SYSTEMS OF NONLINEAR HEMIVARIATIONAL INEQUALITIES AND APPLICATIONS

Nicuşor Costea - Csaba Varga

Abstract

In this paper we prove several existence results for a general class of systems of nonlinear hemivariational inequalities by using a fixed point theorem of Lin (Bull. Austral. Math. Soc. 34, (1986), 107-117). Our analysis includes both the cases of bounded and unbounded closed convex subsets in real reflexive Banach spaces. In the last section we apply the abstract results obtained to extend some results concerning nonlinear hemivariational inequalities, to establish existence results of Nash generalized derivative points and to prove the existence of at least one weak solution for an electroelastic contact problem.

1. Introduction

In the last decades the theory of hemivariational inequalities captured special attention as many papers were dedicated to the study of existence and multiplicity of solutions for this kind of inequalities (see e.g. [2], [3], [5], [6], [7], [9]-[11], [17], [23]). The notion of hemivariational inequality was introduced by Panagiotopoulos at the beginning of the 1980's (see e.g. [32], [33]) as a variational formulation for several classes of unilateral mechanical problems with nonsmooth and nonconvex energy functionals. If the involved functionals are convex, then hemivariational inequalities reduce to variational inequalities which were studied

[^0]earlier by many authors (see e.g. Fichera [13] or Hartman and Stampacchia [15]). In almost three decades the theory of hemivariational inequalities has produced an abundance of important results both in pure and applied mathematics as well as in other domains such as mechanics and engineering sciences as it allowed mathematical formulations for new classes of interesting problems (see e.g. the monographs [14], [19], [27]-[29], [34]).

The aim of this paper is to prove the existence of at least one solution for a general class of systems of nonlinear hemivariational inequalities on bounded or unbounded closed and convex subsets without using critical point theory. The proofs strongly rely on a fixed point theorem involving set-valued mappings due to Lin [21].

The rest of paper the paper is structured as follows. In Section 2 we introduce some notation and preliminaries. In Section 3 we formulate the problem that will be studied and the main results are proved. In Section 4 we present three applications of the abstract results obtained in the previous section.

2. Notation and preliminaries

For the convenience of the reader we present in this section some notations and preliminary results from nonsmooth analysis that will be used throughout the paper. For a given Banach space $\left(E,\|\cdot\|_{E}\right)$ we denote by E^{*} its dual space and by $\langle\cdot, \cdot\rangle_{E}$ the duality pairing between E^{*} and E. The inner product and the euclidian norm in $\mathbb{R}^{m}(m \geq 1)$ will be denoted by "." and $|\cdot|$, respectively.

We recall that a functional $\phi: E \rightarrow \mathbb{R}$ is called locally Lipschitz if for every $u \in E$ there exists a neighbourhood U of u and a constant $L_{u}>0$ such that

$$
|\phi(w)-\phi(v)| \leq L_{u}\|w-v\|_{E}, \quad \text { for all } v, w \in U
$$

Definition 2.1. Let $\phi: E \rightarrow \mathbb{R}$ be a locally Lipschitz functional. The generalized derivative of ϕ at $u \in E$ in the direction $v \in E$, denoted $\phi^{0}(u ; v)$, is defined by

$$
\phi^{0}(u ; v)=\limsup _{\substack{w \rightarrow u \\ \lambda \downarrow 0}} \frac{\phi(w+\lambda v)-\phi(w)}{\lambda} .
$$

For a function $\varphi: E_{1} \times \ldots \times E_{k} \times \ldots \times E_{n} \rightarrow \mathbb{R}$ which is locally Lipschitz in the $k^{\text {th }}$ variable we denote by $\varphi_{, k}^{0}\left(u_{1}, \ldots, u_{k}, \ldots, u_{n} ; v_{k}\right)$ the partial generalized derivative of $\varphi\left(u_{1}, \ldots, u_{k}, \ldots, u_{n}\right)$ at the point $u_{k} \in E_{k}$ in the direction $v_{k} \in E_{k}$, that is

$$
\begin{aligned}
\varphi_{, k}^{0}\left(u_{1}, \ldots,\right. & \left.u_{k}, \ldots, u_{n} ; v_{k}\right) \\
& =\limsup _{\substack{w_{k} \rightarrow u_{k} \\
\lambda \downarrow 0}} \frac{\varphi\left(u_{1}, \ldots, w_{k}+t v_{k}, \ldots, u_{n}\right)-\varphi\left(u_{1}, \ldots, w_{k}, \ldots, u_{n}\right)}{\lambda} .
\end{aligned}
$$

Lemma 2.2. Let $\phi: E \rightarrow \mathbb{R}$ be locally Lipschitz of rank L_{u} near the point $u \in E$. Then
(a) the function $v \rightsquigarrow \phi^{0}(u ; v)$ is finite, positively homogeneous, subadditive and satisfies

$$
\left|\phi^{0}(u ; v)\right| \leq L_{u}\|v\|_{E}
$$

(b) $\phi^{0}(u ; v)$ is upper semicontinuous as a function of (u, v).

The proof can be found in Clarke [8, Proposition 2.1.1].
Definition 2.3. The generalized gradient of a locally Lipschitz functional $\phi: E \rightarrow \mathbb{R}$ at a point $u \in E$, denoted $\partial \phi(u)$, is the subset of E^{*} defined by

$$
\partial \phi(u)=\left\{\zeta \in E^{*}: \phi^{0}(u ; v) \geq\langle\zeta, v\rangle_{E}, \text { for all } v \in E\right\}
$$

We point out the fact that for each $u \in E$ we have $\partial \phi(u) \neq \emptyset$. In order to see that it suffices to apply the Hahn-Banach theorem (see e.g. Brezis [4, Chapter I]).

For a function $\varphi: E_{1} \times \ldots \times E_{k} \times \ldots \times E_{n} \rightarrow \mathbb{R}$ which is locally Lipschitz in the $k^{\text {th }}$ variable we denote by $\partial_{k} \varphi\left(u_{1}, \ldots, u_{k}, \ldots, u_{n}\right)$ the partial generalized gradient of the mapping $u_{k} \rightsquigarrow \varphi\left(u_{1}, \ldots, u_{k}, \ldots, u_{n}\right)$, that is

$$
\begin{aligned}
& \partial_{k} \varphi\left(u_{1}, \ldots, u_{k}, \ldots, u_{n}\right) \\
& \quad=\left\{\eta_{k} \in E_{k}^{*}: \varphi_{, k}^{0}\left(u_{1}, \ldots, u_{k}, \ldots, u_{n} ; v_{k}\right) \geq\left\langle\eta_{k}, v_{k}\right\rangle_{E_{k}}, \text { for all } v_{k} \in E_{k}\right\}
\end{aligned}
$$

The next lemma points out important properties of generalized gradients.
Lemma 2.4. Let $\phi: E \rightarrow \mathbb{R}$ be locally Lipschitz of rank L_{u} near the point $u \in E$. Then
(a) $\partial \phi(u)$ is a convex, weak* compact subset of E^{*} and

$$
\|\zeta\|_{E^{*}} \leq L_{u}, \quad \text { for all } \zeta \in \partial \phi(u)
$$

(b) For each $v \in E$, one has

$$
\phi^{0}(u ; v)=\max \left\{\langle\zeta, v\rangle_{E}: \zeta \in \partial \phi(u)\right\} .
$$

The proof can be found in Clarke [8, Proposition 2.1.2].
Definition 2.5. Let E be a Banach space and let $\phi: E \rightarrow \mathbb{R}$ be a locally Lipschitz functional. We say that ϕ is regular at $u \in E$, if for all $v \in E$ the usual one-sided directional derivative $\phi^{\prime}(u ; v)$ exists and $\phi^{\prime}(u ; v)=\phi^{0}(u ; v)$.

If this is true at every $u \in E$, we say that ϕ is regular.
It is a fact that in general neither of the sets $\partial \varphi\left(u_{1}, \ldots, u_{n}\right), \partial_{1} \varphi\left(u_{1}, \ldots, u_{n}\right)$ $\times \ldots \times \partial_{n} \varphi\left(u_{1}, \ldots, u_{n}\right)$ need to be contained in the other (see e.g. Clarke [8, Section 2.5]). For regular functions, however, a general relationship does hold between these sets.

Lemma 2.6. Let $\varphi: E_{1} \times \ldots \times E_{n} \rightarrow \mathbb{R}$ be a regular, locally Lipschitz functional. Then the following assertions hold true:
(a) $\partial \varphi\left(u_{1}, \ldots, u_{k}, \ldots, u_{n}\right) \subseteq \partial_{1} \varphi\left(u_{1}, \ldots, u_{k}, \ldots, u_{n}\right) \times \ldots \times \partial_{k} \varphi\left(u_{1}, \ldots\right.$, $\left.u_{k}, \ldots, u_{n}\right) \times \ldots \times \partial_{n} \varphi\left(u_{1}, \ldots, u_{k}, \ldots, u_{n}\right) ;$
(b) $\varphi^{0}\left(u_{1}, \ldots, u_{k}, \ldots, u_{n} ; v_{1}, \ldots, v_{k}, \ldots, v_{n}\right) \leq \sum_{k=1}^{n} \varphi_{, k}^{0}\left(u_{1}, \ldots, u_{k}, \ldots, u_{n} ; v_{k}\right)$;
(c) $\varphi^{0}\left(u_{1}, \ldots, u_{k}, \ldots, u_{n} ; 0, \ldots, v_{k}, \ldots, 0\right) \leq \varphi_{, k}^{0}\left(u_{1}, \ldots, u_{k}, \ldots, u_{n} ; v_{k}\right)$.

The following fixed point theorem for set valued mappings is due to Lin (see [21, Theorem 1]) and will be one of the key arguments in the sequel.

Theorem 2.7. Let K be a nonempty convex subset of a Hausdorff topological vector space E. Let $\mathcal{A} \subseteq K \times K$ be a subset such that
(a) for each $x \in K$ the set $\mathcal{N}(x)=\{y \in K:(x, y) \in \mathcal{A}\}$ is closed in K;
(b) for each $y \in K$ the set $\mathcal{M}(y)=\{x \in K:(x, y) \notin \mathcal{A}\}$ is either convex or empty;
(c) $(x, x) \in \mathcal{A}$ for each $x \in K$;
(d) K has a nonempty compact convex subset K_{0} such that the set

$$
B=\left\{y \in K:(x, y) \in \mathcal{A} \text { for all } x \in K_{0}\right\}
$$

is compact.
Then there exists a point $y_{0} \in B$ such that $K \times\left\{y_{0}\right\} \subset \mathcal{A}$.

3. Formulation of the problem and the main results

Let n be a positive integer, let X_{1}, \ldots, X_{n} be real reflexive Banach spaces and let Y_{1}, \ldots, Y_{n} be real Banach spaces such that there exist linear and compact operators $T_{k}: X_{k} \rightarrow Y_{k}$, for $k \in\{1, \ldots, n\}$.

Our aim is to study the following system of nonlinear hemivariational inequalities:
(SNHI) Find $\left(u_{1}, \ldots, u_{n}\right) \in K_{1} \times \ldots \times K_{n}$ such that

$$
\left\{\begin{array}{c}
\psi_{1}\left(u_{1}, \ldots, u_{n}, v_{1}\right)+J_{, 1}^{0}\left(\widehat{u}_{1}, \ldots, \widehat{u}_{n} ; \widehat{v}_{1}-\widehat{u}_{1}\right) \geq\left\langle F_{1}\left(u_{1}, \ldots, u_{n}\right), v_{1}-u_{1}\right\rangle_{X_{1}} \\
\left.\ldots \ldots \widehat{u}_{n}, \ldots \ldots \widehat{v}_{n}-\widehat{u}_{n}\right) \geq\left\langle F_{n}\left(u_{1}, \ldots, u_{n}\right), v_{n}-u_{n}\right\rangle_{X_{n}} \\
\psi_{n}\left(u_{1}, \ldots, u_{n}, v_{n}\right)+\widehat{u}_{1}^{0}, \ldots . \widehat{u}_{n},
\end{array}\right.
$$

for all $\left(v_{1}, \ldots, v_{n}\right) \in K_{1} \times \ldots \times K_{n}$, where for each $k \in\{1, \ldots, n\}$:

- $K_{k} \subseteq X_{k}$ is a nonempty closed and convex subset;
- $\psi_{k}: X_{1} \times \ldots \times X_{k} \times \ldots \times X_{n} \times X_{k} \rightarrow \mathbb{R}$ is a nonlinear functional;
- $J: Y_{1} \times \ldots \times Y_{n} \rightarrow \mathbb{R}$ is a regular locally Lipschitz functional;
- $F_{k}: X_{1} \times \ldots \times X_{k} \times \ldots \times X_{n} \rightarrow X_{k}^{*}$ is a nonlinear operator;
- $\widehat{u}_{k}=T_{k}\left(u_{k}\right)$.

