
Topological Methods in Nonlinear Analysis
Volume 41, No. 1, 2013, 1–38

c© 2013 Juliusz Schauder Center for Nonlinear Studies
Nicolaus Copernicus University

AUTONOMOUS DISSIPATIVE
SEMIDYNAMICAL SYSTEMS WITH IMPULSES

Everaldo M. Bonotto — Daniela P. Demuner

Abstract. In the present paper, we study the theory of dissipative impul-

sive semidynamical systems. We define different types of dissipativity as
point, compact, local and bounded. The center of Levinson is defined for
compact dissipative impulsive semidynamical systems and its topological
properties are investigated. Also, we present results giving necessary and
sufficient conditions to obtain dissipativity, and we include some examples
to point out that the concepts of the different kinds of dissipativity are not
equivalent in general.

1. Introduction

The theory of impulsive dynamical systems plays an important role to model
real-world problems in science and technology. This theory has been attracting
the attention of many mathematicians and the interest in the subject is still
growing. In the last years, the action of impulses on dynamical systems has been
intensively investigated, see for instance [2]–[7], [9]–[17], [19] and the references
therein.

In [8], the author develops the theory of autonomous dissipative dynamical
systems. Several types of dissipativity as point, compact, local, bounded and
weak one, are given. The center of Levinson of a compact dissipative dynamical
system (X,π,R), where X is a metric space, is defined. Cheban shows that
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Levinson’s center is the least compact positive invariant set that attracts all
compact subsets from X . Moreover, it is proved in [8] that the center of Levin-
son is invariant and globally asymptotically stable, see [8, Theorem 1.6] and
[8, Theorem 1.8]. Results giving necessary and sufficient conditions to obtain
dissipativity are established, see for instance, Theorems 1.12–1.19 in [8].

In this paper, we present a systematical study of autonomous dissipative im-
pulsive semidynamical systems. We consider impulsive semidynamical systems
of type (X,π;M, I) subject to impulse action which varies in time, where X is
a metric space, (X,π,R+) is a semidynamical system, M is a non-empty closed
subset ofX that denotes the impulsive set and I:M → X is the impulse function.

We generalize many results of [8] for semidynamical systems with and without
impulses. In some cases, we present different proofs for the results proved in [8].
Let us mention some of these results. Let (X,π,R) be a dynamical system
defined on a metric space X . Consider the following lemma

Lemma ([8, Lemma 1.6]). Let A ⊂ X and the set π+(A) be relatively com-
pact. If the positive ω-limit satisfies the condition ω(A) ⊂ A, then ω(A) =
∩{πt(A) : t ∈ R}.

Cheban uses the invariance of ω(A) to prove [8, Lemma 1.6]. However, this
proof does not apply for semidynamical systems since ω(A) is only positively
invariant in these systems. We generalize this result for impulsive semidynamical
systems and it is stated in Lemma 3.13. When we consider the impulsive set
M = ∅ in Lemma 3.13, we have the non-impulsive case and we can state the
following result.

Lemma 1.1. Let (X,π,R+) be a semidynamical system. Let A ⊂ X and the
set π+(A) be relatively compact. If ω(A) ⊂ A, then ω(A) = ∩{πt(A) : t ≥ 0}.

We also can use the proof of Lemma 1.1 to prove [8, Lemma 1.6].
In [8], the author considers a compact dissipative dynamical system and he

defines the center of Levinson for this system by

J := ω(K) = ∩{πt(K) : t ∈ R},

where K is a non-empty compact set that is an attractor for compacts subsets
fromX . It is proved that J does not depend on the choice of the set K attracting
all compact subsets of the space X . Again, the invariance of limit sets is used
to get the result. Our Lemma 3.15 generalizes this result for impulsive semi-
dynamical systems and semidynamical systems (M = ∅). We can use positive
invariance instead of invariance to proof that J does not depend on the choice
of the set K in [8]. Indeed, we can use the proof of Lemma 3.15 by considering
M = ∅.
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Let Ω = ∪{ωx : x ∈ X} and set J+(Ω) by

J+(Ω) =
⋂
ε>0

⋂
t≥0

⋃
{π(B(Ω, ε), τ) : τ ≥ t},

see [8] for details. Cheban proved the following corollary:

Corollary 8, Corollary 1.4). If (X,π,R) is point dissipative, Ω �= ∅ and it
is compact, then Ω ⊂ J+(Ω).

We show under additional assumption on semigroup that the inclusion Ω ⊂
J+(Ω) holds in general, that is, we do not need the conditions that (X,π,R) is
point dissipative and Ω is compact. By following the proof of Proposition 3.3
presented in Subsection 3.3, we can state:

Proposition 1.2. Let (X,π,R) ((X,π,R+)) be a dynamical system (semi-
dynamical system). Then Ω ⊂ J+(Ω).

Proposition 3.3 is a version for impulsive semidynamical systems.
Some results from this paper point out other directions to get new proofs for

the results presented in [8], for instance, the proof of Theorem 3.7 gives a different
proof to 8, Theorem 1.11. Furthermore, when we consider our systems with
M = ∅, this paper present a theory of autonomous dissipative semidynamical
systems (without impulses).

