y0)))
then

DEG(F, p, q,Ω) = degY0(F,ϕ,Ω).

(b) (Homotopy Invariance in the Third Argument) Let h: [0, 1]×p−1(Ω)→Y

be continuous and compact with COIN∂Ω(F, p, h(t, · )) = ∅ (0≤ t≤ 1).
Then (F, p, h(t, · ),Ω) ∈ T abs0 for each t ∈ [0, 1] and

DEG(F, p, h(t, · ),Ω) is independent of t ∈ [0, 1].

(c) (Existence) DEG(F, p, q,Ω) 6= 0 implies COINΩ(F, p, q) 6= ∅.
(d) (Reduction) If the range of q is contained in Y0 ∈ Y and q̃: p−1(Ω)→ Y0
is continuous and compact with q̃(z) = q(z) on p−1(Ω∩ F−1(Y0)), then
(F, p, q̃,Ω) ∈ T abs0 and

DEG(F, p, q,Ω) = DEG(F, p, q̃,Ω).
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(e) (Strong Independence from Γ) If also (F, p̃, q̃,Ω) ∈ T abs0 and there is
a continuous map J : p−1(Ω) → p̃−1(Ω) such that p(z) = p̃(J(z)) and
q(z) = q̃(J(z)) for all z ∈ p−1(Ω), then

DEG(F, p, q,Ω) = DEG(F, p̃, q̃,Ω).

The uniqueness already follows from the normalization and homotopy invariance.
If deg satisfies in addition the restriction, excision, resp. additivity property, then
DEG automatically satisfies the corresponding property:

(f) (Restriction) If (F, p, q,Ω) ∈ T rel0 and Ω0 ∈ O is contained in Ω with
COINΩ(F, p, q) ⊆ Ω0, then (F, p, q,Ω0) ∈ T rel0 , and

DEG(F, p, q,Ω) 6= 0 =⇒ DEG(F, p, q,Ω0) = DEG(F, p, q,Ω).

(g) (Excision) Under the same assumptions as above, (F, p, q,Ω0) ∈ T rel0 ,
and

DEG(F, p, q,Ω0) = DEG(F, p, q,Ω).

(h) (Additivity) If (F, p, q,Ω) ∈ T rel0 and Ω1,Ω2 ∈ O are disjoint with Ω =
Ω1 ∪ Ω2, then (F, p, q,Ωi) ∈ T rel0 , and

DEG(F, p, q,Ω) = DEG(F, p, q,Ω1) + DEG(F, p, q,Ω2).

Theorem 4.8 (Relative Degree with Excision Induces Strong Absolute Tri-
ple-Degree). Assume in Theorem 4.7 that deg has the excision property. Then
an analogous result holds with T absc instead of T abs0 and the following strength-
ening of the homotopy invariance:

(b) (Homotopy Invariance in the Third Argument) Let h: [0, 1]×p−1(Ω)→Y

be continuous and compact and COINΩ(F, p, h(t, · )) ⊆ C (0 ≤ t ≤ 1)
for some C ⊆ Ω such that (F, p,Ω) ∈ T abs(C). Then (F, p, h(t, · ),Ω) ∈
T absc for each t ∈ [0, 1] and

DEG(F, p, h(t, · ),Ω) is independent of t ∈ [0, 1].

The uniqueness of DEG already follows from the normalization, homotopy in-
variance, and excision property.

Remark 4.9. If deg has the excision property, then the degree of Theo-
rem 4.7 is the restriction of the degree of Theorem 4.8. This is an immediate
consequence of the uniqueness claim of Theorem 4.7.
We now prove Theorems 4.7 and 4.8 simultaneously.

Proof. We observe first that for each (F, p,Ω) ∈ T abs (resp. (F, p,Ω) ∈
T abs(C)) and each Y0, Y1 ∈ Y with Y0 ⊆ Y1 we have for Ω0 := Ω (resp. some
Ω0 ∈ O with C ⊆ Ω0 ⊆ Ω) that the map p is an (F,Ω0, Y0, Y1)-compact homo-
topy bijection on each closed set A ⊆ Ω0. This follows from Theorem 3.6 and
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Lemma 4.5. In particular, if (F, p, q,Ω) ∈ T abs0 (resp. (F, p, q,Ω) ∈ T absc ) and q
assumes its values only in Y0, then the degree DEGY0(F, p, q,Ω) of Theorem 3.4
(resp. of Corollary 3.5) is defined. Moreover, this value is independent of the
particular choice of Y0. Indeed, if Y1 ∈ Y is another space which contains the
range of q, choose some Y2 ∈ Y with Y2 ⊇ Y0 ∪ Y1. Then the reduction property
in Theorem 3.4 (resp. in Corollary 3.5) implies

DEGYi(F, p, q,Ω) = DEGY2(F, p, q,Ω) (i = 0, 1).