In order to establish the existence of at least one solution for problem (SNHI) we shall assume fulfilled the following hypotheses:
(H1) For each $k \in\{1, \ldots, n\}$, the functional $\psi_{k}: X_{1} \times \ldots \times X_{k} \times \ldots \times X_{n} \times$ $X_{k} \rightarrow \mathbb{R}$ satisfies:
(a) $\psi_{k}\left(u_{1}, \ldots, u_{k}, \ldots, u_{n}, u_{k}\right)=0$ for all $u_{k} \in X_{k}$;
(b) For each $v_{k} \in X_{k}$ the mapping $\left(u_{1}, \ldots, u_{n}\right) \rightsquigarrow \psi_{k}\left(u_{1}, \ldots, u_{n}, v_{k}\right)$ is weakly upper semicontinuous;
(c) For each $\left(u_{1}, \ldots, u_{n}\right) \in X_{1} \times \ldots \times X_{n}$ the mapping $v_{k} \rightsquigarrow \psi_{k}\left(u_{1}, \ldots\right.$, $\left.u_{n}, v_{k}\right)$ is convex.
(H2) For each $k \in\{1, \ldots, n\}, F_{k}: X_{1} \times \ldots \times X_{k} \times \ldots \times X_{n} \rightarrow X_{k}^{*}$ is a nonlinear operator such that
$\liminf _{m \rightarrow \infty}\left\langle F_{k}\left(u_{1}^{m}, \ldots, u_{n}^{m}\right), v_{k}-u_{k}^{m}\right\rangle_{X_{k}} \geq\left\langle F_{k}\left(u_{1}, \ldots, u_{n}\right), v_{k}-u_{k}\right\rangle_{X_{k}}$
whenever $\left(u_{1}^{m}, \ldots, u_{n}^{m}\right) \rightharpoonup\left(u_{1}, \ldots, u_{n}\right)$ as $m \rightarrow \infty$ and $v_{k} \in X_{k}$ is fixed.
The first main result of this paper refers to the case when the sets K_{k} are bounded, closed and convex and it is given by the following theorem.

Theorem 3.1. For each $k \in\{1, \ldots, n\}$ let $K_{k} \subset X_{k}$ be a nonempty, bounded, closed and convex set and let us assume that conditions (H1)-(H2) hold true. Then, the system of nonlinear hemivariational inequalities (SNHI) admits at least one solution.

The existence of solutions for our system will be a direct consequence of the fact that a vector hemivariational inequality admits solutions. Let us introduce the following notations:

- $X=X_{1} \times \ldots \times X_{n}, K=K_{1} \times \ldots \times K_{n}$ and $Y=Y_{1} \times \ldots \times Y_{n}$;
- $u=\left(u_{1}, \ldots, u_{n}\right)$ and $\widehat{u}=\left(\widehat{u}_{1}, \ldots, \widehat{u}_{n}\right)$;
- $\Psi: X \times X \rightarrow \mathbb{R}, \quad \Psi(u, v)=\sum_{k=1}^{n} \psi_{k}\left(u_{1}, \ldots, u_{k}, \ldots, u_{n}, v_{k}\right)$;
- $F: X \rightarrow X^{*}, \quad\langle F u, v\rangle_{X}=\sum_{k=1}^{n}\left\langle F_{k}\left(u_{1}, \ldots, u_{n}\right), v_{k}\right\rangle_{X_{k}}$.
and formulate the following vector hemivariational inequality:
(VHI) Find $u \in K$ such that

$$
\Psi(u, v)+J^{0}(\widehat{u} ; \widehat{v}-\widehat{u}) \geq\langle F u, v-u\rangle_{X}, \quad \text { for all } v \in K
$$

REMARK 3.2. If (H1)(a) holds, then any solution $u^{0}=\left(u_{1}^{0}, \ldots, u_{n}^{0}\right) \in K_{1} \times$ $\ldots \times K_{n}$ of the vector hemivariational inequality (VHI) is also a solution of the system (SNHI).

Indeed, if for a $k \in\{1, \ldots, n\}$ we fix $v_{k} \in K_{k}$ and for $j \neq k$ we consider $v_{j}=u_{j}^{0}$, using Lemma 2.6 and the fact that u^{0} solves (VHI) we obtain:

$$
\begin{aligned}
&\left\langle F_{k}\left(u_{1}^{0}, \ldots, u_{n}^{0}\right), v_{k}-u_{k}^{0}\right\rangle_{X_{k}}=\sum_{j=1}^{n}\left\langle F_{j}\left(u_{1}^{0}, \ldots, u_{n}^{0}\right), v_{j}-u_{j}^{0}\right\rangle_{X_{j}} \\
&=\left\langle F u^{0}, v-u^{0}\right\rangle_{X} \leq \Psi\left(u^{0}, v\right)+J^{0}\left(\widehat{u}^{0} ; \widehat{v}-\widehat{u}^{0}\right) \\
& \leq \sum_{j=1}^{n} \psi_{j}\left(u_{1}^{0}, \ldots, u_{j}^{0}, \ldots, u_{n}^{0}, v_{j}\right)+\sum_{j=1}^{n} J_{, j}^{0}\left(\widehat{u}_{1}^{0}, \ldots, \widehat{u}_{n}^{0} ; \widehat{v}_{j}-\widehat{u}_{j}^{0}\right) \\
&=\psi_{k}\left(u_{1}^{0}, \ldots, u_{k}^{0}, \ldots, u_{n}^{0}, v_{k}\right)+J_{, k}^{0}\left(\widehat{u}_{1}^{0}, \ldots, \widehat{u}_{n}^{0} ; \widehat{v}_{k}-\widehat{u}_{k}^{0}\right)
\end{aligned}
$$

As $k \in\{1, \ldots, n\}$ and $v_{k} \in K_{k}$ were arbitrarily fixed, we conclude that $\left(u_{1}^{0}, \ldots, u_{n}^{0}\right) \in K_{1} \times \ldots \times K_{n}$ is a solution of our system (SNHI).

Proof of Theorem 3.1. According to Remark 3.2 it suffices to prove that problem (VHI) admits a solution. With this end in view we consider the set $\mathcal{A} \subset K \times K$ as follows:

$$
\mathcal{A}=\left\{(v, u) \in K \times K: \Psi(u, v)+J^{0}(\widehat{u} ; \widehat{v}-\widehat{u})-\langle F u, v-u\rangle_{X} \geq 0\right\}
$$

We shall prove next that the set \mathcal{A} satisfies the conditions required in Theorem 2.7 for the weak topology of the space X.

Step 1. For each $v \in K$ the set $\mathcal{N}(v)=\{u \in K:(v, u) \in \mathcal{A}\}$ is weakly closed in K.

In order to prove the above assertion, for a fixed $v \in K$ we consider the functional $\alpha: K \rightarrow \mathbb{R}$ defined by

$$
\alpha(u)=\Psi(u, v)+J^{0}(\widehat{u} ; \widehat{v}-\widehat{u})-\langle F u, v-u\rangle_{X}
$$

and we shall prove that it is weakly upper semicontinuous. Let us consider a sequence $\left\{u^{m}\right\} \subset K$ such that $u^{m} \rightharpoonup u$ as $m \rightarrow \infty$. Taking into account that T_{k} is compact for each $k \in\{1, \ldots, n\}$ we deduce that $\widehat{u}^{m} \rightarrow \widehat{u}$ as $m \rightarrow \infty$. Using (H1)(b) we obtain

$$
\begin{aligned}
\limsup _{m \rightarrow \infty} \Psi\left(u^{m}, v\right) & =\limsup _{m \rightarrow \infty} \sum_{k=1}^{n} \psi_{k}\left(u_{1}^{m}, \ldots, u_{n}^{m}, v_{k}\right) \\
& \leq \sum_{k=1}^{n} \limsup _{m \rightarrow \infty} \psi_{k}\left(u_{1}^{m}, \ldots, u_{n}^{m}, v_{k}\right) \\
& \leq \sum_{k=1}^{n} \psi_{k}\left(u_{1}, \ldots, u_{n}, v_{k}\right)=\Psi(u, v)
\end{aligned}
$$

On the other hand, using Lemma 2.2 we deduce that

$$
\limsup _{m \rightarrow \infty} J^{0}\left(\widehat{u}^{m} ; \widehat{v}-\widehat{u}^{m}\right) \leq J^{0}(\widehat{u} ; \widehat{v}-\widehat{u})
$$

Finally, using (H2) we have

$$
\begin{aligned}
& \limsup _{m \rightarrow \infty}\left[-\left\langle F u^{m}, v-u^{m}\right\rangle_{X}\right]=-\liminf _{m \rightarrow \infty}\left\langle F u^{m}, v-u^{m}\right\rangle_{X} \\
&=-\liminf _{m \rightarrow \infty} \sum_{k=1}^{n}\left\langle F_{k}\left(u_{1}^{m}, \ldots, u_{n}^{m}\right), v_{k}-u_{k}^{m}\right\rangle_{X_{k}} \\
& \leq-\sum_{k=1}^{n}\left\langle F_{k}\left(u_{1}, \ldots, u_{n}\right), v_{k}-u_{k}\right\rangle_{X_{k}}=-\langle F u, v-u\rangle_{X}
\end{aligned}
$$

It is clear from the above relations that the functional α is weakly upper semicontinuous, therefore the set

$$
[\alpha \geq \lambda]=\{u \in K: \alpha(u) \geq \lambda\}
$$

is weakly closed for any $\lambda \in \mathbb{R}$. Taking $\lambda=0$ we obtain that the set $\mathcal{N}(v)$ is weakly closed.

Step 2. For each $u \in K$ the set $\mathcal{M}(u)=\{v \in K:(v, u) \notin \mathcal{A}\}$ is either convex or empty.

Let us fix $u \in K$ and assume that $\mathcal{M}(u)$ is nonempty. Let v^{1}, v^{2} be two elements of $\mathcal{M}(u), t \in(0,1)$ and $v^{t}=t v^{1}+(1-t) v^{2}$. Using (H1)(c) we obtain:

$$
\begin{aligned}
\Psi\left(u, v^{t}\right) & =\sum_{k=1}^{n} \psi_{k}\left(u_{1}, \ldots, u_{n}, t v_{k}^{1}+(1-t) v_{k}^{2}\right) \\
& \leq t \sum_{k=1}^{n} \psi_{k}\left(u_{1}, \ldots, u_{n}, v_{k}^{1}\right)+(1-t) \sum_{k=1}^{n} \psi_{k}\left(u_{1}, \ldots, u_{n}, v_{k}^{2}\right) \\
& =t \Psi\left(u, v^{1}\right)+(1-t) \Psi\left(u, v^{2}\right)
\end{aligned}
$$

which shows that the mapping $v \rightsquigarrow \Psi(u, v)$ is convex. On the other hand Lemma 2.2 ensures that the mapping $v \rightsquigarrow J^{0}(\widehat{u} ; \widehat{v}-\widehat{u})$ is convex. Using the fact that the mapping $v \rightsquigarrow\langle F u, v-u\rangle_{X}$ is affine we are led to

$$
\begin{aligned}
\Psi\left(u, v^{t}\right) & +J^{0}\left(\widehat{u} ; \widehat{v}^{t}-\widehat{u}\right)-\left\langle F u, v^{t}-u\right\rangle_{X} \\
\leq & t\left[\Psi\left(u, v^{1}\right)+J^{0}\left(\widehat{u} ; \widehat{v}^{1}-\widehat{u}\right)-\left\langle F u, v^{1}-u\right\rangle_{X}\right] \\
& +(1-t)\left[\Psi\left(u, v^{2}\right)+J^{0}\left(\widehat{u} ; \widehat{v}^{2}-\widehat{u}\right)-\left\langle F u, v^{2}-u\right\rangle_{X}\right]<0
\end{aligned}
$$

which means that $v^{t} \in \mathcal{M}(u)$, therefore $\mathcal{M}(u)$ is a convex set.
Step 3. $(u, u) \in \mathcal{A}$ for each $u \in K$.
Let $u \in K$ be fixed. Using (H1)(a) we obtain

$$
\Psi(u, u)+J^{0}(\widehat{u} ; \widehat{u}-\widehat{u})-\langle F u, u-u\rangle_{X}=\sum_{k=1}^{n} \psi_{k}\left(u_{1}, \ldots, u_{k}, \ldots, u_{n}, u_{k}\right)=0
$$

and this shows that $(u, u) \in \mathcal{A}$.

Step 4. The set $B=\{u \in K:(v, u) \in \mathcal{A}$ for all $v \in K\}$ is compact.
First we observe that K is a weakly compact subset of the reflexive space X as it is bounded, closed and convex. Then, we observe that the set B can be rewritten in the following way

$$
B=\bigcap_{v \in K} \mathcal{N}(v) .
$$

This shows that B is also a weakly compact set as it is an intersection of weakly closed subsets of K.

We are now able to apply Lin's theorem and conclude that there exists $u^{0} \in$ $B \subseteq K$ such that $K \times\left\{u^{0}\right\} \subset \mathcal{A}$. This means that

$$
\Psi\left(u^{0}, v\right)+J^{0}\left(\widehat{u}^{0} ; \widehat{v}-\widehat{u}^{0}\right) \geq\left\langle F u^{0}, v-u^{0}\right\rangle_{X}, \quad \text { for all } v \in K
$$

therefore u^{0} solves problem (VHI) and, accordingly to Remark 3.2, it is a solution of our system of nonlinear hemivariational inequalities (SNHI), the proof of Theorem 3.1 being now complete.

We will show next that if we change the hypotheses on the nonlinear functionals ψ_{k} we are still able to prove the existence of at least one solution for our system. Let us consider that instead of (H1) we have the following set of hypotheses
(H3) For each $k \in\{1, \ldots, n\}$, the functional $\psi_{k}: X_{1} \times \ldots \times X_{k} \times \ldots \times X_{n} \times$ $X_{k} \rightarrow \mathbb{R}$ satisfies:
(a) $\psi_{k}\left(u_{1}, \ldots, u_{k}, \ldots, u_{n}, u_{k}\right)=0$ for all $u_{k} \in X_{k}$;
(b) For each $k \in\{1, \ldots, n\}$ and any pair $\left(u_{1}, \ldots, u_{k}, \ldots, u_{n}\right),\left(v_{1}, \ldots\right.$, $\left.v_{k}, \ldots, v_{n}\right) \in X_{1} \times \ldots \times X_{k} \times \ldots \times X_{n}$ we have:

$$
\psi_{k}\left(u_{1}, \ldots, u_{k}, \ldots, u_{n}, v_{k}\right)+\psi_{k}\left(v_{1}, \ldots, v_{k}, \ldots, v_{n}, u_{k}\right) \geq 0
$$

(c) For each $\left(u_{1}, \ldots, u_{n}\right) \in X_{1} \times \ldots \times X_{n}$ the mapping $v_{k} \rightsquigarrow \psi_{k}\left(u_{1}, \ldots\right.$, u_{n}, v_{k}) is weakly lower semicontinuous;
(d) For each $v_{k} \in X_{k}$ the mapping $\left(u_{1}, \ldots, u_{n}\right) \rightsquigarrow \psi_{k}\left(u_{1}, \ldots, u_{n}, v_{k}\right)$ is concave.