In the next lines, we describe the organization of the paper and the main
results.

In the first part of this paper, we present the basis of the theory of impulsive
semidynamical systems. We divide Section 2 in three parts. In Subsection 2.1,
we give some basic definitions and notations about impulsive semidynamical sys-
tems. In Subsection 2.2, we discuss the continuity of a function which describes
the times of meeting impulsive sets. In Subsection 2.3, we give some additional
useful definitions.

The second part of the paper, namely Section 3, concerns the main results.
Subsection 3.1 deals with various properties about limit sets. In Subsection 3.2,
we define the concept of several types of dissipativity for the impulsive case (in
the sense of [8]). We define the center of Levinson for a dissipative compact
impulsive semidynamical system (X,π;M, I) and we prove that this center is
positively invariant, compact, orbitally stable and it is the attractor of the family
of all compacts of X , see Theorem 3.20. In Theorem 3.25, we prove that J is
globally asymptotically stable.

In Subsection 3.3, we investigate criteria to obtain compact dissipativity. In
Theorem 3.34, we present a version of Ura’s Theorem for impulsive semidynami-
cal systems defined in a metric space not necessarily locally compact. The results
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that give necessary and sufficient conditions to obtain compact dissipativity are
presented in Theorems 3.40–3.43.

Subsection 3.4 deals with local dissipativity. Since compact dissipativity does
not imply in local dissipativity (see Example 3.53), we state sufficient conditions
to assure this result, see Theorems 4.46, 3.48, 3.50 and 3.52.

2. Preliminaries

In this section we present the basic definitions and notations of the theory
of impulsive semidynamical systems. We also include some fundamental results
which are necessary for understanding the basis of the theory.

2.1. Basic definitions and terminology. Let X be a metric space and
R+ be the set of non-negative real numbers. The triple (X,π,R+) is called
a semidynamical system, if the function π:X × R+ → X is continuous with
π(x, 0) = x and π(π(x, t), s) = π(x, t+s), for all x ∈ X and t, s ∈ R+. We denote
such system simply by (X,π). For every x ∈ X , we consider the continuous
function πx:R+ → X given by πx(t) = π(x, t) and we call it the motion of x.

Let (X,π) be a semidynamical system. Given x ∈ X , the positive orbit of x
is given by π+(x) = {π(x, t) : t ∈ R+}. For t ≥ 0 and x ∈ X , we define
F (x, t) = {y ∈ X : π(y, t) = x} and, for ∆ ⊂ [0,∞) and D ⊂ X , we define

F (D,∆) = ∪{F (x, t) : x ∈ D and t ∈ ∆}.

Then a point x ∈ X is called an initial point if F (x, t) = ∅ for all t > 0.
Now we define semidynamical systems with impulse action. An impulsive

semidynamical system (X,π;M, I) consists of a semidynamical system, (X,π),
a non-empty closed subset M of X such that for every x ∈M , there exists εx > 0
such that

F (x, (0, εx)) ∩M = ∅ and π(x, (0, εx)) ∩M = ∅,
and a continuous function I:M → X whose action we explain below in the
description of the impulsive trajectory of an impulsive semidynamical system.
The points of M are isolated in every trajectory of system (X,π). The set M is
called the impulsive set and the function I is called impulse function. We also
define

M+(x) = (π+(x) ∩M) \ {x}.
By [7, Lemma 2.1], the impulsive set M is a meager set in X .
Given an impulsive semidynamical system (X,π;M, I) and x ∈ X such that

M+(x) �= ∅, it is always possible to find a smallest number s such that the tra-
jectory πx(t) for 0 < t < s does not intercept the set M . This result is stated
next and a proof of it can be found in [4] and [15].
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Lemma 2.1. Let (X,π;M, I) be an impulsive semidynamical system. Then
for every x ∈ X, there is a positive number s, 0 < s ≤ ∞, such that π(x, t) /∈M ,
whenever 0 < t < s, and π(x, s) ∈M if M+(x) �= ∅.

Let (X,π;M, I) be an impulsive semidynamical system. By means of Lem-
ma 2.1, it is possible to define a function φ:X → (0,∞] in the following manner:

φ(x) =

{
s if π(x, s) ∈M and π(x, t) /∈M for 0 < t < s,

∞ if M+(x) = ∅.
This means that φ(x) is the least positive time for which the trajectory of x
meets M . Thus for each x ∈ X , we call π(x, φ(x)) the impulsive point of x.

The impulsive trajectory of x in (X,π;M, I) is an X-valued function π̃x de-
fined on the subset [0, s) of R+ (s may be ∞). The description of such trajectory
follows inductively as described in the following lines.