This proves the independence of the particular choice of Y0. We claim that
if a degree exists which satisfies the normalization, homotopy invariance (and
exicison property), then we must in the above situation even have

(4.1) DEG(F, p, q,Ω) = DEGY0(F, p, q,Ω).

In fact, let Y1 := Y0 (and choose Ω0 ∈ O correspondingly; however, in view of
the excision property, we may replace Ω by Ω0 on both sides of (4.1) and thus
assume Ω = Ω0). Now choose h and ϕ as in Definition 3.1 with Y1 := Y0 and
A := ∂Ω. Since Y0 is an extensor set, we can extend ϕ to a continuous compact
map ϕ: Ω→ Y0. Since ϕ assumes its values only in Y0, we have coin∂Ω(F,ϕ) = ∅
and so (F,ϕ,Ω, Y0) ∈ F rel0 . Next, we extend h to a continuous compact map
h: [0, 1]× p−1(Ω)→ Y by putting first h(0, · ) := q and h(1, · ) := ϕ ◦ p and then
using that Y0 is an extensor set. Since h assumes its values only in Y0, we have
also for the extended map COIN∂Ω(F, p, h(t, · ),Ω) = ∅. Using the homotopy
invariance of DEG, resp. of DEGY0 , we see that the equality (4.1) is actually
equivalent to

DEG(F, p, ϕ ◦ p,Ω) = DEGY0(F, p, ϕ ◦ p,Ω).

By the normalization of DEG, resp. DEGY0 the two sides of this equality must
have the same value degY0(F,ϕ,Ω).

We thus have proved that for any (F, p, q,Ω) ∈ T abs0 for which q assumes its
values only in Y0 ∈ Y, we must define DEG(F, p, q,Ω) by (4.1); and we have seen
simultaneously that this definition is independent of the particular choice of Y0.

Now let (F, p, q,Ω) ∈ T abs0 (resp. (F, p, q,Ω) ∈ T absc ) be arbitrary. For A :=
∂Ω (resp. for A := Ω\Ω0 with C and Ω0 as in Definitions 4.4 and 4.3), we find by
Lemma 4.6 some neighbourhood U ⊆ Y of 0 with F (p(z))− q(z) /∈ U for z ∈ A.
Choose some neighbourhood V ⊆ Y of 0 with tV + sV ⊆ U for t, s ∈ [0, 1]. Let
Y0 ∈ Y and π be as in Definition 4.1 (with the neighbourhood V andK a compact
set containing the range of q). For hπ(t, z) := tπ(q(z))+(1−t)q(z) (0 ≤ t ≤ 1) we
have COINA(F, p, h(t, · )) = ∅. Indeed, otherwise we would find some z ∈ A with
F (p(z)) = h(t, z) which would imply F (p(z))−q(z) = t(π(q(z))−q(z)) ∈ tV ⊆ U ,
contradicting our choice of U . By the homotopy invariance we conclude that we
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must have

(4.2) DEG(F, p, q,Ω) = DEG(F, p, π ◦ q,Ω).

Since π ◦ q assumes its values only in Y0, (4.1) thus implies that we must have

(4.3) DEG(F, p, q,Ω) = DEGY0(F, p, π ◦ q,Ω).

We have already seen that the right-hand side is actually independent of the
particular choice of Y0, and we show now that it is independent of the choice
of U , V , K, π (and Ω0) either. Thus, let Ũ , Ṽ , K̃, π̃ (and Ω̃0) be different
choices; enlarging Y0 if necessary (Y is directed upwards), we can assume that
the corresponding space Y0 is the same for both choices. The set V0 := Ṽ ∩ V
is a neighbourhood of 0, and we find a corresponding π0 as in Definition 4.1.
Enlarging Y0 once more if necessary, we may assume that π0 assumes its values
in Y0. Consider now the homotopy h(t, · ) := t(π0 ◦ q) + (1 − t)(π ◦ q). If there
is some z ∈ A with F (p(z)) = h(t, z), then

F (p(z))− q(z) = t(π0(q(z))− q(z))+(1− t)(π(q(z))− q(z)) ∈ tV0+(1− t)V ⊆ U

which is not possible. Hence, the homotopy invariance implies

DEGY0(F, p, π ◦ q,Ω) = DEGY0(F, p, π0 ◦ q,Ω).