We are now in position to state our second main result of the paper, which concerns the case when the sets K_{k} are bounded, closed and convex for each $k \in\{1, \ldots, n\}$.

Theorem 3.3. For each $k \in\{1, \ldots, n\}$ let $K_{k} \subset X_{k}$ be a nonempty, bounded, closed and convex set and let us assume that conditions (H2)-(H3) hold true. Then, the system of nonlinear hemivariational inequalities (SNHI) admits at least one solution.

In order to prove Theorem 3.3 we will need the following lemma.
Lemma 3.4. Assume that (H3) holds. Then
(a) $\Psi(u, v)+\Psi(v, u) \geq 0$ for all $u, v \in X$;
(b) For each $v \in X$ the mapping $u \rightsquigarrow-\Psi(v, u)$ is weakly upper semicontinuous;
(c) For each $u \in X$ the mapping $v \rightsquigarrow-\Psi(v, u)$ is convex.

Proof. (a) Taking into account (H3)(b) and the way the functional $\Psi: X \times$ $X \rightarrow \mathbb{R}$ was defined, we find

$$
\begin{aligned}
\Psi(u, v)+ & \Psi(v, u) \\
& =\sum_{k=1}^{n}\left[\psi_{k}\left(u_{1}, \ldots, u_{k}, \ldots, u_{n}, v_{k}\right)+\psi_{k}\left(v_{1}, \ldots, v_{k}, \ldots, v_{n}, u_{k}\right)\right] \geq 0
\end{aligned}
$$

(b) Let $v \in X$ be fixed and let $\left\{u^{m}\right\} \subset X$ be a sequence which converges weakly to some $u \in X$. Using (H3)(c) and the fact that $u^{m} \rightarrow u$ we obtain

$$
\begin{aligned}
& \limsup _{m \rightarrow \infty} {\left[-\Psi\left(v, u^{m}\right)\right]=-\liminf _{m \rightarrow \infty} \Psi\left(v, u^{m}\right)=-\liminf _{m \rightarrow \infty} \sum_{k=1}^{n} \psi_{k}\left(v_{1}, \ldots, v_{n}, u_{k}^{m}\right) } \\
& \leq-\sum_{k=1}^{n} \liminf _{m \rightarrow \infty} \psi_{k}\left(v_{1}, \ldots, v_{n}, u_{k}^{m}\right) \leq-\sum_{k=1}^{n} \psi_{k}\left(v_{1}, \ldots, v_{n}, u_{k}\right)=-\Psi(v, u)
\end{aligned}
$$

(c) Let $u, v^{1}, v^{2} \in X$ and $t \in(0,1)$. Keeping (H3)(d) in mind we deduce that

$$
\begin{aligned}
\Psi\left(t v^{1}+(1-t) v^{2}, u\right) & =\sum_{k=1}^{n} \psi_{k}\left(t v_{1}^{1}+(1-t) v_{1}^{2}, \ldots, t v_{n}^{1}+(1-t) v_{n}^{2}, u_{k}\right) \\
& \geq \sum_{k=1}^{n} t \psi_{k}\left(v_{1}^{1}, \ldots, v_{n}^{1}, u_{k}\right)+(1-t) \psi_{k}\left(v_{1}^{2}, \ldots, v_{n}^{2}, u_{k}\right) \\
& =t \Psi\left(v^{1}, u\right)+(1-t) \Psi\left(v^{2}, u\right)
\end{aligned}
$$

We have prove that the mapping $v \rightsquigarrow \Psi(v, u)$ is concave, hence the application $v \rightsquigarrow-\Psi(v, u)$ must be convex.

Proof of Theorem 3.3. Let us consider the set $\mathcal{A} \subset K \times K$ defined by

$$
\mathcal{A}=\left\{(v, u) \in K \times K:-\Psi(v, u)+J^{0}(\widehat{u} ; \widehat{v}-\widehat{u})-\langle F u, v-u\rangle_{X} \geq 0\right\} .
$$

Lemma 3.4 ensures that we can follow the same steps as in the proof of Theorem 3.1 to conclude that the conditions required in Lin's theorem are fulfilled. Thus we get the existence of an element $u^{0} \in K$ such that $K \times\left\{u^{0}\right\} \subset \mathcal{A}$ which is equivalent to

$$
\begin{equation*}
-\Psi\left(v, u^{0}\right)+J^{0}\left(\widehat{u}^{0} ; \widehat{v}-\widehat{u}^{0}\right) \geq\left\langle F u^{0}, v-u^{0}\right\rangle_{X} \quad \text { for all } v \in K \tag{3.1}
\end{equation*}
$$

On the other hand Lemma 3.4 tells us that

$$
\begin{equation*}
\Psi\left(u^{0}, v\right)+\Psi\left(v, u^{0}\right) \geq 0, \quad \text { for all } v \in K \tag{3.2}
\end{equation*}
$$

Combining relations (3.1) and (3.2) we deduce that u^{0} solves problem (VHI), therefore it is a solution of problem (SNHI).

Let us consider now the case when at least one of the subsets K_{k} is unbounded and either conditions (H1)-(H2) or (H2)-(H3) hold. We shall denote next by $B_{E}(0 ; R)$ the closed ball of the space E centered in the origin and of radius R, that is

$$
B_{E}(0 ; R)=\left\{v \in E:\|v\|_{E} \leq R\right\}
$$

Let $R>0$ be such that the set $K_{k, R}=K_{k} \cap B_{X_{k}}(0 ; R)$ is nonempty for every $k \in\{1, \ldots, n\}$. Then, for each $k \in\{1, \ldots, n\}$ the set $K_{k, R}$ is nonempty, bounded, closed and convex and according to Theorem 3.1 or Theorem 3.3 the following problem
(SR) Find $\left(u_{1}, \ldots, u_{n}\right) \in K_{1, R} \times \ldots \times K_{n, R}$ such that for all $\left(v_{1}, \ldots, v_{n}\right) \in$ $K_{1, R} \times \ldots \times K_{n, R}$

admits at least one solution.
We have the following existence result concerning the case of at least one unbounded subset.

Theorem 3.5. For each $k \in\{1, \ldots, n\}$ let $K_{k} \subset X_{k}$ be a nonempty, closed and convex set and assume that there exists at least one index $k_{0} \in\{1, \ldots, n\}$ such that $K_{k_{0}}$ is unbounded. Assume in addition that either (H1)-(H2) or (H2)(H3) hold. Then, the system of nonlinear hemivariational inequalities (SNHI) admits at least one solution if and only if the following condition holds true:
(H4) there exists $R>0$ such that $K_{k, R}$ is nonempty for every $k \in\{1, \ldots, n\}$ and at least one solution $\left(u_{1}^{0}, \ldots, u_{n}^{0}\right)$ of problem (SR) satisfies

$$
u_{k}^{0} \in \operatorname{int} B_{X_{k}}(0 ; R), \quad \text { for all } k \in\{1, \ldots, n\} .
$$

Proof. The necessity is obvious. In order to prove the sufficiency for each $k \in\{1, \ldots, n\}$ let us fix $v_{k} \in K_{k}$ and define the scalar

$$
\lambda_{k}= \begin{cases}\frac{1}{2} & \text { if } u_{k}^{0}=v_{k} \\ \min \left\{\frac{1}{2} ; \frac{R-\left\|u_{k}^{0}\right\|_{X_{k}}}{\left\|v_{k}-u_{k}^{0}\right\|_{X_{k}}}\right\} & \text { otherwise }\end{cases}
$$

Condition (H4) ensures that $\lambda_{k} \in(0,1)$, therefore $w_{\lambda_{k}}=u_{k}^{0}+\lambda_{k}\left(v_{k}-u_{k}^{0}\right)$ is an element of $K_{k, R}$ due to the convexity of the set K_{k}.

Case 1. (H1)-(H2) hold.
Using the fact $\left(u_{1}^{0}, \ldots, u_{n}^{0}\right)$ is a solution of (SR) for each $k \in\{1, \ldots, n\}$ we have:

$$
\begin{align*}
\psi_{k}\left(u_{1}^{0}, \ldots, u_{n}^{0}, w_{\lambda_{k}}\right)+J_{, k}^{0}\left(\widehat{u}_{1}^{0}, \ldots, \widehat{u}_{n}^{0} ;\right. & \left.\widehat{w}_{\lambda_{k}}-\widehat{u}_{k}^{0}\right) \tag{3.3}\\
& \geq\left\langle F_{k}\left(u_{1}^{0}, \ldots, u_{n}^{0}\right), w_{\lambda_{k}}-u_{k}^{0}\right\rangle_{X_{k}}
\end{align*}
$$

In this case relation (3.3) leads to

$$
\begin{aligned}
& \lambda_{k}\left\langle F_{k}\left(u_{1}^{0}, \ldots, u_{n}^{0}\right), v_{k}-u_{k}^{0}\right\rangle_{X_{k}}=\left\langle F_{k}\left(u_{1}^{0}, \ldots, u_{n}^{0}\right), w_{\lambda_{k}}-u_{k}^{0}\right\rangle_{X_{k}} \\
& \leq \lambda_{k} \psi_{k}\left(u_{1}^{0}, \ldots, u_{n}^{0}, v_{k}\right)+\left(1-\lambda_{k}\right) \psi_{k}\left(u_{1}^{0}, \ldots, u_{n}^{0}, u_{k}^{0}\right) \\
& \quad+\lambda_{k} J_{, k}^{0}\left(\widehat{u}_{1}^{0}, \ldots, \widehat{u}_{n}^{0} ; \widehat{v}_{k}-\widehat{u}_{k}^{0}\right) \\
&= \lambda_{k}\left[\psi_{k}\left(u_{1}^{0}, \ldots, u_{n}^{0}, v_{k}\right)+J_{, k}^{0}\left(\widehat{u}_{1}^{0}, \ldots, \widehat{u}_{n}^{0} ; \widehat{v}_{k}-\widehat{u}_{k}^{0}\right)\right] .
\end{aligned}
$$

Dividing by λ_{k} the above inequality and taking into account that $v_{k} \in K_{k}$ was arbitrary fixed we conclude that $\left(u_{1}^{0}, \ldots, u_{n}^{0}\right)$ is a solution of (SNHI).

Case 2. (H2)-(H3) hold.
Theorem 3.3 ensures that (see (3.1)):
$-\Psi\left(w, u^{0}\right)+J^{0}\left(\widehat{u}^{0} ; \widehat{w}-u^{0}\right) \geq\left\langle F u^{0}, w-u^{0}\right\rangle, \quad$ for all $w \in K_{R}=K_{1, R} \times \ldots \times K_{n, R}$.
Choosing $w_{k}=w_{\lambda_{k}}$ and $w_{j}=u_{j}^{0}$ for $j \neq k$ in the above relation we obtain

$$
\begin{aligned}
& \lambda_{k}\left\langle F_{k}\left(u_{1}^{0}, \ldots, u_{n}^{0}\right), v_{k}-u_{k}^{0}\right\rangle_{X_{k}} \\
&=\left\langle F_{k}\left(u_{1}^{0}, \ldots, u_{n}^{0}\right), w_{\lambda_{k}}-u_{k}^{0}\right\rangle_{X_{k}}=\sum_{j=1}^{n}\left\langle F_{k}\left(u_{1}^{0}, \ldots, u_{n}^{0}\right), w_{j}-u_{j}^{0}\right\rangle_{X_{k}} \\
&=\left\langle F u^{0}, w-u^{0}\right\rangle_{X} \leq-\Psi\left(w, u^{0}\right)+J^{0}\left(\widehat{u}^{0} ; \widehat{w}-\widehat{u}^{0}\right) \\
&=-\sum_{j=1}^{n} \psi_{j}\left(w_{1}, \ldots, w_{j}, \ldots, w_{n}, u_{j}^{0}\right)+\sum_{j=1}^{n} J_{, j}^{0}\left(\widehat{u}_{1}^{0}, \ldots, \widehat{u}_{n}^{0} ; \widehat{w}_{j}-\widehat{u}_{j}^{0}\right) \\
&=-\psi_{k}\left(u_{1}^{0}, \ldots, w_{\lambda_{k}}, \ldots, u_{n}^{0}, u_{k}^{0}\right)+J_{, k}^{0}\left(\widehat{u}_{1}^{0}, \ldots, \widehat{u}_{n}^{0} ; \widehat{w}_{\lambda_{k}}-\widehat{u}_{k}^{0}\right) \\
& \leq-\lambda_{k} \psi_{k}\left(u_{1}^{0}, \ldots, v_{k}, \ldots, u_{n}^{0}, u_{k}^{0}\right)-\left(1-\lambda_{k}\right) \psi_{k}\left(u_{1}^{0}, \ldots, u_{k}^{0}, \ldots, u_{n}^{0}, u_{k}^{0}\right) \\
&+\lambda_{k} J_{, k}^{0}\left(\widehat{u}_{1}^{0}, \ldots, \widehat{u}_{n}^{0} ; \widehat{v}_{k}-\widehat{u}_{k}^{0}\right) \\
& \leq \lambda_{k}\left[-\psi_{k}\left(u_{1}^{0}, \ldots, v_{k}, \ldots, u_{n}^{0}, u_{k}^{0}\right)+J_{, k}^{0}\left(\widehat{u}_{1}^{0}, \ldots, \widehat{u}_{n}^{0} ; \widehat{v}_{k}-\widehat{u}_{k}^{0}\right)\right] .
\end{aligned}
$$

Dividing by λ_{k} we obtain that

$$
\begin{aligned}
&-\psi_{k}\left(u_{1}^{0}, \ldots, v_{k}, \ldots, u_{n}^{0}, u_{k}^{0}\right)+J_{, k}^{0}\left(\widehat{u}_{1}^{0}, \ldots, \widehat{u}_{n}^{0} ; \widehat{v}_{k}-\widehat{u}_{k}^{0}\right) \\
& \geq\left\langle F_{k}\left(u_{1}^{0}, \ldots, u_{n}^{0}\right), v_{k}-u_{k}^{0}\right\rangle_{X_{k}} .
\end{aligned}
$$

Combining the above inequality and (H3)(b) we deduce the for each $k \in\{1, \ldots, n\}$ the following inequality takes place:

$$
\begin{aligned}
& \psi_{k}\left(u_{1}^{0}, \ldots, u_{k}^{0}, \ldots, u_{n}^{0}, v_{k}\right)+J_{, k}^{0}\left(\widehat{u}_{1}^{0}, \ldots, \widehat{u}_{n}^{0} ; \widehat{v}_{k}-\widehat{u}_{k}^{0}\right) \\
& \geq\left\langle F_{k}\left(u_{1}^{0}, \ldots, u_{n}^{0}\right), v_{k}-u_{k}^{0}\right\rangle_{X_{k}}
\end{aligned}
$$

which means that $\left(u_{1}^{0}, \ldots, u_{n}^{0}\right)$ is a solution of (SNHI), since $v_{k} \in K_{k}$ was arbitrary fixed.