IfM+(x) = ∅, then π̃x(t) = π(x, t), for all t ∈ R+, and φ(x) = +∞. However,
if M+(x) �= ∅, it follows from Lemma 2.1 that there is the smallest positive
number s0 such that π(x, s0) = x1 ∈ M and π(x, t) /∈ M , for 0 < t < s0. Then
we define π̃x on [0, s0] by

π̃x(t) =

{
π(x, t), 0 ≤ t < s0,

x+
1 , t = s0,

where x+
1 = I(x1) and φ(x) = s0. Let us denote x by x+

0 .
Since s0 < +∞, the process now continues from x+

1 onwards. If M+(x+
1 ) = ∅,

then we define π̃x(t) = π(x+
1 , t − s0), for s0 ≤ t < +∞, and φ(x+

1 ) = +∞.
When M+(x+

1 ) �= ∅, it follows again from Lemma 2.1 that there is the smallest
positive number s1 such that π(x+

1 , s1) = x2 ∈ M and π(x+
1 , t − s0) /∈ M , for

s0 < t < s0 + s1. Then we define π̃x on [s0, s0 + s1] by

π̃x(t) =

{
π(x+

1 , t− s0), s0 ≤ t < s0 + s1,

x+
2 , t = s0 + s1,

where x+
2 = I(x2) and φ(x+

1 ) = s1, and so on. Notice that π̃x is defined on each

interval [tn, tn+1], where tn+1 =
n∑

i=0

si. Hence π̃x is defined on [0, tn+1].

The process above ends after a finite number of steps, whenever M+(x+
n ) = ∅

for some n. Or it continues infinitely, if M+(x+
n ) �= ∅, n = 1, 2, 3, . . . , and in this

case the function π̃x is defined on the interval [0, T (x)), where T (x) =
∞∑

i=0

si.

Let (X,π;M, I) be an impulsive semidynamical system. Given x ∈ X , the
impulsive positive orbit of x is defined by the set

π̃+(x) = {π̃(x, t) : t ∈ [0, T (x))}.
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Analogously to the non-impulsive case, an impulsive semidynamical system
satisfies standard properties which follow straightforwardly from the definition.
See the next proposition and [2] for a proof of it.

Proposition 2.2. Let (X,π;M, I) be an impulsive semidynamical system
and x ∈ X. The following properties hold:

(a) π̃(x, 0) = x,
(b) π̃(π̃(x, t), s) = π̃(x, t + s), for all t, s ∈ [0, T (x)) such that t + s ∈

[0, T (x)).

For details about the structure of these types of impulsive semidynamical
systems, the reader may consult [2]–[7], [9]–[11], [15] and [16].

2.2. Continuity of φ. The result of this section is borrowed from [9]. It con-
cerns the function φ defined previously which indicates the moments of impulse
action of a trajectory in an impulsive system. Such result is applied sometimes
intrinsically in the proofs of the main theorems of the next section.

Let (X,π) be a semidynamical system. Any closed set S ⊂ X containing x
(x ∈ X) is called a section or a λ-section through x, with λ > 0, if there exists
a closed set L ⊂ X such that

(a) F (L, λ) = S;
(b) F (L, [0, 2λ]) is a neighbourhood of x;
(c) F (L, µ) ∩ F (L, ν) = ∅, for 0 ≤ µ < ν ≤ 2λ.

2λ

λ

π(x,λ)x

LS

� �

Figure 1. The λ-tube F (L, [0, 2λ]).

The set F (L, [0, 2λ]) is called a tube or a λ-tube and the set L is called
a bar, see Figure 1. Let (X,π) be a semidynamical system. We now present the
conditions (TC) and (STC) for a tube.

Any tube F (L, [0, 2λ]) given by a section S through x ∈ X such that S ⊂
M ∩ F (L, [0, 2λ]) is called TC-tube on x. We say that a point x ∈ M fulfills
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the Tube Condition and we write (TC), if there exists a TC-tube F (L, [0, 2λ])
through x. In particular, if S = M ∩ F (L, [0, 2λ]) we have a STC-tube on x and
we say that a point x ∈M fulfills the Strong Tube Condition (we write (STC)),
if there exists a STC-tube F (L, [0, 2λ]) through x.

The following theorem concerns the continuity of φ which is accomplished
outside M for M satisfying the condition (TC). See [9, Theorem 3.8].

Theorem 2.3. Consider an impulsive semidynamical system (X,π;M, I).
Assume that no initial point in (X,π) belongs to the impulsive set M and that
each element of M satisfies the condition (TC). Then φ is continuous at x if and
only if x /∈M .

Remark 2.4. Suppose that the assumptions of Theorem 2.3 are fulfilled.
Although the function π̃ is not continuous, by the continuity of the impulse func-
tion I:M → I(M) and function φ, we can obtain the following result: Suppose

x ∈ X \M . Given ε > 0 and t �=
n∑

i=0

φ(x+
i ) for all n ∈ N, there is δ = δ(ε, x) > 0

such that if ρ(x, y) < δ, y ∈ X , then ρ(π̃(x, t), π̃(y, t)) < ε (ρ is a metric in X).
This result is applied in the proofs of the main theorems of the next section.