For symmetry reasons, an analogous equality must also hold for the alternative
choices, i.e.

DEGY0(F, p, π̃ ◦ q,Ω) = DEGY0(F, p, π0 ◦ q,Ω).
Combining these equalities, we find that the right-hand side of (4.3) is indeed
independent of our particular choices of the involved sets and functions. This
proves the uniqueness of DEG and that we actually can define DEG by (4.3).
Let us now show that the such defined degree DEG has all required proper-

ties. The normalization property is clear from the very definition; this in turn
immediately implies the reduction property. To see the homotopy invariance,
note that by Lemma 4.6 the set U in our definition of DEG(F, p, h(t, · ),Ω) can
be chosen independently of t ∈ [0, 1]. Moreover, the range of h is contained in
a compact set K, and so also π and Y0 can be chosen independently of t ∈ [0, 1].
We thus are only to show that

DEGY0(F, p, π ◦ h(t, · )) is independent of t ∈ [0, 1].

However, this follows immediately from the homotopy invariance of DEGY0 in
Theorem 3.4 (resp. Corollary 3.5).
To see the strong independence from Γ, we observe similarly that it can be

arranged that our definition of DEG(F, p, q,Ω) and DEG(F, p̃, q̃,Ω) works with
the same maps π and the same Y0 ∈ Y. Hence, the required property follows
from the corresponding property of Theorem 3.4.
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Concerning the existence property, assume that COINΩ(F, p, q) = ∅. Ap-
plying Lemma 4.6 with A := Ω, we find some neighbourhood U ⊆ Y of 0
with F (p(z)) − q(z) /∈ U for all z ∈ p−1(A). Proceeding with this U as in
our definition of the degree, we find that the corresponding map π even satisfies
COINA Ω(F, p, π◦q) = ∅, and so DEGY0(F, p, q,Ω) = ∅ by the existence property
of Theorem 3.4.
The proof of the restriction and exhaustion properties reduce with A := Ω\Ω0

in a similar manner to the corresponding properties of Theorem 3.4. Finally, the
proof of the additivity reduces immediately to the additivity of DEGY0 . �

Our original intentention was to extend an absolute degree to function triples.
The corresponding result reads as follows.

Theorem 4.10 (Absolute Degree Induces Absolute Triple-Degree). Let Y
be admissible for Y , and let F provide an absolute degree deg:Fabs0 → G for Y.
In addition, suppose that each Y0 ∈ Y is even an extensor set for [0, 1] × Ω for
each Ω ∈ O.
Then there is a unique degree DEG with all properties of Theorem 4.7 when

one replaces the normalization property by the following property:

(a) (Normalization) If the range of q is contained in Y0 ∈ Y and there is
some ϕ with (F,ϕ,Ω) ∈ Fabs0 and ϕ ◦ p = q, then

DEG(F, p, q,Ω) = deg(F,ϕ,Ω).

The uniqueness of DEG already follows from the normalization and homotopy
invariance.

Theorem 4.11 (Absolute Degree with Excision Induces Strong Absolute
Triple-Degree). If in Theorem 4.10 the degree has the excision property, then an
analogous result to Theorem 4.10 holds when we replace T abs0 by T absc and the
homotopy property by the corresponding stronger property of Theorem 4.9. The
uniqueness of DEG already follows from the normalization, homotopy invariance,
and excision property.

Remark 4.12. If deg has the excision property, then the degree of Theo-
rem 4.10 is the restriction of the degree of Theorem 4.11. This is an immediate
consequence of the uniqueness claim of Theorem 4.9.

We now prove Theorems 4.10 and 4.11 simultaneously.

Proof. In view of Theorem 2.5, the existence is an immediate consequence
of Theorem 4.7 (resp. of Theorem 4.8). To see the uniqueness, let (F, p, q,Ω) ∈
T abs0 and choose U , V , π, Y0, and Ω0 as in the proof of Theorem 4.7/4.8.
Then, as in that proof, the homotopy invariance implies (4.2). This implies
that DEG(F, p, π ◦ q,Ω) is independent of the particular choice of U , V , π, Y0,
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and Ω0. Hence, to show that DEG(F, p, q,Ω) is uniquely determined, we may
assume that q assumes its values in some Y0 ∈ Y. Now we construct h and ϕ
as in the first part of the proof of Theorem 4.7/4.8 and obtain by the homotopy
invariance the equality

DEG(F, p, q,Ω) = DEG(F, p, ϕ ◦ p,Ω).