Corollary 3.6. For each $k \in\{1, \ldots, n\}$ let $K_{k} \subset X_{k}$ be a nonempty, closed and convex set and assume that there exists at least one index $k_{0} \in$ $\{1, \ldots, n\}$ such that $K_{k_{0}}$ is unbounded. Assume in addition that either (H1)(H2) or (H2)-(H3) hold. Then, a sufficient condition for (SNHI) to admit at least one solution is
(H5) there exists $R_{0}>0$ such that $K_{k, R_{0}}$ is nonempty for every $k \in\{1, \ldots, n\}$ and for each $\left(u_{1}, \ldots, u_{n}\right) \in K_{1} \times \ldots \times K_{n} \backslash K_{1, R_{0}} \times \ldots \times K_{n, R_{0}}$ there exists $\left(v_{1}^{0}, \ldots, v_{n}^{0}\right) \in K_{1, R_{0}} \times \ldots \times K_{n, R_{0}}$ such that

$$
\begin{equation*}
\psi_{k}\left(u_{1}, \ldots, u_{n}, v_{k}^{0}\right)+J_{, k}^{0}\left(\widehat{u}_{1}, \ldots, \widehat{u}_{n} ; \widehat{v}_{k}^{0}-\widehat{u}_{k}\right)<\left\langle F_{k}\left(u_{1}, \ldots, u_{n}\right), v_{k}^{0}-u_{k}\right\rangle_{X_{k}} \tag{3.4}
\end{equation*}
$$

for all $k \in\{1, \ldots, n\}$.
Proof. Let us fix $R>R_{0}$. According to Theorem 3.1 or Theorem 3.3 problem (SR) admits at least one solution. Let $\left(u_{1}, \ldots, u_{n}\right) \in K_{1, R} \times \ldots \times K_{n, R}$ be a solution of (SR). We shall prove that $\left(u_{1}, \ldots, u_{n}\right)$ also solves (SNHI).

Case 1. $u_{k} \in \operatorname{int} B_{X_{k}}(0, R)$ for all $k \in\{1, \ldots, n\}$.
In this case we have nothing to prove as Theorem 3.5 ensures that $\left(u_{1}, \ldots, u_{n}\right)$ is a solution of (SNHI).

Case 2. There exists at least one index $j_{0} \in\{1, \ldots, n\}$ such that $u_{j_{0}} \notin$ $\operatorname{int} B_{X_{j_{0}}}(0, R)$.

In this case $\left\|u_{j_{0}}\right\|_{X_{j_{0}}}=R>R_{0}$, therefore $\left(u_{1}, \ldots, u_{n}\right) \notin K_{1, R_{0}} \times \ldots \times K_{n, R_{0}}$ and according to (H5) there exist $\left(v_{1}^{0}, \ldots, v_{n}^{0}\right) \in K_{1, R_{0}} \times \ldots \times K_{n, R_{0}}$ such that (3.4) holds.

For each $k \in\{1, \ldots, n\}$ let us fix $v_{k} \in K_{k}$ and define the scalar

$$
\lambda_{k}= \begin{cases}\frac{1}{2} & \text { if } v_{k}=v_{k}^{0} \\ \min \left\{\frac{1}{2}, \frac{R-R_{0}}{\left\|v_{k}-v_{k}^{0}\right\|_{X_{k}}}\right\} & \text { otherwise }\end{cases}
$$

Obviously $\lambda_{k} \in(0,1)$ and $w_{\lambda_{k}}=v_{k}^{0}+\lambda_{k}\left(v_{k}-v_{k}^{0}\right) \in K_{k, R}$. Furthermore, we observe that
$w_{\lambda_{k}}-u_{k}=v_{k}^{0}-u_{k}+\lambda_{k} v_{k}-\lambda_{k} v_{k}^{0}+\lambda_{k} u_{k}-\lambda_{k} u_{k}=\lambda_{k}\left(v_{k}-u_{k}\right)+\left(1-\lambda_{k}\right)\left(v_{k}^{0}-u_{k}\right)$.

Case 2.1. (H1)-(H2) hold.
Using the fact that $\left(u_{1}, \ldots, u_{n}\right)$ solves (SR) we obtain the following estimates:

$$
\begin{aligned}
\left\langle F_{k}\left(u_{1}, \ldots, u_{n}\right)\right. & \left., w_{\lambda_{k}}-u_{k}\right\rangle=\lambda_{k}\left\langle F_{k}\left(u_{1}, \ldots, u_{n}\right), v_{k}-u_{k}\right\rangle_{X_{k}} \\
& +\left(1-\lambda_{k}\right)\left\langle F_{k}\left(u_{1}, \ldots, u_{n}\right), v_{k}^{0}-u_{k}\right\rangle_{X_{k}} \\
\leq & \psi_{k}\left(u_{1}, \ldots, u_{n}, w_{\lambda_{k}}\right)+J_{, k}^{0}\left(\widehat{u}_{1}, \ldots, \widehat{u}_{n} ; \widehat{w}_{\lambda_{k}}-\widehat{u}_{k}\right) \\
\leq & \lambda_{k}\left[\psi_{k}\left(u_{1}, \ldots, u_{n}, v_{k}\right)+J_{, k}^{0}\left(\widehat{u}_{1}, \ldots, \widehat{u}_{n} ; \widehat{v}_{k}-\widehat{u}_{k}\right)\right] \\
& +\left(1-\lambda_{k}\right)\left[\psi_{k}\left(u_{1}, \ldots, u_{n}, v_{k}^{0}\right)+J_{, k}^{0}\left(\widehat{u}_{1}, \ldots, \widehat{u}_{n} ; \widehat{v}_{k}^{0}-\widehat{u}_{k}\right)\right]
\end{aligned}
$$

Combining the above relation and (3.4) we obtain that

$$
\left.F_{k}\left(u_{1}, \ldots, u_{n}\right), v_{k}-u_{k}\right\rangle_{X_{k}} \leq \psi_{k}\left(u_{1}, \ldots, u_{n}, v_{k}\right)+J_{, k}^{0}\left(\widehat{u}_{1}, \ldots, \widehat{u}_{n} ; v_{k}-u_{k}\right)
$$

for all $k \in\{1, \ldots, n\}$, which means that $\left(u_{1}, \ldots, u_{n}\right)$ is a solution of (SNHI).
Case 2.2. (H2)-(H3) hold.
The fact that $\left(u_{1}, \ldots, u_{n}\right)$ solves (SR) and relation (3.1) allow us to conclude that
$-\Psi(w, u)+J^{0}(\widehat{u}, \widehat{w}-\widehat{u}) \geq\langle F u, w-u\rangle_{X}, \quad$ for all $w \in K_{R}=K_{1, R} \times \ldots \times K_{n, R}$.
Choosing $w_{k}=w_{\lambda_{k}}$ and $w_{j}=u_{j}$ for $j \neq k$ in the above relation and using (H3)(d) we obtain:

$$
\begin{aligned}
\langle & \left.F_{k}\left(u_{1}, \ldots, u_{n}\right), w_{\lambda_{k}}-u_{k}\right\rangle_{X_{k}} \\
= & \lambda_{k}\left\langle F_{k}\left(u_{1}, \ldots, u_{n}\right), v_{k}-u_{k}\right\rangle_{X_{k}}+\left(1-\lambda_{k}\right)\left\langle F_{k}\left(u_{1}, \ldots, u_{n}\right), v_{k}^{0}-u_{k}\right\rangle_{X_{k}} \\
= & \sum_{j=1}^{n}\left\langle F_{k}\left(u_{1}, \ldots, u_{n}\right), w_{j}-u_{j}\right\rangle_{X_{k}}=\langle F u, w-u\rangle \leq-\Psi(w, u)+J^{0}(\widehat{u} ; \widehat{w}-\widehat{u}) \\
= & -\sum_{j=1}^{n} \psi_{j}\left(w_{1}, \ldots, w_{j}, \ldots, w_{n}, u_{j}\right)+\sum_{j=1}^{n} J_{, j}^{0}\left(\widehat{u}_{1}, \ldots, \widehat{u}_{n} ; \widehat{w}_{j}-\widehat{u}_{j}\right) \\
= & \left.-\psi_{k}\left(u_{1}, \ldots, w_{\lambda_{k}}, \ldots, u_{n}, u_{k}\right)\right)+J_{, k}^{0}\left(\widehat{u}_{1}, \ldots, \widehat{u}_{n} ; \widehat{w}_{\lambda_{k}}-\widehat{u}_{k}\right) \\
\leq & -\lambda_{k} \psi_{k}\left(u_{1}, \ldots, v_{k}, \ldots, u_{n}, u_{k}\right)-\left(1-\lambda_{k}\right) \psi_{k}\left(u_{1}, \ldots, v_{k}^{0}, \ldots, u_{n}, u_{k}\right) \\
& +\lambda_{k} J_{, k}^{0}\left(\widehat{u}_{1}, \ldots, \widehat{u}_{n} ; \widehat{v}_{k}-\widehat{u}_{k}\right)+\left(1-\lambda_{k}\right) J^{0}\left(\widehat{u}_{1}, \ldots, \widehat{u}_{n} ; \widehat{v}_{k}^{0}-\widehat{u}_{k}\right) .
\end{aligned}
$$

Using (H3)(b) and (3.4) we deduce that

$$
\left.F_{k}\left(u_{1}, \ldots, u_{n}\right), v_{k}-u_{k}\right\rangle_{X_{k}} \leq \psi_{k}\left(u_{1}, \ldots, u_{n}, v_{k}\right)+J_{, k}^{0}\left(\widehat{u}_{1}, \ldots, \widehat{u}_{n} ; v_{k}-u_{k}\right)
$$

for all $k \in\{1, \ldots, n\}$, which means that $\left(u_{1}, \ldots, u_{n}\right)$ is a solution of (SNHI).
In order to simplify some computations let us assume next that $0 \in K_{k}$ for each $k \in\{1, \ldots, n\}$. In this case $K_{k, R} \neq \emptyset$ for every $k \in\{1, \ldots, n\}$ and every $R>0$.

Corollary 3.7. For each $k \in\{1, \ldots, n\}$ let $K_{k} \subset X_{k}$ be a nonempty, closed and convex set and assume that there exists at least one index $k_{0} \in$ $\{1, \ldots, n\}$ such that $K_{k_{0}}$ is unbounded and either $(\mathrm{H} 1)-(\mathrm{H} 2)$ or $(\mathrm{H} 2)-(\mathrm{H} 3)$ hold. Assume in addition that for each $k \in\{1, \ldots, n\}$ the following conditions hold:
(H6) There exists a function $c: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$with the property that $\lim _{t \rightarrow \infty} c(t)=$ $+\infty$ such that

$$
-\sum_{k=1}^{n} \psi_{k}\left(u_{1}, \ldots, u_{k}, \ldots, u_{n}, 0\right) \geq c\left(\|u\|_{X}\right)\|u\|_{X}
$$

for all $\left(u_{1}, \ldots, u_{n}\right) \in X_{1} \times \ldots \times X_{n}$, where $u=\left(u_{1}, \ldots, u_{k}, \ldots, u_{n}\right)$ and

$$
\|u\|_{X}=\left(\sum_{k=1}^{n}\left\|u_{k}\right\|_{X_{k}}^{2}\right)^{1 / 2}
$$

(H7) There exists $M_{k}>0$ such that

$$
J_{, k}^{0}\left(w_{1}, \ldots, w_{k}, \ldots, w_{n} ;-w_{k}\right) \leq M_{k}\left\|w_{k}\right\|_{Y_{k}}
$$

$$
\text { for all }\left(w_{1}, \ldots, w_{n}\right) \in Y_{1} \times \ldots \times Y_{n}
$$

(H8) There exists $m_{k}>0$ such that

$$
\left\|F_{k}\left(u_{1}, \ldots, u_{k}, \ldots, u_{n}\right)\right\|_{X_{k}^{*}} \leq m_{k}, \quad \text { for all }\left(u_{1}, \ldots, u_{n}\right) \in X_{1} \times \ldots \times X_{n}
$$

Then the system (SNHI) admits at least one solution.
Proof. For each $R>0$ Theorem 3.1 (or Theorem 3.3) enables us to conclude that there exists a solution $\left(u_{1 R}, \ldots, u_{n R}\right) \in K_{1, R} \times \ldots \times K_{n, R}$ of problem (SR). We shall prove that there exists $R_{0}>0$ such that

$$
u_{k R_{0}} \in \operatorname{int} B_{X_{k}}\left(0 ; R_{0}\right), \quad \text { for all } k \in\{1, \ldots, n\},
$$

which, according to Theorem 3.5, means that $\left(u_{1 R_{0}}, \ldots, u_{n R_{0}}\right)$ is a solution of the system (SNHI).