2.3. Additional definitions. Let us consider a metric space X with met-
ric ρ. By B(x, δ) we mean the open ball with center at x ∈ X and radius δ > 0.
Given A ⊂ X , let B(A, δ) = {x ∈ X : ρ(x,A) < δ} where ρ(x,A) = inf{ρ(x, y) :
y ∈ A}.

Let C(X) be the collection of all compact subsets of X and B(X) be the
collection of all bounded subsets of X .

Let A and B be bounded subsets of X . We denote by β(A,B) the semi-
deviation of A to B, that is, β(A,B) = sup{ρ(a,B) : a ∈ A}.

Let (X,π;M, I) be an impulsive semidynamical system and A ⊂ X . We
define π̃(A, [0, s]) =

⋃
x∈A

{π̃(x, t) : 0 ≤ t ≤ s} for s > 0. Also, we define

π̃+(A) =
⋃

x∈A

π̃+(x) and π̃(A, t) =
⋃

x∈A

π̃(x, t)

for each t ≥ 0. If π̃+(A) ⊂ A, we say that A is positively π̃-invariant.

3. The main results

In this section, we present the main results from this paper. We divide this
section in four subsections. In the first one, we present some basic properties
of limit sets. In the second subsection, we define the concept of dissipativity
for impulsive semidynamical systems and we study the center of Levinson for
compact dissipative systems. In the third subsection, we study criteria to ob-
tain compact dissipativity. Finally, in the last one, we establish necessary and
sufficient conditions to obtain local dissipativity.
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Throughout this section we shall consider an impulsive semidynamical system
(X,π;M, I), where (X, ρ) is a metric space. Moreover, we shall assume the
following additional hypotheses:

(H1) No initial point in (X,π) belongs to the impulsive set M and each
element ofM satisfies the condition (STC), consequently φ is continuous
on X \M (see Theorem 2.3).

(H2) M ∩ I(M) = ∅.
(H3) For each x ∈ X , the motion π̃(x, t) is defined for every t ≥ 0, that is,

[0,∞) denotes the maximal interval of definition of π̃x. By following
[15], the impulsive systems where the motion π̃(x, t) is defined for all
t ≥ 0 are the most important and interesting, and, moreover, in many
cases we may restrict ourselves to such systems (because of the existence
of suitable isomorphisms), due to the paper [11].

3.1. Limit sets.

Definition 3.1. Let (X,π;M, I) be an impulsive semidynamical system
and A ⊂ X . The limit set of A is represented by

L̃+(A) =
⋂
t≥0

⋃
τ≥t

π̃(A, τ).

If A = {x}, we set L̃+(x) = L̃+({x}).
By Definitio 3.1, we have the following straightforward result:

Lemma 3.2. Let (X,π;M, I) be an impulsive semidynamical system and
A ⊂ X. Then

L̃+(A) =
{
y ∈ X : there exist sequences {xn}n≥1 ⊂ A and {tn}n≥1 ⊂ R+

such that tn
n→∞−−−−→ ∞ and π̃(xn, tn) n→∞−−−−→ y

}
.

Next, we mention a lemma that will be very useful in the next results. The
reader may consult [2] for a proof.

Lemma 3.3. Given an impulsive semidynamical system (X,π;M, I), suppose
w ∈ X\M and {zn}n≥1 is a sequence in X which converges to the point w. Then,
for any t ≥ 0, there exists a sequence of real numbers {εn}n≥1, with εn

n→∞−−−−→ 0,
such that π̃(zn, t+ εn) n→∞−−−−→ π̃(w, t).

In Lemma 3.3, when π̃(w, t) �= w+
j = I(wj) for every j = 1, 2, . . . , the con-

vergence π̃(zn, t+ εn) n→∞−−−−→ π̃(w, t) does not depend on the sequence {εn}n≥1,

that is, π̃(zn, t)
n→∞−−−−→ π̃(w, t), whenever t �=

k∑
j=0

φ(w+
j ) for every k = 0, 1, . . .

Recall that w = w+
0 . We present this fact in the next lemma whose the proof is

in [6, Lemma 3.3].
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Lemma 3.4. Given an impulsive semidynamical system (X,π;M, I), suppose
w ∈ X \M and {zn}n≥1 is a sequence in X which converges to w. Then, for

any t ≥ 0 such that t �=
k∑

j=0

φ(w+
j ), k = 0, 1, . . . , we have π̃(zn, t)

n→∞−−−−→ π̃(w, t).

It is clear that L̃+(A) is closed in X by Definition 3.1. In general, the set
L̃+(A) need not be invariant, see Example 3.1 in [5], for instance. The next
lemma concerns the invariance of the limit set and its proof follows the ideas of
the proof of [16, Lemma 2.6], by using Lemma 3.3 above.

Lemma 3.5. Let (X,π;M, I) be an impulsive semidynamical system and
A ⊂ X. If L̃+(A) ∩M = ∅ then L̃+(A) is positively π̃-invariant.

Analogously to the continuous dynamical systems [8, Lemma 1.3], we have
the next lemma to impulsive semidynamical systems.