This shows on the one hand, that this value is independent of the particular
choice of ϕ. Since on the other hand the right-hand side of this equality is
deg(F,ϕ,Ω) by the normalization property, the uniqueness of DEG(F, p, q,Ω) is
established. �

We point out once more that it appears impossible to prove Theorem 4.10
without using Theorem 4.7 as an intermediate step (at least implicitly). In fact,
an analysis of our proof shows that we have

DEG(F, p, q,Ω) = deg(F,ϕ,Ω)

where ϕ: Ω → Y0 is obtained by extension of a homotopy which starts from
the restricted map π ◦ q: Ω ∩ F−1(Y0) → Y0. Thus, one would expect that the
natural way to prove Theorem 4.10 directly is to verify all properties for this
definition. However, it appears impossible to show directly that this definition
is independent of the particular choice of Y0: For a different choice Ỹ0 of Y0
the corresponding map ϕ̃ can have a rather different form than ϕ and need not
be close to it. In particular, the homotopy h(t, x) = tϕ + (1 − t)ϕ̃ might have
coincidence points with F on ∂Ω and so at least the “classical” argument in the
construction of the Leray–Schauder degree breaks down completely. In fact, it
appears even that there need not be an admissible homotopy connecting ϕ and ϕ̃
at all. In our actual proof we only showed rather implicitly that deg(F,ϕ,Ω) =
deg(F, ϕ̃,Ω) by using several homotopies in different subsets, using the reduction
property.
Since all degrees in this paper are uniquely determined, it is not surprising

that they are compatible in the following sense.

Corollary 4.13 (Compatibility of the Absolute Triple-Degrees). Let the
assumptions of Theorem 4.10 be satisfied. Then the corresponding degree DEG
is exactly that of Theorem 4.7 if one starts from the induced relative degree of
Theorem 2.5. In the analogous sense, the degrees of Theorems 4.11 and 4.8
coincide.

Proof. By the uniqueness, we only have to verify that the degree DEG of
Theorem 4.10 and 4.11 satisfies also the normalization property of Theorem 4.7.
Thus, let (F, p, q,Ω) ∈ T abs0 and (F,ϕ,Ω, Y0) ∈ F rel0 and ϕ ◦ p = q on p−1(Ω ∩
F−1(Y0)).
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We can extend ϕ to a continuous compact map ϕ: p−1(Ω) → Y0 and define
q̃ := ϕ ◦ p. Since ϕ assumes only values in Y0, we have coin∂Ω(F,ϕ). Hence,
(F,ϕ,Ω) ∈ Fabs0 , and by the reduction and normalization property (of Theo-
rem 4.10), we obtain

DEG(F, p, q,Ω) = DEG(F, p, q̃,Ω) = deg(F,ϕ,Ω).

By the normalization property of Theorem 2.5, this is degY0(F,ϕ,Ω), and so the
normalization property of Theorem 4.7 is established. �

We could also have used the above argument to prove the uniqueness of
the degree of Theorem 4.10 from the normalization, homotopy invariance and
reduction property. Note that our earlier uniqueness proof did not need the
latter.

Corollary 4.14 (Compatibility of Relative and Absolute Triple-Degrees).

Let the assumptions of Theorem 4.7 resp. 4.10 be satisfied. Let (F, p, q,Ω) ∈ T abs0
be such that q assumes its values only in Y0 ∈ Y. Then

DEG(F, p, q,Ω) = DEGY0(F, p, q,Ω)

where the right-hand side is the degree of Theorem 3.4; in the situation of The-
orem 4.10, the relative degree used in Theorem 3.4 is that of Theorem 2.5.

In the analogous sense, the degree of Theorem 4.8, resp. 4.11 coincides with
that of Corollary 3.5.