Arguing by contradiction let us assume that for each $R>0$ there exists at least one index $j_{0} \in\{1, \ldots, n\}$ such that $u_{j_{0} R} \notin \operatorname{int} B_{X_{j_{0}}}(0, R)$, therefore $\left\|u_{j_{0} R}\right\|_{X_{j_{0}}}=R$. Using the fact that $\left(u_{1 R}, \ldots, u_{n R}\right)$ solves (SR) we conclude that for each $k \in\{1, \ldots, n\}$ the following inequality holds

$$
\begin{align*}
\psi_{k}\left(u_{1 R}, \ldots, u_{n R}, v_{k}\right)+J_{, k}^{0}\left(\widehat{u}_{1 R}, \ldots,\right. & \left.\widehat{u}_{n R} ; \widehat{v}_{k}-\widehat{u}_{k R}\right) \tag{3.5}\\
& \geq\left\langle F_{k}\left(u_{1 R}, \ldots, u_{n R}\right), v_{k}-u_{k R}\right\rangle_{X_{k}}
\end{align*}
$$

for all $v_{k} \in K_{k, R}$.

Taking $v_{k}=0$ in (3.5), summing and using (H6)-(H8) we have

$$
\begin{aligned}
& c\left(\|u\|_{X}\right)\|u\|_{X} \leq-\sum_{k=1}^{n} \psi_{k}\left(u_{1 R}, \ldots, u_{j_{0} R}, \ldots, u_{n R}, 0\right) \\
& \quad \leq \sum_{k=1}^{n}\left[\left\langle F_{k}\left(u_{1 R}, \ldots, u_{n R}\right), u_{k R}\right\rangle_{X_{k}}+J_{, k}^{0}\left(\widehat{u}_{1 R}, \ldots, \widehat{u}_{k}, \ldots, \widehat{u}_{n R} ;-\widehat{u}_{k}\right)\right] \\
& \quad \leq \sum_{k=1}^{n}\left(\left\|F_{k}\left(u_{1 R}, \ldots, u_{n R}\right)\right\|_{X_{k}^{*}}\left\|u_{k}\right\|_{X_{k}}+M_{k}\left\|\widehat{u}_{k R}\right\|_{Y_{k}}\right) \\
& \quad \leq \sum_{k=1}^{n}\left[\left(m_{k}+M_{k}\left\|T_{k}\right\|\right)\left\|u_{k R}\right\|_{X_{k}}\right] \leq C\|u\|_{X} .
\end{aligned}
$$

Dividing by $\|u\|_{X}$ and letting $R \rightarrow+\infty$ we obtain a contradiction since the lefthand term of the inequality is unbounded while the the right-hand term remains bounded.

4. Applications

4.1. Nonlinear hemivariational inequalities. Let us consider X, Y to be real reflexive Banach spaces such that there exists a linear and compact operator $T: X \rightarrow Y$. If K is a nonempty closed subset of X and $n=1$, then the system (SNHI) reduces to the following nonlinear hemivariational inequality:
$\left(\mathcal{P}_{\psi}\right)$ Find $u \in K$ such that

$$
\psi(u, v)+J^{0}(\widehat{u} ; \widehat{v}-\widehat{u}) \geq\langle F u, v-u\rangle_{X}, \quad \text { for all } v \in K
$$

4.1.1. Let us consider $\Omega \subseteq \mathbb{R}^{k}(k \geq 1)$ to be open, bounded with smooth boundary and assume that X is compactly embedded in $L^{q}\left(\Omega ; \mathbb{R}^{k}\right)$ for some $q \in(1,+\infty)$. Let us assume in addition that the following conditions hold
$\mathcal{H}_{1}(j) j: \Omega \times \mathbb{R}^{k} \rightarrow \mathbb{R}$ is a functional which satisfies:
(a) $x \rightsquigarrow j(x, y)$ is measurable, for every $y \in \mathbb{R}^{k}$;
(b) either there exists $\alpha \in L^{q /(q-1)}\left(\Omega ; \mathbb{R}^{k}\right)$ such that

$$
\left|j\left(x, v_{1}\right)-j\left(x, v_{2}\right)\right| \leq \alpha(x)\left|v_{1}-v_{2}\right|
$$

for almost every $x \in \Omega$ and every $v_{1}, v_{2} \in \mathbb{R}^{k}$;
or $y \rightsquigarrow j(x, y)$ is locally Lipschitz for almost every $x \in \Omega$ and there exists $c>0$ such that

$$
\left|\partial_{2} j(x, y)\right| \leq c\left(1+|y|^{q-1}\right)
$$

for almost every $x \in \Omega$ and every $y \in \mathbb{R}^{k}$;
(c) $y \rightsquigarrow j(x, y)$ is regular for almost every $x \in \Omega$.

Choosing $Y=L^{q}\left(\Omega ; \mathbb{R}^{k}\right), T=i$ (here i is the embedding operator between X and $\left.L^{q}\left(\Omega ; \mathbb{R}^{k}\right)\right)$, $F u=f\left(f \in X^{*}\right)$ for all $u \in X$ and $J: L^{q}\left(\Omega ; \mathbb{R}^{k}\right) \rightarrow \mathbb{R}$ defined by

$$
J(w)=\int_{\Omega} j(x, w(x)) d x
$$

our inequality $\left(\mathcal{P}_{\psi}\right)$ becomes
$\left(\mathcal{P}_{\psi}^{1}\right)$ Find $u \in K$ such that

$$
\psi(u, v)+\int_{\Omega} j_{, 2}^{0}(x, \widehat{u}(x) ; \widehat{v}(x)-\widehat{u}(x)) d x \geq\langle f, v-u\rangle_{X} \quad \text { for all } v \in K
$$

This kind of hemivariational inequalities being studied by Costea and Rădulescu in [12]. Comparing our results with the ones obtained by Costea and Rădulescu we observe that Corollary 3.6 extends Theorem 3 from [12] while Theorem 3.3 extends Theorem 4 from [12].

Remark 4.1. It can be proved that problem (\mathcal{P}_{ψ}^{1}) admits solutions even in the case when $\Omega \subseteq \mathbb{R}^{k}$ is unbounded. In this case we need to replace $\mathcal{H}_{1}(j)$ with an appropriate condition which ensures the existence of the integral term $\int_{\Omega} j_{, 2}^{0}(x, \widehat{u}(x) ; \widehat{v}(x)-\widehat{u}(x)) d x$ (see e.g. the work of Kristály and Varga [20] or Lisei et al. [22]).
4.1.2. Let us consider (T, μ) to be a measure space of finite and positive measure and assume that X is compactly embedded in $L^{q}(T)$ for some $q \in$ $(1,+\infty)$. Assume in addition that the following conditions hold true:
$\mathcal{H}_{2}(j) j: T \times \mathbb{R} \rightarrow \mathbb{R}$ is a functional which satisfies:
(a) $x \rightsquigarrow j(x, y)$ is measurable, for every $y \in \mathbb{R}$;
(b) either there exists $\beta \in L^{q /(q-1)}\left(T ; \mathbb{R}^{k}\right)$ such that

$$
\left|j\left(x, v_{1}\right)-j\left(x, v_{2}\right)\right| \leq \beta(x)\left|v_{1}-v_{2}\right|,
$$

for almost every $x \in T$ and every $v_{1}, v_{2} \in \mathbb{R}$, or $y \rightsquigarrow j(x, y)$ is locally Lipschitz for almost every $x \in T$ and there exists $c>0$ such that

$$
\left|\partial_{2} j(x, y)\right| \leq c\left(1+|y|^{q-1}\right)
$$

for almost every $x \in T$ and every $y \in \mathbb{R}$;
(c) $y \rightsquigarrow j(x, y)$ is regular for almost every $x \in T$.
$\mathcal{H}(f) f: T \times \mathbb{R} \rightarrow \mathbb{R}$ is a functional such that:
(a) $x \rightsquigarrow f(x, y)$ is measurable for every $y \in \mathbb{R}$;
(b) $y \rightsquigarrow f(x, y)$ is continuous for almost every $x \in T$;
(c) there exists $\gamma_{1} \in L^{q /(q-1)}(T)$ and $\gamma_{2} \in L^{\infty}(T)$ such that:

$$
|f(x, y)| \leq \gamma_{1}(x)+\gamma_{2}(x)|y|^{q-1}
$$

for almost every $x \in T$ and every $y \in \mathbb{R}$.

Choosing $Y=L^{q}(T), T=i$ (where $i: X \rightarrow L^{q}(T)$ is the embedding operator), $F: X \rightarrow X^{*}$ defined by

$$
\langle F u, v\rangle_{X}=\int_{T} f(x, u(x)) v(x) d \mu
$$

and $J: L^{q}(T) \rightarrow \mathbb{R}$ defined by

$$
J(w)=\int_{T} j(x, w(x)) d \mu
$$

our inequality $\left(\mathcal{P}_{\psi}\right)$ becomes:
$\left(\mathcal{P}_{\psi}^{2}\right)$ Find $u \in K$ such that

$$
\psi(u, v)+\int_{T} j_{, 2}^{0}(x, u(x) ; v(x)-u(x)) d \mu \geq \int_{T} f(x, u(x))(v(x)-u(x)) d \mu
$$

The above inequality is similar to the one studied by Andrei and Costea in [1] in the case $h(x, y)=1$ for all $x \in T$ and $y \in \mathbb{R}$. Comparing the results we observe that Theorem 3.1 extends Theorem 2.1 from [1], Theorem 3.4 extends Theorem 2.2 from [1] while Corollary 3.7 extends Theorem 2.3 from [1].
4.2. Existence of Nash generalized derivative points. Let E_{1}, \ldots, E_{n} be Banach spaces and for each $k \in\{1, \ldots, n\}$ let K_{k} be a nonempty subset of E_{k}. We also assume that $g_{k}: K_{1} \times \ldots \times K_{k} \times \ldots \times K_{n} \rightarrow \mathbb{R}$ are given functionals. We recall below the notion of Nash equilibrium point (see [30], [31]).

Definition 4.2. An element $\left(u_{1}, \ldots, u_{k}, \ldots, u_{n}\right) \in K_{1} \times \ldots \times K_{k} \times \ldots \times K_{n}$ is a Nash equilibrium point for the functionals $g_{1}, \ldots, g_{k}, \ldots, g_{n}$, if for every $k \in\{1, \ldots, n\}$ and every $\left(v_{1}, \ldots, v_{k}, \ldots, v_{n}\right) \in K_{1} \times \ldots \times K_{k} \times \ldots \times K_{n}$ we have

$$
g_{k}\left(u_{1}, \ldots, v_{k}, \ldots, u_{n}\right) \geq g_{k}\left(u_{1}, \ldots, u_{k}, \ldots, u_{n}\right)
$$

Let $D_{k} \subset E_{k}$ be an open set such that $K_{k} \subset D_{k}$ for all $k \in\{1, \ldots, n\}$. For each $k \in\{1, \ldots, n\}$ we consider the functional $g_{k}: K_{1} \times \ldots \times D_{k} \times \ldots \times K_{n} \rightarrow \mathbb{R}$ such that $u_{k} \rightsquigarrow g_{k}\left(u_{1}, \ldots, u_{k}, \ldots, u_{n}\right)$ is locally Lipschitz. The following notion was introduced by Kristály in [18].