Lemma 3.6. Let A⊂X. In the impulsive semidynamical system (X,π;M, I)
the following conditions are equivalent:

(a) the sequence {π̃(xn, tn)}n≥1 is relatively compact for every sequences
{xn}n≥1 ⊂ A and {tn}n≥1 ⊂ R+ such that tn

n→∞−−−−→ ∞;
(b) L̃+(A) is non-empty, compact and the following equality

lim
t→∞ sup

x∈A
ρ(π̃(x, t), L̃+(A)) = 0,

holds;
(c) there exists a non-empty compact subset K ⊂ X such that

lim
t→∞ sup

x∈A
ρ(π̃(x, t),K) = 0.

Proof. It is easy to see the implications (b) ⇒ (c) ⇒ (a). The proof that
(a) implies (b) follows similarly as in [8, Lemma 1.3]. �

Let A ⊂ X be given. In the sequel, we give conditions to obtain the relative
compactness of π̃+(A). But before that, we prove an auxiliary result.

Lemma 3.7. Let A ⊂ X be non-empty and relatively compact. The set
π̃(A, [0, �]) is relatively compact in X for each � > 0.

Proof. Let {yn}n≥1 ⊂ π̃(A, [0, �]). Then, there are sequences {an}n≥1 ⊂ A

and {tn}n≥1 ⊂ [0, �] such that yn = π̃(an, tn). Since A is relatively compact and
{tn}n≥1 is bounded, we may assume without loss of generality that

an
n→∞−−−−→ a and tn

n→∞−−−−→ t,

where a ∈ A and t ∈ [0, �]. We have two cases to consider: when a ∈ M and
when a /∈M .
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Case 1. a /∈M . In this case, we need to consider when t �=
k∑

j=0

φ(a+
j ) for all

k ∈ N and when t =
k∑

j=0

φ(a+
j ) for some k ∈ N.

First, suppose t �=
k∑

j=0

φ(a+
j ) for all k ∈ N. If 0 ≤ t < φ(a) then

π̃(an, tn) n→∞−−−−→ π̃(a, t).

Let us suppose t > φ(a). Then there is k ∈ N such that t =
k∑

j=0

φ(a+
j ) + s

where 0 < s < φ(a+
k+1). Since φ is continuous on X \M , we can find a sequence

{sn}n≥1 ⊂ R+ such that

tn =
k∑

j=0

φ((an)+j ) + sn, n = 1, 2, . . . and sn
n→∞−−−−→ s.

By the continuity of I we have (an)+k+1
n→∞−−−−→ a+

k+1, k = 0, 1, . . . and

π̃(an, tn) = π((an)+k+1, sn) n→∞−−−−→ π(a+
k+1, s) = π̃(a, t).

Now, suppose that there is k ∈ N such that t =
k∑

j=0

φ(a+
j ). Here, we need

to consider two cases: when tn ≤ t for infinitely many n and when tn > t for
infinitely many n. We are going to consider without loss of generality the cases:
when tn ≤ t for each n ∈ N and when tn > t for each n ∈ N.

First, suppose tn ≤ t for each n ∈ N. There exists a sequence {sn}n≥1 ⊂
[0, φ(a+

k )] such that

tn = sn (if k = 0) or tn =
k−1∑
j=0

φ((an)+j ) + sn (if k = 1, 2, . . . ),

n = 1, 2, . . . and sn
n→∞−−−−→ φ(a+

k ). Then

π̃(an, tn) = π((an)+k , sn) n→∞−−−−→ π(a+
k , φ(a+

k )) = ak+1.

On the other hand, if tn > t for each n ∈ N, there is a sequence {sn}n≥1 ⊂ R+

such that

tn =
k∑

j=0

φ((an)+j ) + sn,

n = 1, 2, . . . , and sn
n→∞−−−−→ 0. Then

π̃(an, tn) = π((an)+k+1, sn) n→∞−−−−→ π(a+
k+1, 0) = a+

k+1.
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Case 2. a ∈M . Since M satisfies the condition (STC) (see hypothesis (H1)),
there exists a STC-tube F (L, [0, 2λ]) through a given by a section S. Since the
tube is a neighbourhood of a, there is η > 0 such that

B(a, η) ⊂ F (L, [0, 2λ]).

Denote A1 and A2 by

A1 = F (L, (λ, 2λ]) ∩B(a, η) and A2 = F (L, [0, λ]) ∩B(a, η).

We need to study the cases when an ∈ A1 for infinitely many n and when an ∈ A2

for infinitely many n. Again, we are going to consider without loss of generality
the cases: when {an}n≥1 ⊂ A1 and when {an}n≥1 ⊂ A2.