Proof. Concerning the degree of Theorem 4.7, the claim has been shown in
the proof of (4.1). The claim concerning the degree of Theorem 4.10 follows from
this in view of Corollary 4.13. The proof concerning the degrees of Theorem 4.8
and 4.11 is analogous. �

5. Homotopy Invariance

For most applications, the homotopy invariance with respect to the third
argument is not general enough: One would like to have invariance of the degree
DEG(F, p, q,Ω) under simultaneous homotopies of all three involved functions
(F, p, q). In our axioms on the degree (Definition 2.1, resp. 2.2) the function F
is always fixed, and it is in general not true that this definition is stable under
arbitrary homotopies. However, in all known examples of degree theories, there
exists a certain class of homotopies of F under which deg, resp. degY0 is invariant.
We will restrict our consideration to the class of such “admissible” homotopies
in the following sense.
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Definition 5.1. Let deg be an absolute degree. Then we denote by Aabs

the system of all (H,Ω) where Ω ∈ O and H: [0, 1] × Ω → Y (not necessarily
continuous) are such that the following holds:

• (H(t, · ),Ω) ∈ F (0 ≤ t ≤ 1) and for each continuous compact map
h: [0, 1]× Ω→ Y with coin[0,1]×∂Ω(H,h) = ∅ the value

deg(H(t, · ), h(t, · ),Ω)

is independent of t ∈ [0, 1].

We need also a corresponding notion for the relative degree.

Definition 5.2. Let deg be a relative degree for Y. Then we denote by Arel

the system of all (H,Ω, Y0) where Ω ∈ O, Y0 ∈ Y and H: [0, 1] × Ω → Y (not
necessarily continuous) are such that the following holds:

• (H(t, · ),Ω) ∈ F (0 ≤ t ≤ 1) and for each continuous compact map
h: ([0, 1]× Ω) ∩H−1(Y0)→ Y0 with coin[0,1]×∂Ω(H,h) = ∅ the value

degY0(H(t, · ), h(t, · ),Ω)

is independent of t ∈ [0, 1].

We automatically have included the case of constant H(t, · ) = F :

Proposition 5.3. If (F,Ω) ∈ F and H(t, · ) := F (0 ≤ t ≤ 1) then (H,Ω) ∈
Aabs and (H,Ω, Y0) ∈ Arel for each Y0 ∈ Y.

Proof. The claim is a reformulation of the homotopy invariance axiom. �

One might expect that (at least in natural situations) if a homotopy H is
admissible for the absolute degree then it is also admissible for the induced
relative degree. The following result states that this is indeed the case.

Proposition 5.4. Let the assumptions of Theorem 2.5 be satisfied, and let
(H,Ω) ∈ Aabs and Y0 ∈ Y be such that H−1(Y0) is closed. Then we have for the
induced relative degree of Theorem 2.5 that (H,Ω, Y0) ∈ Arel.

Proof. Since Y0 is an extensor set and H−1(Y0) is closed, we can extend
the map h of Definition 11 to a continuous compact map h: [0, 1] × Ω → Y0.
Since h assumes its values only in Y0, we have coin[0,1]×∂Ω(H,h) = ∅. Since
(H,Ω) ∈ Aabs, it follows that deg(H(t, · ), h(t, · ),Ω) is independent of t. By the
normalization property of Theorem 2.5, we have

degY0(H(t, · ), h(t, · ),Ω) = deg(H(t, · ), h(t, · ),Ω),

and so also degY0(H(t, · ), h(t, · ),Ω) is independent of t. �
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For our aim to formulate a homotopy invariance of DEG(F, p, q,Ω) with
respect to all three functions (F, p, q), Definition 10 apparently is an appropriate
requirement with respect to F . Concerning p and q, it is not natural at all to
consider homotopies in the usual sense, because in the applications one wants to
interpret q ◦ p−1 as a multivalued map and so one wants to consider multivalued
homotopies. The appropriate setting is therefore the diagram

Y
H←−−−− [0, 1]× Ω P←−−−− Γ Q−−−−→ Y

In most application, Γ will be (a subset of) a space of the form [0, 1]× Γ̃ (so that
P and Q can indeed be interpreted as homotopies) but we do not require this.
We therefore have to define in a slightly more technical manner how to interpret
the corresponding maps Pt and Qt at the time t ∈ [0, 1].

Definition 5.5. Let (H,Ω, Y0) ∈ Arel. Then we write (H,P,Q,Ω, Y0) ∈
Hrel0 if P : Γ→ [0, 1]×X is continuous with some topological space Γ and Q:D →
Y0 with D := P−1(H−1(Y0)) are such that the following holds.