Definition 4.3. An element $\left(u_{1}, \ldots, u_{k}, \ldots, u_{n}\right) \in K_{1} \times \ldots \times K_{k} \times \ldots \times K_{n}$ is a Nash generalized derivative point for the functionals $g_{1}, \ldots, g_{k}, \ldots, g_{n}$ if for every $k \in\{1, \ldots, n\}$ and every $\left(v_{1}, \ldots, v_{k}, \ldots, v_{n}\right) \in K_{1} \times \ldots \times K_{k} \times \ldots \times K_{n}$ we have

$$
g_{k, k}^{0}\left(u_{1}, \ldots, u_{k}, \ldots, u_{n} ; v_{k}-u_{k}\right) \geq 0
$$

We point out the fact that the above definition coincides with the notion of Nash stationary point introduced by Kassay, Kolumbán and Páles in [16] if every functional g_{k} is differentiable with respect to the $k^{\text {th }}$ variable. Moreover, every Nash equilibrium point a Nash generalized derivative point.
4.2.1. For each $k \in\{1, \ldots, n\}$ let $D_{k} \subseteq X_{k}$ be an open and consider the functional $g_{k}: K_{1} \times \ldots \times D_{k} \times \ldots \times K_{n} \rightarrow \mathbb{R}$ such that g_{k} is locally Lipschitz with respect to the $k^{\text {th }}$ variable and for each $v_{k} \in X_{k}$ the mapping $\left(u_{1}, \ldots, u_{k}, \ldots, u_{n}\right) \rightsquigarrow g_{k, k}^{0}\left(u_{1}, \ldots, u_{k}, \ldots, u_{n} ; v_{k}\right)$ is weakly upper semicontinuous. Let us choose next $\psi_{k}\left(u_{1}, \ldots, u_{k}, \ldots, u_{n}, v_{k}\right)=g_{k, k}^{0}\left(u_{1}, \ldots, u_{k}, \ldots, u_{n}\right.$; $\left.v_{k}-u_{k}\right), J \equiv 0, F_{k} \equiv 0$.
(a) If for each $k \in\{1, \ldots, n\}$ the set $K_{k} \subset X_{k}$ is nonempty, bounded, closed and convex, then Theorem 3.1 implies that there exists at least one point $\left(u_{1}^{0}, \ldots, u_{k}^{0}, \ldots, u_{n}^{0}\right) \in K_{1} \times \ldots \times K_{k} \times \ldots \times K_{n}$ such that for all $\left(v_{1}, \ldots, v_{k}, \ldots, v_{n}\right)$ $\in K_{1} \times \ldots \times K_{k} \times \ldots \times K_{n}$ we have

$$
g_{k, k}^{0}\left(u_{1}^{0}, \ldots, u_{k}^{0}, \ldots, u_{n}^{0} ; v_{k}-u_{k}^{0}\right) \geq 0, \quad \text { for all } k \in\{1, \ldots, n\}
$$

that is, $\left(u_{1}^{0}, \ldots, u_{k}^{0}, \ldots, u_{n}^{0}\right) \in K_{1} \times \ldots \times K_{k} \times \ldots \times K_{n}$ is a Nash generalized derivative point for the functionals $g_{1}, \ldots, g_{k}, \ldots g_{n}$.
(b) Let us assume now that the sets K_{k} are nonempty, closed and convex and at least one of them is unbounded. Assume in addition that there exists $R_{0}>0$ such that $K_{k, R_{0}}$ is nonempty for every $k \in\{1, \ldots, n\}$ and for each $\left(u_{1}, \ldots, u_{k}, \ldots, u_{n}\right) \in K_{1} \times \ldots \times K_{k} \times \ldots \times K_{n} \backslash K_{1, R_{0}} \times \ldots \times K_{k, R_{0}} \times \ldots \times K_{n, R_{0}}$ there exists $\left(v_{1}^{0}, \ldots, v_{k}^{0}, \ldots, v_{n}^{0}\right) \in K_{1, R_{0}} \times \ldots \times K_{k, R_{0}} \times \ldots \times K_{n, R_{0}}$ such that

$$
g_{k, k}^{0}\left(u_{1}, \ldots, u_{k}, \ldots, u_{n} ; v_{k}^{0}-\widehat{u}_{k}\right)<0, \text { for all } k \in\{1, \ldots, n\}
$$

Then, according to Corollary 3.6, there exists at least one point $\left(u_{1}^{0}, \ldots, u_{k}^{0}, \ldots\right.$, $\left.u_{n}^{0}\right) \in K_{1} \times \ldots \times K_{k} \times \ldots \times K_{n}$ such that for all $\left(v_{1}, \ldots, v_{k}, \ldots, v_{n}\right) \in K_{1} \times$ $\ldots \times K_{k} \times \ldots \times K_{n}$ we have

$$
g_{k, k}^{0}\left(u_{1}^{0}, \ldots, u_{k}^{0}, \ldots, u_{n}^{0} ; v_{k}-u_{k}^{0}\right) \geq 0, \quad \text { for all } k \in\{1, \ldots, n\}
$$

which means that $\left(u_{1}^{0}, \ldots, u_{k}^{0}, \ldots, u_{n}^{0}\right) \in K_{1} \times \ldots \times K_{k} \times \ldots \times K_{n}$ is a Nash generalized derivative point for the functionals $g_{1}, \ldots, g_{k}, \ldots, g_{n}$.
(c) Let us assume now that the sets K_{k} are nonempty, closed and convex and at least one of them is unbounded. Assume in addition that there exists a function $c: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$with the property that $\lim _{t \rightarrow \infty} c(t)=+\infty$ such that

$$
-\sum_{k=1}^{n} g_{k, k}^{0}\left(u_{1}, \ldots, u_{k}, \ldots, u_{n} ;-u_{k}\right) \geq c\left(\|u\|_{X}\right)\|u\|_{X}
$$

for all $\left(u_{1}, \ldots, u_{n}\right) \in K_{1} \times \ldots \times K_{n}$. Then, according to Corollary 3.7, there exists at least one point $\left(u_{1}^{0}, \ldots, u_{k}^{0}, \ldots, u_{n}^{0}\right) \in K_{1} \times \ldots \times K_{k} \times \ldots \times K_{n}$ such that for all $\left(v_{1}, \ldots, v_{k}, \ldots, v_{n}\right) \in K_{1} \times \ldots \times K_{k} \times \ldots \times K_{n}$ we have

$$
g_{k, k}^{0}\left(u_{1}^{0}, \ldots, u_{k}^{0}, \ldots, u_{n}^{0} ; v_{k}-u_{k}^{0}\right) \geq 0, \quad \text { for all } k \in\{1, \ldots, n\}
$$

which means that $\left(u_{1}^{0}, \ldots, u_{k}^{0}, \ldots, u_{n}^{0}\right) \in K_{1} \times \ldots \times K_{k} \times \ldots \times K_{n}$ is a Nash generalized derivative point for the functionals $g_{1}, \ldots, g_{k}, \ldots g_{n}$.
4.2.2. Let us consider that for each $k \in\{1, \ldots, n\}$ we have $\psi_{k} \equiv 0, J \equiv 0$ and $F_{k}: X_{1} \times \ldots \times X_{k} \times \ldots \times X_{n} \rightarrow X_{k}^{*}$ a nonlinear operator such that (H2) holds.
(a) For each $k \in\{1, \ldots, n\}$ we assume that the set $K_{k} \subset X_{k}$ is nonempty, bounded, closed and convex. Then Theorem 3.1 implies that there exists at least one point $\left(u_{1}^{0}, \ldots, u_{k}^{0}, \ldots, u_{n}^{0}\right) \in K_{1} \times \ldots \times K_{k} \times \ldots \times K_{n}$ such that for all $\left(v_{1}, \ldots, v_{k}, \ldots, v_{n}\right) \in K_{1} \times \ldots \times K_{k} \times \ldots \times K_{n}$ we have

$$
-\left\langle F_{k}\left(u_{1}^{0}, \ldots, u_{k}^{0}, \ldots, u_{n}^{0}\right), v_{k}-u_{k}^{0}\right\rangle_{X_{k}} \geq 0, \quad \text { for all } k \in\{1, \ldots, n\}
$$

which means that $\left(u_{1}^{0}, \ldots, u_{k}^{0}, \ldots, u_{n}^{0}\right) \in K_{1} \times \ldots \times K_{k} \times \ldots \times K_{n}$ is a Nash stationary point for the functionals $g_{1}, \ldots, g_{k}, \ldots, g_{n}$, where $g_{k}: K_{1} \times \ldots \times X_{k} \times$ $\ldots \times K_{n} \rightarrow \mathbb{R}$ is differentiable with respect to the $k^{t h}$ variable and $g_{k, k}^{\prime}=-\widetilde{F}_{k}$ (here \widetilde{F}_{k} is the restriction of F_{k} to $K_{1} \times \ldots \times X_{k} \times \ldots \times K_{n}$).
(b) Let us assume now that the sets K_{k} are nonempty, closed and convex and at least one of them is unbounded. Assume in addition that there exists $R_{0}>0$ such that $K_{k, R_{0}}$ is nonempty for every $k \in\{1, \ldots, n\}$ and for each $\left(u_{1}, \ldots, u_{k}, \ldots, u_{n}\right) \in K_{1} \times \ldots \times K_{k} \times \ldots \times K_{n} \backslash K_{1, R_{0}} \times \ldots \times K_{k, R_{0}} \times \ldots \times K_{n, R_{0}}$ there exists $\left(v_{1}^{0}, \ldots, v_{k}^{0}, \ldots, v_{n}^{0}\right) \in K_{1, R_{0}} \times \ldots \times K_{k, R_{0}} \times \ldots \times K_{n, R_{0}}$ such that

$$
\left\langle F_{k}\left(u_{1}, \ldots, u_{k}, \ldots, u_{n}\right), v_{k}^{0}-u_{k}\right\rangle_{X_{k}}>0, \quad \text { for all } k \in\{1, \ldots, n\} .
$$

Then, according to Corollary 3.6, there exists at least one point $\left(u_{1}^{0}, \ldots, u_{k}^{0}, \ldots\right.$, $\left.u_{n}^{0}\right) \in K_{1} \times \ldots \times K_{k} \times \ldots \times K_{n}$ such that for all $\left(v_{1}, \ldots, v_{k}, \ldots, v_{n}\right) \in K_{1} \times$ $\ldots \times K_{k} \times \ldots \times K_{n}$ we have

$$
-\left\langle F_{k}\left(u_{1}^{0}, \ldots, u_{k}^{0}, \ldots, u_{n}^{0}\right), v_{k}-u_{k}^{0}\right\rangle_{X_{k}} \geq 0, \quad \text { for all } k \in\{1, \ldots, n\}
$$

which means that $\left(u_{1}^{0}, \ldots, u_{k}^{0}, \ldots, u_{n}^{0}\right) \in K_{1} \times \ldots \times K_{k} \times \ldots \times K_{n}$ is a Nash stationary point for the functionals g_{1}, \ldots, g_{n}, where $g_{k}: K_{1} \times \ldots \times X_{k} \times \ldots \times$ $K_{n} \rightarrow \mathbb{R}$ is differentiable with respect to the $k^{\text {th }}$ variable and $g_{k, k}^{\prime}=-\widetilde{F}_{k}$.
4.3. Weak solvability of frictional problems for piezoelectric bodies in contact with a conductive foundation. This subsection focuses on the weak solvability of a mechanical model describing the contact between a piezoelectric body and a conductive foundation. The piezoelectric effect is characterized by the coupling between the mechanical and the electrical properties of the materials. This coupling leads to the appearance of electric potential when mechanical stress is present and, conversely, mechanical stress is generated when electric potential is applied. For more details on this topic the reader can consult the recent papers of Migórski, Ochal and Sofonea [24]-[26].

Before describing the problem let us first present some notations and preliminary material which will be used throughout this subsection.

Let m be a positive integer and denote by \mathcal{S}_{m} the linear space of second order symmetric tensors on $\mathbb{R}^{m}\left(\mathcal{S}_{m}=\mathbb{R}_{s}^{m \times m}\right)$. We recall that the inner product and the corresponding norm on \mathcal{S}_{m} are given by

$$
\tau: \sigma=\tau_{i j} \sigma_{i j}, \quad\|\tau\|_{\mathcal{S}_{m}}=\sqrt{\tau: \tau}, \quad \text { for all } \tau, \sigma \in \mathcal{S}_{m}
$$

Here, and hereafter the summation over repeated indices is used, all indices running from 1 to m.

Let $\Omega \subset \mathbb{R}^{m}$ be an open bounded subset with a Lipschitz boundary Γ and let ν denote the outward unit normal vector to Γ. We introduce the spaces:

$$
\begin{aligned}
H & =L^{2}\left(\Omega ; \mathbb{R}^{m}\right), \\
\mathcal{H} & =\left\{\tau=\left(\tau_{i j}\right): \tau_{i j}=\tau_{j i} \in L^{2}(\Omega)\right\}=L^{2}\left(\Omega ; \mathcal{S}_{m}\right), \\
H_{1} & =\{u \in H: \varepsilon(u) \in \mathcal{H}\}=H^{1}\left(\Omega ; \mathbb{R}^{m}\right), \\
\mathcal{H}_{1} & =\{\tau \in \mathcal{H}: \operatorname{Div} \tau \in H\},
\end{aligned}
$$

where $\varepsilon: H_{1} \rightarrow \mathcal{H}$ and Div: $\mathcal{H}_{1} \rightarrow H$ denote the deformation and the divergence operators, defined by

$$
\varepsilon(u)=\left(\varepsilon_{i j}(u)\right), \quad \varepsilon_{i j}(u)=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right), \quad \operatorname{Div} \tau=\left(\frac{\partial \tau_{i j}}{\partial x_{j}}\right)
$$

The spaces H, \mathcal{H}, H_{1} and \mathcal{H}_{1} are Hilbert spaces endowed with the following inner products:

$$
\begin{aligned}
(u, v)_{H} & =\int_{\Omega} u_{i} v_{i} d x, & (\sigma, \tau)_{\mathcal{H}} & =\int_{\Omega} \sigma: \tau d x \\
(u, v)_{H_{1}} & =(u, v)_{H}+(\varepsilon(u), \varepsilon(v))_{\mathcal{H}}, & (\sigma, \tau)_{\mathcal{H}_{1}} & =(\sigma, \tau)_{\mathcal{H}}+(\operatorname{Div} \sigma, \operatorname{Div} \tau)_{H}
\end{aligned}
$$

The associated norms in $H, \mathcal{H}, H_{1}, \mathcal{H}_{1}$ will be denoted by $\|\cdot\|_{H},\|\cdot\|_{\mathcal{H}},\|\cdot\|_{H_{1}}$ and $\|\cdot\|_{\mathcal{H}_{1}}$, respectively.