Let us suppose that {an}n≥1 ⊂ A1. Note that φ(an) n→∞−−−−→ 0 and I(a) /∈M

by hypothesis (H2). If t �=
k∑

j=0

φ((I(a))+j ) for all k ∈ N and 0 ≤ t < φ(I(a)) then

π̃(an, tn) n→∞−−−−→ π(I(a), t),

but if t > φ(I(a)), then there is k ∈ N such that t =
k∑

j=0

φ(I(a)+j ) + s, where

0 < s < φ(I(a)+k+1). Thus, there exists a sequence {sn}n≥1 ⊂ R+ such that

tn =
k+1∑
j=0

φ((an)+j ) + sn, n = 1, 2, . . . and sn
n→∞−−−−→ s.

By the continuity of I we have (an)+k+1
n→∞−−−−→ (I(a))+k , k = 0, 1, . . . and

π̃(an, tn) = π((an)+k+2, sn) n→∞−−−−→ π((I(a))+k+1, s).

But, if t =
k∑

j=0

φ((I(a))+j ) for some k ∈ N.

As we did before, we need to study the cases when tn ≤ t for infinitely many n
and when tn > t for infinitely many n. By supposing that tn ≤ t for all n ∈ N,
we can find a sequence {sn}n≥1 ⊂ R+ such that

tn =
k∑

j=0

φ((an)+j ) + sn,

n = 1, 2, . . . and sn
n→∞−−−−→ φ(I(a)+k ). Then

π̃(an, tn) = π((an)+k+1, sn) n→∞−−−−→ π(I(a)+k , φ(I(a)+k )) = I(a)k+1.

Analogously, if we assume without loss of generality that tn > t for all n ∈ N,
we conclude that

π̃(an, tn) n→∞−−−−→ I(a)+k+1.
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In the last case, we assume {an}n≥1 ⊂ A2. If t �=
k∑

j=0

φ(a+
j ) for all k ∈ N and

0 ≤ t < φ(a) then
π̃(an, tn) n→∞−−−−→ π(a, t),

but if t > φ(a) then there is k ∈ N such that t =
k∑

j=0

φ(a+
j ) + s, where 0 < s <

φ(a+
k+1). Thus

π̃(an, tn) n→∞−−−−→ π(a+
k+1, s).

But, if t =
k∑

j=0

φ(a+
j ) for some k ∈ N. We also have two cases to consider: If we

assume without loss of generality that tn ≤ t for all n ∈ N, then

π̃(an, tn) n→∞−−−−→ π(a+
k , φ(a+

k )) = ak+1.

If tn > t for all n ∈ N, then

π̃(an, tn) n→∞−−−−→ a+
k+1.

Therefore, {π̃(an, tn)}n≥1 is convergent with limit on A. Now the result follows
straightforward. is complete. �

Proposition 3.8. Let A ⊂ X be non-empty and relatively compact. If
L̃+(A) is non-empty, compact and

lim
t→∞ sup

x∈A
ρ(π̃(x, t), L̃+(A)) = 0,

then π̃+(A) is relatively compact.

Proof. By the assumptions, given ε > 0 there exists � = �(ε) > 0 such that

Aε =
⋃
t≥�

π̃(A, t) ⊂ B(L̃+(A), ε).

Then

λ(π̃+(A)) = λ(π̃(A, [0, �]) ∪Aε) = max{λ(π̃(A, [0, �])), λ(Aε)},
where λ(B) denote the measure of non-compactness of Kuratowsky of the set
B ∈ B(X), see [18] for instance. By Lemma 3.7, the set π̃(A, [0, �]) is relatively
compact. Thus λ(π̃(A, [0, �])) = 0 and

λ(π̃+(A)) = λ(Aε) ≤ 2ε.

Hence, λ(π̃+(A)) = 0 and π̃+(A) is relatively compact. �

3.2. Dissipative impulsive semidynamical systems and the center
of Levinson. We start by defining the concept of dissipativity for an impulsive
semidynamical system. The study of dissipativity for dynamical systems without
impulses may be found in [8].
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Definition 3.9. Let M be a family of subsets of X . An impulsive semi-
dynamical system (X,π;M, I) is called M-dissipative if there exists a bounded
set K ⊂ X \M such that for every ε > 0 and A ∈ M there exists �(ε,A) > 0
such that π̃(A, t) ⊂ B(K, ε) for all t ≥ �(ε,A). In this case, the set K is called
an attractor for the family M.

In the sequel, we define some types of dissipativity for impulsive semidynam-
ical systems.

Definition 3.10. An impulsive semidynamical system (X,π;M, I) is called:

(a) point dissipative if there exists a bounded subset K ⊂ X \M such that
for every x ∈ X the limit

(3.1) lim
t→∞ ρ(π̃(x, t),K) = 0

holds;
(b) compact dissipative if the equality (3.1) takes place uniformly with re-

spect to x on the compact subsets from X ;
(c) locally dissipative if for any point x ∈ X there exists δx > 0 such that

the equality (3.1) takes place uniformly with respect to y ∈ B(x, δx);
(d) bounded dissipative if the equality (3.1) takes place uniformly with re-

spect to x on every bounded subset from X .

We note that a point (compact) (locally) (bounded) dissipative system is
a M-dissipative system with M = {{x} : x ∈ X} (M = C(X)) (M = {B(x, δx) :
x ∈ X, δx > 0}) (M = B(X)).