(a) H−1(Y0) is closed in [0, 1]× Ω.
(b) P (Γ) ⊇ ([0, 1]× Ω) ∩H−1(Y0).
(c) There is a continuous map ϕ:H−1(Y0)→ Y0 and a continuous compact
map h: [0, 1]×D → Y0 with h(0, Z) = Q and h(1, · ) = ϕ ◦ P such that

COIN[0,1]×∂Ω(H,P, h(t, · )) = ∅ (0 ≤ t ≤ 1).

(d) (H(t, · ), Pt, Qt,Ω, Y0) ∈ F rel0 for each t ∈ [0, 1] where Qt is the restric-
tion of Q to

Γt := P−1({t} × Ω) ∩H−1(Y0),

and Pt: Γt → X is defined by P (z) = (t, Pt(z)).

Theorem 5.6 (Homotopy Invariance of the Relative Triple-Degree). With
the above notations, if (H,P,Q,Ω, Y0) ∈ Hrel0 , then

DEGY0(H(t, · ), Pt, Qt,Ω) is independent of t ∈ [0, 1].

Proof. In case Y0 = Y the claim has been proved in [15]. The general case
reduces to this special case similarly as in the proof of Theorem 3.4. �

In order to verify that (H,P,Q,Ω, Y0) ∈ Hrel0 , the following test is convenient:

Theorem 5.7. Let (H,Ω, Y0) ∈ Arel, P : Γ → [0, 1] × X, and Q: Γ → Y0
where Γ is some topological space. Suppose that the following holds:

(a) P (Γ) ⊇ ([0, 1]× Ω) ∩H−1(Y0).
(b) H−1(Y0) and P−1(H−1(Y0)) are closed, compact, and metrizable.
(c) The restriction of H to H−1(Y0) is continuous.
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(d) The restrictions of P and Q to P−1(H−1(Y0)) are continuous.
(e) Y0 is homeomorphic to a topological group.
(f) Y0 is an extensor set for H−1(Y0) and for [0, 1]× P−1(H−1(Y0)).
(g) At least one of the following two requirements holds:
(g1) All fibres P−1(x) (x ∈ H−1(Y0)) are Rδ, and the inductive dimen-
sion of H−1(Y0) is finite.

(g2) All fibres p−1(x) (x ∈ H−1(Y0)) are acyclic with respect to Čech
cohomology with coefficients in Z. In addition, there is some y0∈Y
such that Y \{y0} is homotopically n-simple for each n ≥ 1. More-
over, dim(H−1(Y0)) < ∞ where dim denotes the covering dimen-
sion, and

sup
x∈H−1(Y0)

dim p−1(x) <∞.

(h) COIN[0,1]×∂Ω(H,P,Q) = ∅.

Then (H,P,Q,Ω, Y0) ∈ Hrel0 .

Proof. We use the notation of Definition 5.5. The assertion that we have
(H(t, · ), Pt, Qt,Ω, Y0) ∈ F rel0 is a straightforward consequence of Theorem 3.6
(with Y1 := Y0 and M := Ω). We also apply Theorem 3.6 with M := H−1(Y0)
and find that P is an (H, [0, 1]×Ω, Y0, Y0)-compact homotopy bijection on each
closed A ⊆ [0, 1] × Ω. In particular, P is an (H, [0, 1] × Ω, Y0, Y0)-compact
homotopy surjection on ∂Ω. This implies that maps ϕ and h as required in
Definition 5.5 do exist. �

In order to formulate a corresponding result for the absolute triple-degree
of Theorem 4.7 or 4.10, we assume as in that theorems that Y is a topological
Hausdorff vector space with an admissible family Y of subspaces.
We treat the situations of Theorem 4.7 (and 4.8) or of Theorem 4.10 (and 4.11)

simultaneously, and so we assume that we have given either a relative or an ab-
solute degree. Our following hypotheses in these two situations differ only in this
obvious respect:

Definition 5.8. Let H: [0, 1]× Ω → Y and P : Γ → [0, 1]×X with a topo-
logical space Γ. Then we write (H,P,Ω) ∈ Hrel→abs, resp. (H,P,Ω) ∈ Habs if
the following holds for each Y0 ∈ Y:

(a) (H,Ω, Y0) ∈ Arel, resp. (H,Ω) ∈ Aabs.
(b) P is continuous and proper and P (Γ) ⊇ ([0, 1]× Ω) ∩H−1(Y0).
(c) H: [0, 1]× Ω→ Y is proper and has a closed graph.
(d) H([0, 1]× Ω) ∩ Y0 is relatively compact.
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(e) Y is metrizable, or for each continuous compact h: [0, 1] × P−1([0, 1] ×
Ω)→ Y and each closed A ⊆ Ω the set⋃
{H(t, x)− h(s, P−1(t, x)) : s, t ∈ [0, 1], x ∈ A}

= {H(P (z))− h(t, z) : t ∈ [0, 1], z ∈ P−1([0, 1]×A)}

is closed in Y .
(f) H−1(Y0) is metrizable and closed in X.
(g) P−1(H−1(Y0)) is metrizable.
(h) Y0 is an extensor set for [0, 1]× Ω and for [0, 1]× P−1([0, 1]× Ω).
(i) At least one of the following two requirements holds:
(i1) All fibres P−1(t, x) ((t, x) ∈ H−1(Y0)) are Rδ, and the inductive
dimension of H−1(Y0) is finite.

(i2) All fibres p−1(t, x) ((t, x) ∈ H−1(Y0)) are acyclic with respect to
Čech cohomology with coefficients in Z. Moreover, the covering di-
mension dim(H−1(Y0)) is finite and

sup
(t,x)∈H−1(Y0)

dim P−1(t, x) <∞.

If in addition Q: Γ → Y is such that the restriction of Q to P−1([0, 1] × Ω) is
continuous and compact and

COIN[0,1]×∂Ω(H,P,Q) = ∅

then we write (H,P,Q,Ω) ∈ Hrel→abs0 , resp. (H,P,Q,Ω) ∈ Habs0 .

The following lemmas contain Lemma 4.5 and 4.6 as special cases.

Lemma 5.9. Let (H,P,Ω) belong to Hrel→abs or Habs. Then for each Y0 ∈ Y
the restriction of H to H−1(Y0) is continuous.

Proof. By hypothesis, the spaces M := H−1(Y0) and Y0 are metrizable. It
thus suffices to show that H is sequentially continuous. If this is not the case,
we find a sequence an ∈ M with an → a such that H(an) is outside some fixed
neighbourhood of H(a). Since H(M) is contained in a compact subset of Y0 (by
hypothesis and since Y0 is closed), we may assume that H(an) → y for some
y ∈ Y0, and so y 6= H(a). This contradicts the fact that H has a closed graph.�

Lemma 5.10. Let (H,P,Ω) belong to Hrel→abs or to Habs. Then for each
continuous compact map h: [0, 1]× P−1([0, 1]× Ω) → Y and each closed A ⊆ Ω
the set

RA :=
⋃
{H(t, x)− h(s, P−1(t, x)) : s, t ∈ [0, 1], x ∈ A}

is closed in Y .

Proof. We have to prove this only for the case that Y is metrizable, since
in the other case, the assertion is assumed in Definition 5.8. Let A ⊆ Ω be closed



188 M. Väth

and yn ∈ RA converge to some y ∈ Y . There are tn, sn ∈ [0, 1], xn ∈ A, and
zn ∈ P−1(tn, xn) such that yn = H(tn, xn) − h(sn, zn). By the compactness,
we may assume that h(sn, zn) → y∗ converges; similarly, we may assume that
sn → s converges. It follows that H(tn, xn) = yn+ h(sn, zn)→ y+ y∗ converges
and so, since H is proper, the elements (tn, xn) are contained in a compact
set K ⊆ [0, 1] × A. Hence, the sequence (zn)n is contained in the compact set
P−1(K) and thus has some cluster point z ∈ P−1(A). By continuity of P , it
follows that (t, x) := P (z) is a cluster point of ((tn, xn))n, and so since H has
a closed graph and H(tn, xn) → y∗, we must have H(t, x) = y∗. Since h has
also a closed graph and h(sn, zn) = H(tn, xn)− yn → y∗− y, we obtain similarly
h(s, z) = y∗ − y, and so y = y∗ − h(s, z) ∈ H(t, x)− h(s, p−1(t, x)) ∈ RA. �

Lemma 5.11. Let (H,P,Ω) belong to Hrel→abs or to Habs. Then for each
continuous compact map h: [0, 1]× P−1([0, 1]× Ω) → Y and each closed A ⊆ Ω
with

COIN[0,1]×A(H,P, h(t, · )) = ∅ (0 ≤ t ≤ 1)
there is a neigbhorhood U ⊆ Y of 0 with H(P (z)) − h(t, z) /∈ U for each z ∈
P−1([0, 1]×A) and each t ∈ [0, 1].