Given $v \in H_{1}$ we denote by v its trace γv on Γ, where $\gamma: H^{1}\left(\Omega ; \mathbb{R}^{m}\right) \rightarrow$ $H^{1 / 2}\left(\Gamma ; \mathbb{R}^{m}\right) \subset L^{2}\left(\Gamma ; \mathbb{R}^{m}\right)$ is the Sobolev trace operator. Given $v \in H^{1 / 2}\left(\Gamma ; \mathbb{R}^{m}\right)$ we denote by v_{ν} and v_{τ} the normal and the tangential components of v on the boundary Γ, that is $v_{\nu}=v \cdot \nu$ and $v_{\tau}=v-v_{\nu} \nu$. Similarly, for a regular tensor field $\sigma: \Omega \rightarrow \mathcal{S}_{m}$, we define its normal and tangential components to be the normal and the tangential components of the Cauchy vector $\sigma \nu$, that is $\sigma_{\nu}=(\sigma \nu) \cdot \nu$ and $\sigma_{\tau}=\sigma \nu-\sigma_{\nu} \nu$. Recall that the following Green formula holds:

$$
\begin{equation*}
(\sigma, \varepsilon(v))_{\mathcal{H}}+(\operatorname{Div} \sigma, v)_{H}=\int_{\Gamma} \sigma \nu \cdot v d \Gamma, \quad \text { for all } v \in H_{1} . \tag{4.1}
\end{equation*}
$$

We shall describe next the model for which we shall derive a variational formulation. Let us consider body \mathcal{B} made of a piezoelectric material which
initially occupies an open bounded subset $\Omega \subset \mathbb{R}^{m}(m=2,3)$ with smooth a boundary $\partial \Omega=\Gamma$. The body is subjected to volume forces of density f_{0} and has volume electric charges of density q_{0}, while on the boundary we impose mechanical and electrical constraints. In order to describe these constraints we consider two partitions of Γ : the first partition is given by three mutually disjoint open parts Γ_{1}, Γ_{2} and Γ_{3} such that meas $\left(\Gamma_{1}>0\right)$ and the second partition consists of three disjoint open parts Γ_{a}, Γ_{b} and Γ_{c} such that meas $\left(\Gamma_{a}\right)>0$, $\Gamma_{c}=\Gamma_{3}$ and $\bar{\Gamma}_{a} \cup \bar{\Gamma}_{b}=\bar{\Gamma}_{1} \cup \bar{\Gamma}_{2}$. The body is clamped on Γ_{1} and a surface traction of density f_{2} acts on Γ_{2}. Moreover, the electric potential vanishes on Γ_{a} and a surface electric charge of density q_{b} is applied on Γ_{b}. On $\Gamma_{3}=\Gamma_{c}$ the body comes in frictional contact with a conductive obstacle, called foundation which has the electric potential φ_{F}.

Denoting by $u: \Omega \rightarrow \mathbb{R}^{m}$ the displacement field, by $\varepsilon(u)=\left(\varepsilon_{i j}(u)\right)$ the strain tensor, by $\sigma: \Omega \rightarrow \mathcal{S}_{m}$ the stress tensor, by $D: \Omega \rightarrow \mathbb{R}^{m}, D=\left(D_{i}\right)$ the electric displacement field and by $\varphi: \Omega \rightarrow \mathbb{R}$ the electric potential we can now write the strong formulation of the problem which describes the above process:
$\left(\mathcal{P}_{M}\right)$ Find a displacement field $u: \Omega \rightarrow \mathbb{R}^{m}$ and an electric potential $\varphi: \Omega \rightarrow \mathbb{R}$ such that:

$$
\begin{align*}
\operatorname{Div} \sigma+f_{0} & =0 & & \text { in } \Omega, \tag{4.2}\\
\operatorname{div} D & =q_{0} & & \text { in } \Omega, \tag{4.3}\\
\sigma & =\mathcal{E} \varepsilon(u)+\mathcal{P}^{\top} \nabla \varphi & & \text { in } \Omega, \tag{4.4}\\
D & =\mathcal{P} \varepsilon(u)-\mathcal{B} \nabla \varphi & & \text { in } \Omega, \tag{4.5}\\
u & =0 & & \text { on } \Gamma_{1}, \tag{4.6}\\
\varphi & =0 & & \text { on } \Gamma_{a}, \tag{4.7}\\
\sigma \nu & =f_{2} & & \text { on } \Gamma_{2}, \tag{4.8}\\
D \cdot \nu & =q_{b} & & \text { on } \Gamma_{b}, \tag{4.9}\\
-\sigma_{\nu} & =S & & \text { on } \Gamma_{3}, \tag{4.10}\\
-\sigma_{\tau} & \in \partial_{2} j\left(x, u_{\tau}\right) & & \text { on } \Gamma_{3}, \tag{4.11}\\
D \cdot \nu & \in \partial_{2} \phi\left(x, \varphi-\varphi_{F}\right) & & \text { on } \Gamma_{3} . \tag{4.12}
\end{align*}
$$

We point out the fact that once the displacement field u and the electric potential φ are determined, the stress tensor σ and the electric displacement field D can be obtained via relations (4.4) and (4.5), respectively.

Let us now provide explanation of the equations and the conditions (4.2)(4.12) in which, for simplicity, we have omitted the dependence of the functions on the spatial variable x.

First, equations (4.2)-(4.3) are the governing equations consisting of the equilibrium conditions, while equations (4.4)-(4.5) represent the electro-elastic constitutive law.

We assume that $\mathcal{E}: \Omega \times \mathcal{S}_{m} \rightarrow \mathcal{S}_{m}$ is a nonlinear elasticity operator, $\mathcal{P}: \Omega \times$ $\mathcal{S}_{m} \rightarrow \mathbb{R}^{m}$ and $\mathcal{P}^{\top}: \Omega \times \mathbb{R}^{m} \rightarrow \mathcal{S}_{m}$ are the piezoelectric operator (third order tensor field) and its transpose, respectively and $\mathcal{B}: \Omega \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ denotes the electric permittivity operator (second order tensor field) which is considered to be linear. The tensors \mathcal{P} and \mathcal{P}^{\top} satisfy the equality:

$$
\mathcal{P} \tau \cdot \zeta=\tau: \mathcal{P}^{\top} \zeta, \quad \text { for all } \tau \in \mathcal{S}_{m} \text { and all } \zeta \in \mathbb{R}^{m}
$$

and the components of the tensor \mathcal{P}^{\top} are given by $p_{i j k}^{\top}=p_{k i j}$.
When $\tau \rightsquigarrow \mathcal{E}(x, \tau)$ is linear, $\mathcal{E}(x, \tau)=\mathcal{C}(x) \tau$ with the elasticity coefficients $\mathcal{C}=\left(c_{i j k l}\right)$ which may be functions indicating the position in a nonhomogeneous material. The decoupled state can be obtained by taking $p_{i j k}=0$, in this case we have purely elastic and purely electric deformations.

Conditions (4.6) and (4.7) model the fact that the displacement field and the electrical potential vanish on Γ_{1} and Γ_{a}, respectively, while conditions (4.8) and (4.9) represent the traction and the electric boundary conditions showing that the forces and the electric charges are prescribed on Γ_{2} and Γ_{b}, respectively.

Conditions (4.10)-(4.12) describe the contact, the frictional and the electrical conductivity conditions on the contact surface Γ_{3}, respectively. Here, S is the normal load imposed on Γ_{3}, the functions $j: \Gamma_{3} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ and $\phi: \Gamma_{3} \times \mathbb{R} \rightarrow \mathbb{R}$ are prescribed and φ_{F} is the electric potential of the foundation.

The strong formulation of problem (\mathcal{P}_{M}) consists in finding $u: \Omega \rightarrow \mathbb{R}^{m}$ and $\varphi: \Omega \rightarrow \mathbb{R}$ such that (4.2)-(4.12) hold. However, it is well known that, in general, the strong formulation of a contact problem does not admit any solution. Therefore, we reformulate problem $\left(\mathcal{P}_{M}\right)$ in a weaker sense, i.e. we shall derive its variational formulation. With this end in view, we introduce the functional spaces for the displacement field and the electrical potential

$$
V=\left\{v \in H^{1}\left(\Omega ; \mathbb{R}^{m}\right): v=0 \text { on } \Gamma_{1}\right\}, \quad W=\left\{\varphi \in H^{1}(\Omega): \varphi=0 \text { on } \Gamma_{a}\right\}
$$

which are closed subspaces of H_{1} and $H^{1}(\Omega)$. We endow V and W with the following inner products and the corresponding norms

$$
\begin{aligned}
(u, v)_{V} & =(\varepsilon(u), \varepsilon(v))_{\mathcal{H}}, & \|v\|_{V} & =\|\varepsilon(v)\|_{\mathcal{H}}, \\
(\varphi, \chi)_{W} & =(\nabla \varphi, \nabla \chi)_{H}, & \|\chi\|_{W} & =\|\nabla \chi\|_{H}
\end{aligned}
$$

and conclude that $\left(V,\|\cdot\|_{V}\right),\left(W,\|\cdot\|_{W}\right)$ are Hilbert spaces.
Assuming sufficient regularity of the functions involved in the problem, using the Green formula (4.1), the relations (4.2)-(4.12), the definition of the Clarke
generalized gradient and the equality

$$
\int_{\Gamma_{3}}(\sigma \nu) \cdot v d \Gamma=\int_{\Gamma_{3}} \sigma_{\nu} v_{\nu} d \Gamma+\int_{\Gamma_{3}} \sigma_{\tau} \cdot v_{\tau} d \Gamma
$$

we obtain the following variational formulation of problem $\left(\mathcal{P}_{M}\right)$ in terms of the displacement field and the electric potential:
$\left(\mathcal{P}_{V}\right)$ Find $(u, \varphi) \in V \times W$ such that for all $(v, \chi) \in V \times W$

$$
\begin{array}{r}
(\mathcal{E} \varepsilon(u), \varepsilon(v)-\varepsilon(u))_{\mathcal{H}}+\left(\mathcal{P}^{\top} \nabla \varphi, \varepsilon(v)-\varepsilon(u)\right)_{\mathcal{H}}+\int_{\Gamma_{3}} j_{, 2}^{0}\left(x, u_{\tau} ; v_{\tau}-u_{\tau}\right) d \Gamma \\
\geq(f, v-u)_{V} \\
(\mathcal{B} \nabla \varphi, \nabla \chi-\nabla \varphi)_{H}-(\mathcal{P} \varepsilon(u), \nabla \chi-\nabla \varphi)_{H}+\int_{\Gamma_{3}} \phi_{, 2}^{0}\left(x, \varphi-\varphi_{F} ; \chi-\varphi\right) d \Gamma \\
\geq(q, \chi-\varphi)_{W}
\end{array}
$$

where $f \in V$ and $q \in W$ are the elements given by the Riesz's representation theorem as follows

$$
\begin{aligned}
(f, v-u)_{V} & =\int_{\Omega} f_{0} \cdot v d x+\int_{\Gamma_{2}} f_{2} \cdot v d \Gamma-\int_{\Gamma_{3}} S v_{\nu} d \Gamma \\
(q, \chi)_{W} & =\int_{\Omega} q_{0} \chi d x-\int_{\Gamma_{b}} q_{2} \chi d \Gamma .
\end{aligned}
$$

In the study of problem $\left(\mathcal{P}_{V}\right)$ we shall assume fulfilled the following hypotheses:
$\left(\mathcal{H}_{\mathcal{E}}\right)$ The elasticity operator $\mathcal{E}: \Omega \times \mathcal{S}_{m} \rightarrow \mathcal{S}_{m}$ such that
(a) $x \rightsquigarrow \mathcal{E}(x, \tau)$ is measurable for all $\tau \in \mathcal{S}_{m}$;
(b) $\tau \rightsquigarrow \mathcal{E}(x, \tau)$ is continuous for almost every $x \in \Omega$;
(c) there exist $c_{1}>0$ and $\alpha \in L^{2}(\Omega)$ such that

$$
\|\mathcal{E}(x, \tau)\|_{\mathcal{S}_{m}} \leq c\left(\alpha(x)+\|\tau\|_{\mathcal{S}_{m}}\right)
$$

for all $\tau \in \mathcal{S}_{m}$ and almost every $x \in \Omega$;
(d) $\tau \rightsquigarrow \mathcal{E}(x, \tau):(\sigma-\tau)$ is weakly upper semicontinuous for all $\sigma \in \mathcal{S}_{m}$ and almost every $x \in \Omega$;
(e) there exists $c_{2}>0$ such that $\mathcal{E}(x, \tau): \tau \geq c\|\tau\|_{\mathcal{S}_{m}}^{2}$ for all $\tau \in \mathcal{S}_{m}$ and almost every $x \in \Omega$.
$\left(\mathcal{H}_{\mathcal{P}}\right)$ The piezoelectric operator $\mathcal{P}: \Omega \times \mathcal{S}_{m} \rightarrow \mathbb{R}^{m}$ is such that
(a) $\mathcal{P}(x, \tau)=p(x) \tau$ for all $\tau \in \mathcal{S}_{m}$ and almost every $x \in \Omega$;
(b) $p(x)=\left(p_{i j k}(x)\right)$ with $p_{i j k}=p_{i k j} \in L^{\infty}(\Omega)$.
$\left(\mathcal{H}_{\mathcal{B}}\right) \mathcal{B}: \Omega \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is such that
(a) $\mathcal{B}(x, \zeta)=\beta(x) \zeta$ for all $\zeta \in \mathbb{R}^{m}$ and almost $x \in \Omega$;
(b) $\beta(x)=\left(\beta_{i j}(x)\right)$ with $\beta_{i j}=\beta_{j i} \in L^{\infty}(\Omega)$;
(c) there exists $m>0$ such that $(\beta(x) \zeta) \cdot \zeta \geq m|\zeta|^{2}$ for all $\zeta \in \mathbb{R}^{m}$ and almost every $x \in \Omega$.
$\left(\mathcal{H}_{j}\right) j: \Gamma_{3} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ is such that
(a) $x \rightsquigarrow j(x, \zeta)$ is measurable for all $\zeta \in \mathbb{R}^{m}$;
(b) $\zeta \rightsquigarrow j(x, \zeta)$ is locally Lipschitz for almost every $x \in \Gamma_{3}$;
(c) there exist $c_{3}>0$ such that $\left|\partial_{2} j(x, \zeta)\right| \leq c_{3}(1+|\zeta|)$ for all $\zeta \in \mathbb{R}^{m}$ and almost every $x \in \Gamma_{3}$;
(d) there exists $c_{4}>0$ such that $j_{, 2}^{0}(x, \zeta ;-\zeta) \leq c_{4}|\zeta|$ for all $\zeta \in \mathbb{R}^{m}$ and almost every $x \in \Gamma_{3}$;
(e) $\zeta \rightsquigarrow j(x, \zeta)$ is regular for almost every $x \in \Gamma_{3}$.
$\left(\mathcal{H}_{\phi}\right) \phi: \Gamma_{3} \times \mathbb{R} \rightarrow \mathbb{R}$ is such that:
(a) $x \rightsquigarrow \phi(x, t)$ is measurable for all $t \in \mathbb{R}$;
(b) $\zeta \rightsquigarrow \phi(x, \zeta)$ is locally Lipschitz for almost every $x \in \Gamma_{3}$;
(c) there exist $c_{5}>0$ such that $\left|\partial_{2} \phi(x, t)\right| \leq c_{5}|t|$ for all $t \in \mathbb{R}$ and almost every $x \in \Gamma_{3}$;
(d) $t \rightsquigarrow \phi(x, t)$ is regular for almost every $x \in \Gamma_{3}$.