Definition 3.11. If K is compact in the Definition 3.10, the impulsive
system (X,π;M, I) will be called k-dissipative.

The next result says that an impulsive semidynamical system is compact k-
dissipative whenever it is local k-dissipative. The proof is analogous to the proof
of Lemma 1.5 in [8].

Lemma 3.12. Let (X,π;M, I) be a local k-dissipative system, then it is com-
pact k-dissipative.

From Definition 3.10 and Lemma 3.12, we have the following implications:

bounded dissipativity ⇒ local dissipativity

⇒ compact dissipativity ⇒ point dissipativity.

We shall show that point dissipativity does not imply local dissipativity in gen-
eral. We will present an example to show this fact in the last subsection.

Next, we are going to define the center of Levinson of an impulsive semidy-
namical system. Before that, we present some auxiliaries results.
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Lemma 3.13. Let (X,π;M, I) be an impulsive semidynamical system and
A ⊂ X be a set such that π̃+(A) is relatively compact. If A ∩ M = ∅ and
L̃+(A) ⊂ A, then

L̃+(A) = ∩{π̃(A, t) : t ≥ 0}.
Proof. By the definition of L̃+(A) it is enough to prove that L̃+(A) ⊂

∩{π̃(A, t) : t ≥ 0}. Let y ∈ L̃+(A) and t ≥ 0 arbitrary. Thus there exist
sequences {xn}n≥1 in A and {tn}n≥1 ⊂ R+ such that tn

n→∞−−−−→ ∞ and

(3.2) π̃(xn, tn) n→∞−−−−→ y.

Take a positive integer n0 such that tn > t for all n > n0. Since π̃(xn, tn − t) ∈
π̃+(A) for n > n0 and π̃+(A) is relatively compact, we may assume that

π̃(xn, tn − t) n→∞−−−−→ p,

for some p ∈ π̃+(A). Note that p ∈ L̃+(A) because tn − t
n→∞−−−−→ ∞.

Since L̃+(A) ⊂ A and A is relatively compact, we have L̃+(A) compact.
By condition A ∩M = ∅, it follows that L̃+(A) is positively π̃-invariant (see
Lemma 3.5) and there is η > 0 such that B(L̃+(A), η) ∩M = ∅. Then

π̃(a, t) = π(a, t) ∈ L̃+(A)

for all a ∈ L̃+(A) and for all t ≥ 0, that is, φ(a) = ∞ for all a ∈ L̃+(A). By
Lemma 3.4 we have

π̃(π̃(xn, tn − t), t) n→∞−−−−→ π̃(p, t),

that is,

(3.3) π̃(xn, tn) n→∞−−−−→ π̃(p, t).

By (3.2) and (3.3), we get y = π̃(p, t) ∈ π̃(A, t). Since t is arbitrary, y ∈ π̃(A, t)
for all t ≥ 0. �

Let (X,π;M, I) be compact k-dissipative and K be a non-empty compact
set such that K ∩M = ∅ and it is an attractor for all compact subsets from X .
Then for every compact A ⊂ X the equality

(3.4) lim
t→∞ sup

x∈A
ρ(π̃(x, t),K) = 0

holds. By Lemma 3.6, we have L̃+(A) non-empty, compact and

lim
t→∞ sup

x∈A
ρ(π̃(x, t), L̃+(A)) = 0.

Thus by Proposition 3.8 the set π̃+(A) is relatively compact. By taking A = K

in (3.4) we get L̃+(K) ⊂ K and π̃+(K) is relatively compact, and consequently
by using Lemma 3.13 it follows that L̃+(K) = ∩{π̃(K, t) : t ≥ 0}.
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Let us denote J by J := L̃+(K) = ∩{π̃(K, t) : t ≥ 0}. The set J is
well defined as it does not depend on the choice of K, which will be shown
in Lemma 3.15. First, let us state another lemma, which follows easily from the
previous results.

Lemma 3.14. Let (X,π;M, I) be compact k-dissipative and K be a non-
empty compact set such that K ∩M = ∅ and it is an attractor for all compact
subsets from X. Then, for all A ∈ C(X) we have:

(a) L̃+(A) is non-empty, positively π̃-invariant and compact;
(b) lim

t→∞ sup
x∈A

ρ(π̃(x, t), L̃+(A)) = 0;

(c) L̃+(A) ⊂ K;
(d) π̃+(A) is relatively compact.

Lemma 3.15. The set J does not depend on the choice of the set K which
attracts all compact subsets of X and K ∩M = ∅.

Proof. Let J(K) = L̃+(K) and J(K1) = L̃+(K1), where K1 is another
compact set attracting all compact subsets from X such that K1 ∩ M = ∅.
Using Lemma 3.14 with the set K and with the set K1, separately, we get

(3.5)
J(K) = L̃+(K) ⊂ K, J(K1) = L̃+(K1) ⊂ K1,

J(K) ⊂ K1, J(K1) ⊂ K.