Proof. By Lemma 5.10, the set

RA = {H(P (z))− h(t, z) : t ∈ [0, 1], z ∈ P−1([0, 1]×A)}

is closed. The assumption of the lemma means that 0 /∈ RA, and so there is
a neigbhorhood U ⊆ Y of 0 which is disjoint from RA. �

Theorem 5.12 (Homotopy Invariance of the Absolute Triple-Degree). Let
the assumptions of Theorem 4.7, resp. 4.10 be satisfied and let (H,P,Q,Ω) ∈
Hrel→abs0 , resp. (H,P,Q,Ω) ∈ Habs0 . For t ∈ [0, 1], let Qt be the restriction
of Q to

Γt := P−1({t} × Ω),
and Pt: Γt → X be defined by P (z) = (t, Pt(z)).
Then (H(t, · ), Pt, Qt,Ω) ∈ T abs0 for each t ∈ [0, 1] and

DEG(H(t, · ), Pt, Qt,Ω) is independent of t ∈ [0, 1],

where DEG is the degree of Theorem 4.7/4.8, resp. 4.10/4.11.

Proof. In view of Remark 4.9 (resp. Remark 4.12), it suffices to consider
the degree of Theorem 4.7 (resp. of Theorem 4.10). By Corollary 4.13, and since
each (H,P,Q,Ω) ∈ Habs0 belongs to Hrel→abs0 (in view of Proposition 5.4), it
suffices to consider the situation of Theorem 4.7. We omit the straightforward
proof which shows that indeed (H(t, · ), Pt, Qt,Ω) ∈ T abs0 .
By Lemma 5.11, we find some neighbourhood U ⊆ Y of 0 with H(P (z)) −

Q(z) /∈ U for each z ∈ A := P−1([0, 1] × ∂Ω). Choose a neighbourhood V ⊆ Y



A General Degree for Function Triples 189

of 0 with tV + sV ⊆ U for each t, s ∈ [0, 1], and let Y0 ∈ Y and π be corre-
spondingly as in Definition 4.1. From the proof of Theorem 4.7 (more precisely
from (4.3)), we know that

(5.1) DEG(H(t, · ), Pt, Qt,Ω) = DEGY0(H(t, · ), Pt, π ◦Qt,Ω) (t ∈ [0, 1]).

By Theorem 5.7, we have (H,P, π ◦Q,Ω, Y0) ∈ Hrel0 , and so Theorem 5.6 implies
that the right-hand side of (5.1) is indeed independent of t ∈ [0, 1]. �

We point out that the homotopy invariance in the third argument is a special
case of Theorem 5.12 (and similarly for the relative case). To see this, put
H(t, · ) := F (Proposition 5.3), Γ̃ := [0, 1] × Γ, and define P : Γ̃ → [0, 1] × X

and Q: Γ̃ → Y by P (t, z) := p(z) and Q(t, z) := h(t, z). Now identify {t} × Γ
with Γ, using the fact that the degree of a function triple is invariant under
homeomorphisms of the intermediate space Γ (by the strong independence of
DEG from Γ).
The reader might wonder why we did not formulate a corresponding stronger

homotopy invariance for Theorems 4.8 resp. 4.11, i.e. whether the requirement
on the homotopies can be relaxed in the presence of the excision property. Such
a result could indeed be formulated, but its proof would be a trivial application
of the excision property (of the extended triple-degree) and of Theorem 5.12.
In this sense, Theorem 5.12 already implicitly includes this apparently more
general case.
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[15] M. Väth, Merging of degree and index theory, Article ID 36361, Fixed Point Theory

Appl. 2006 (2006), 30 pages.

[16] , Degree and index theories for noncompact function triples, Topol. Methods
Nonlinear Anal. 29 (2007), no. 1, 79–118.

[17] V.G. Zvyagin and N.M. Ratiner, Oriented degree of Fredholm maps of non-negative
index and its applications to global bifurcation of solutions, Global Analysis—Studies

and Applications V (Yu.G. Borisovich and Yu.E. Gliklikh, eds.), Lect. Notes in Math.,

vol. 1520, Springer, Berlin, Heidelberg, New York, 1992, pp. 111–137.

Manuscript received October 5, 2011

Martin Väth
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