$$
\begin{aligned}
\left(\mathcal{H}_{f, q}\right) & f_{0} \in H, f_{2} \in L^{2}\left(\Gamma_{2} ; \mathbb{R}^{m}\right), q_{0} \in L^{2}(\Omega), q_{b} \in L^{2}\left(\Gamma_{2}\right), S \in L^{\infty}\left(\Gamma_{3}\right), S \geq 0 \\
& \varphi_{F} \in L^{2}\left(\Gamma_{3}\right)
\end{aligned}
$$

The main result of this subsection is given by the following theorem.
Theorem 4.4. Assume fulfilled conditions $\left(\mathcal{H}_{\mathcal{E}}\right),\left(\mathcal{H}_{\mathcal{P}}\right),\left(\mathcal{H}_{\mathcal{B}}\right),\left(\mathcal{H}_{j}\right),\left(\mathcal{H}_{\phi}\right)$ and $\left(\mathcal{H}_{f, q}\right)$. Then problem $\left(\mathcal{P}_{V}\right)$ admits at least one solution.

Proof. We observe that problem $\left(\mathcal{P}_{V}\right)$ is in fact a system of two coupled hemivariational inequalities. The idea is to apply one of the existence results obtained in Section 2. with suitable choice of ψ_{k}, J, and $F_{k}(k \in\{1,2\})$.

First, let us take $n=2$ and define $X_{1}=V, X_{2}=W, Y_{1}=L^{2}\left(\Gamma_{3} ; \mathbb{R}^{m}\right)$, $Y_{2}=L^{2}\left(\Gamma_{3}\right), K_{1}=X_{1}$ and $K_{2}=X_{2}$.

Next we introduce $T_{1}: X_{1} \rightarrow Y_{1}$ and $T_{2}: X_{2} \rightarrow Y_{2}$ defined by

$$
T_{1}=\left.i_{\tau} \circ \gamma_{m} \circ i_{m}\right|_{\Gamma_{3}}, \quad T_{2}=\left.\gamma \circ i\right|_{\Gamma_{3}},
$$

where $i_{m}: V \rightarrow H_{1}=H^{1}\left(\Omega ; \mathbb{R}^{m}\right)$ is the embedding operator, $\gamma_{m}: H_{1} \rightarrow H^{1 / 2}\left(\Gamma ; \mathbb{R}^{m}\right)$ is the Sobolev trace operator, $i_{\tau}: H^{1 / 2}\left(\Gamma ; \mathbb{R}^{m}\right) \rightarrow L^{2}\left(\Gamma_{3} ; \mathbb{R}^{m}\right)$ is the operator defined by $i_{\tau}(v)=v_{\tau}, i: W \rightarrow H^{1}(\Omega)$ is the embedding operator and $\gamma: H^{1}(\Omega) \rightarrow$ $H^{1 / 2}(\Gamma)$ is the Sobolev trace operator. Clearly T_{1} and T_{2} are linear and compact operators.

We consider next $\psi_{1}: X_{1} \times X_{2} \times X_{1} \rightarrow \mathbb{R}$ and $\psi_{2}: X_{1} \times X_{2} \times X_{2} \rightarrow \mathbb{R}$ defined by

$$
\begin{aligned}
\psi_{1}(u, \varphi, v) & =(\mathcal{E} \varepsilon(u), \varepsilon(v)-\varepsilon(u))_{\mathcal{H}}+\left(\mathcal{P}^{\top} \nabla \varphi, \varepsilon(v)-\varepsilon(u)\right)_{\mathcal{H}}, \\
\psi_{2}(u, \varphi, \chi) & =(\mathcal{B} \nabla \varphi, \nabla \chi-\nabla \varphi)_{H}-(\mathcal{P} \varepsilon(u), \nabla \chi-\nabla \varphi)_{H},
\end{aligned}
$$

$J: Y_{1} \times Y_{2} \rightarrow \mathbb{R}$ defined by

$$
J(w, \eta)=\int_{\Gamma_{3}} j(x, w(x)) d \Gamma+\int_{\Gamma_{3}} \phi(x, \eta(x)-\varphi(x)) d \Gamma
$$

and $F_{1}: X_{1} \times X_{2} \rightarrow X_{1}^{*}$ and $F_{2}: X_{1} \times X_{2} \rightarrow X_{2}^{*}$ defined by

$$
F_{1}(u, \varphi)=f, \quad F_{2}(u, \varphi)=q
$$

It is easy to check from the above definitions that if $\left(\mathcal{H}_{\mathcal{E}}\right),\left(\mathcal{H}_{\mathcal{P}}\right),\left(\mathcal{H}_{\mathcal{B}}\right)$, hold, then the functionals ψ_{1}, ψ_{2} satisfy conditions (H1) and (H6). Taking $\left(\mathcal{H}_{j}\right)$ and $\left(\mathcal{H}_{\phi}\right)$ into account we conclude that J is a regular locally Lipschitz functional which satisfies

$$
\begin{aligned}
J_{, 1}^{0}(w, \eta ; z) & =\int_{\Gamma_{3}} j_{, 2}^{0}(x, w(x) ; z(x)) d \Gamma \\
J_{, 2}^{0}(w, \eta ; \zeta) & =\int_{\Gamma_{3}} \phi_{{ }_{2}}^{0}(x, \eta(x)-\varphi(x) ; \zeta(x)) d \Gamma
\end{aligned}
$$

Obviously conditions (H2), (H7), (H8) are fulfilled, therefore we can apply Corollary 3.7 to conclude that problem $\left(\mathcal{P}_{V}\right)$ admits at least one solution.

Acknowledgements. The author Nicuşor Costea was partially supported by a grant of the Romanian National Authority for Scientic Research, CNCSUEFISCDI, project number PN-II-RU-PD-2011-3-0032.

Part of this work has been performed while Nicuşor Costea had a Bitdefender Postdoctoral Fellowship at the Institute of Mathematics "Simion Stoilow" of the Romanian Academy.

The author Csaba Varga has been fully supported by Grant CNCSIS PCCE55/2008 "Differential systems in nonlinear analysis and application"/"Sisteme diferenţiale in analiza neliniară şi aplicaţii".

References

[1] I. Andrei and N. Costea, Nonlinear hemivariational inequalities and applications to Nonsmooth Mechanics, Adv. Nonlinear Var. Inequal. 13 (2010), no. 1, 1-17.
[2] B.E. Breckner, A. Horváth, Cs. Varga, A multiplicity result for a special class of gradient-type systems with non-differentiable term, Nonlinear Anal. 70 (2009), 606-620.
[3] B.E. Breckner and Cs. Varga, A multiplicity result for gradient-type systems with non-differentiable term, Acta Math. Hungar. 118 (2008), 85-104.
[4] H. Brezis, Analyse Fonctionnelle: Théorie et Applications, Masson, Paris, 1992.
[5] S. Carl, V.K. Le and D. Motreanu, Evolutionary variational-hemivariational inequalities: Existence and comparison results, J. Math. Anal. Appl. 345 (2008), 545-558.
[6] S. Carl and D. Motreanu, Comparison principle for quasilinear parabolic inclusions with Clarke's gradient, Adv. Nonlinear Stud. 9 (2009), 69-80.
[7] , General comparison principle for quasilinear elliptic inclusions, Nonlinear Anal. 70 (2009), 1105-1112.
[8] F.H. Clarke, Optimization and Nonsmooth Analysis, John Wiley \& Sons, New York, 1983.
[9] N. Costea, Existence and uniquenes results for a class of quasi-hemivariational inequalities, J. Math. Anal. Appl. 373 (2011), no. 1, 305-311.
[10] N. Costea and A. Matei, Weak solutions for nonlinear antiplane problems leading to hemivariational inequalities, Nonlinear Anal. 72 (2010), 3669-3680.
[11] N. Costea and V. Rădulescu, Existence results for hemivariational inequalities involving relaxed $\eta-\alpha$ monotone mappings, Commun. Appl. Anal. 13 (2009), 293-304.
[12] , Hartman-Stampacchia results for stably pseudomonotone operators and nonlinear hemivariational inequalities, Appl. Anal. 89 (2010), no. 2, 175-188.
[13] G. Fichera, Problemi elettrostatici con vincoli unilaterali: il problema de Signorini con ambigue condizioni al contorno, Mem. Acad. Naz. Lincei 7 (1964), 91-140.
[14] D. Goeleven, D. Motreanu, Y. Dumont and M. Rochdi, Variational and Hemivariational Inequalities, Theory, Methods and Applicatications, Volume I: Unilateral Analysis and Unilateral Mechanics, Kluwer Academic Publishers, Dordrecht, Boston, London, 2003.
[15] P. Hartman and G. Stampacchia, On some nonlinear elliptic differential functional equations, Acta Math. 115 (1966), 271-310.
[16] G. Kassay, J. Kolumbán and Zs. Páles, On Nash stationary points, Publ. Math. Debrecen 54 (1999), 267-279.
[17] A. Kristály, An existence result for gradient-type systems with a nondifferentiable term on unbounded strips, J. Math. Anal. Appl. 229 (2004), 186-204.
[18] , Location of Nash equilibria: a Riemannian approach, Proc. Amer. Math. Soc. 138 (2010), 1803-1810.
[19] A. Kristály, V. Rădulescu and Cs. Varga, Variational Principles in Mathematical Physics, Geometry, and Economics: Qualitative Analysis of Nonlinear Equations and Unilateral Problems, Encyklopedia of Mathematics (No. 136), Cambridge University Press, Cambridge, 2010.
[20] Kristály and Cs. Varga, Variational-hemivariational inequalities on unbounded domains, Studia Univ. Babes-Bolyai Math. LV (2010), 3-87.
[21] T.C. Lin, Convex sets, fixed points, variational and minimax inequalities, Bull. Austral. Math. Soc. 34 (1986), 107-117.
[22] H. Lisei, A.E. Molnár and Cs. Varga, On a class of inequality problems with lack of compactness, J. Math. Anal. (2010).
[23] S. Migórski, A class of hemivariational inequalities for electroelastic contact problems with slip dependent friction, Discrete Contin. Dyn. Syst. Ser. S 1 (2008), no. 1, 117-126.
[24] S. Migórski, A. Ochal and M. Sofonea, Variational analysis of fully coupled electroelastic frictional contact problems, Math. Nachr. 283 (2010), no. 9, 1314-1335.
[25] S. Migórski, A. Ochal and M. Sofonea, Weak solvability of antiplane frictional contact problems for elastic cylinders, Nonlinear Anal. Real World Appl. 11 (2010), 172-183.
[26] , Analysis of a quasistatic contact problem for piezoelectric materials, J. Math. Anal. Appl. 382 (2011), 701-713.
[27] D. Motreanu and P.D. Panagiotopoulos, Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities and Applications, Kluwer Academic Publishers; Nonconvex Optimization and its Applications, vol. 29, Boston, Dordrecht, London, 1999.
[28] D. Motreanu and V. Rădulescu, Variational and Non-variational Methods in Nonlinear Analysis and Boundary Value Problems, Kluwer Academic Publishers, Boston, Dordrecht, London, 2003.
[29] Z. Naniewicz and P.D. Panagiotopoulos, Mathematical Theory of Hemivariational Inequalities and Applications, Marcel Dekker, New York, 1995.
[30] J. Nash, Equilibrium points in n-person games, Proc. Nat. Acad. Sci. USA 36 (1950), 48-49.
[31] , Non-cooperative games, Ann. of Math. 54 (1951), no. 2, 286-295.
[32] P.D. Panagiotopoulos, Nonconvex energy functions. Hemivariational inequalities and substationarity principles, Acta Mech. 42 (1983), 160-183.
[33] , Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions, Birkhäuser, Basel, 1985.
[34] ,Hemivariational Inequalities: Applications to Mechanics and Engineering, Sprin-ger-Verlag, New York, Boston, Berlin, 1993.

Nicuşor Costea

Institute of Mathematics "Simion Stoilow"
of the Romanian Academy
014700 Bucharest, ROMANIA
and
Department of Mathematics and its Applications
Central European University
Nador u. 9
H-1051 Budapest, HUNGARY
E-mail address: nicusorcostea@yahoo.com

Csaba Varga

Babeş-Bolyai University
Faculty of Mathematics and Computer Science
Kogălniceanu str. 1
400084 Cluj-Napoca, ROMANIA
E-mail address: varga_gy_csaba@yahoo.com

[^0]: 2010 Mathematics Subject Classification. 47J20, 47H04, 49J53, 54C60, 47H05.
 Key words and phrases. Nonlinear hemivariational inequality, set-valued operator, nonsmooth functions, Clarke's generalized gradient, Nash generalized derivative point, piezoelectric body.