Now, we claim that J(K) ⊂ π̃(J(K), t) for all t ≥ 0. In fact, let y ∈ J(K)
and t ≥ 0. Then there exist sequences {xn}n≥1 ⊂ K and {tn}n≥1 ⊂ R+ such
that tn

n→∞−−−−→ ∞ and

(3.6) π̃(xn, tn) n→∞−−−−→ y.

Note that there is n0 > 0 such that tn > t for all n > n0. Thus π̃(xn, tn) =
π̃(π̃(xn, tn−t), t) for all n > n0. By the compactness of π̃+(K) (see Lemma 3.14)
we may assume

π̃(xn, tn − t) n→∞−−−−→ b,

where b ∈ L̃+(K) because {xn}n≥1 ⊂ K and tn − t
n→∞−−−−→ ∞. By Lemma 3.14,

the set L̃+(K) is positively π̃-invariant, compact and L̃+(K) ∩M = ∅. Then
there is η > 0 such that B(L̃+(K), η) ∩M = ∅ and we can conclude that

π̃(a, s) = π(a, s) ∈ L̃+(K),

for all a ∈ L̃+(K) and for all s ≥ 0. Thus, by Lemma 3.4 we have

π̃(π̃(xn, tn − t), t) n→∞−−−−→ π̃(b, t),

that is,

(3.7) π̃(xn, tn) n→∞−−−−→ π̃(b, t).
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By (3.6) and (3.7), it follows that y = π̃(b, t) ∈ π̃(J(K), t) and the assertion
follows. By using a similar proof we have J(K1) ⊂ π̃(J(K1), t) for all t ≥ 0.

Finally, we can conclude that J(K) = J(K1). In fact, by equation (3.5) we
have J(K) ⊂ K1, then

π̃(J(K), t) ⊂ π̃(K1, t),

for all t ≥ 0. As we proved above, we have J(K) ⊂ π̃(J(K), t) for each t ≥ 0.
Therefore,

J(K) ⊂ ∩{π̃(J(K), t) : t ≥ 0} ⊂ ∩{π̃(K1, t) : t ≥ 0} = J(K1).

Analogously, we obtain that J(K1) ⊂ J(K) and the lemma is proved. �

Definition 3.16. The set J defined above by J = L̃+(K) will be called the
center of Levinson of the compact k-dissipative impulsive semidynamical system
(X,π;M, I).

Example 3.17. Let us consider Example 5.6 from [10]. Consider the space
X = R2 × {0, 1} and the dynamical system{

ẋ = −x,
ẏ = −y,

on R2 × {0} and R2 × {1}, independently. Now let M0 = {(x, y, z) ∈ R3 :
x2 + y2 = 1, z = 0}, M1 = {(x, y, z) ∈ R3 : x2 + y2 = 1/4, z = 1} and
consider the impulsive set M = M0 ∪M1. We define the impulse function I by
I(x, y, 0) = (x, y, 1) for (x, y, 0) ∈M0 and I(x, y, 1) = (x, y, 0) for (x, y, 1) ∈M1.
Then (X,π;M, I) is compact k-dissipative and J = {(0, 0, 0), (0, 0, 1)} is its
center of Levinson.

The next definitions are established from the non-impulsive case in the sense
of [8].

Definition 3.18. Let (X,π;M, I) be an impulsive semidynamical system.
The stable manifold of a set A ⊂ X in the impulsive system is defined by

W̃ s(A) =
{
x ∈ X : lim

t→∞ ρ(π̃(x, t), A) = 0
}
.

Definition 3.19. A set A in (X,π;M, I) is said to be:

(a) orbitally π̃-stable, if given ε > 0 there is δ = δ(ε) > 0 such that
ρ(x,A) < δ implies ρ(π̃(x, t), A) < ε for all t ≥ 0;

(b) π̃-attracting, if there exists γ > 0 such that B(A, γ) ⊂ W̃ s(A);
(c) asymptotically π̃-stable, if it is orbitally π̃-stable and π̃-attracting;
(d) globally asymptotically π̃-stable, if it is asymptotically π̃-stable and

W̃ s(A) = X ;
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(e) uniform π̃-attracting, if there is γ > 0 such that

lim
t→∞ sup

x∈B(A,γ)

ρ(π̃(x, t), A) = 0.

The next theorem concerns the compactness, positive invariance, orbital sta-
bility and attraction of the center of Levinson.

Theorem 3.20. Let (X,π;M, I) be compact k-dissipative and J be its center
of Levinson. Then:

(a) J is a compact positively π̃-invariant set;
(b) J is orbitally π̃-stable;
(c) J is the attractor of the family of all compacts of X ;
(d) J is the maximal compact positively π̃-invariant set in (X,π;M, I) such

that J ⊂ π̃(J, t) for each t ≥ 0.

Proof. Let J = L̃+(K) where K is the non-empty compact attractor of all
compact subsets from X such that K ∩M = ∅.

(a) It follows by Lemma 3.14.
(b) Suppose the contrary, then there are ε0 > 0, δn

n→∞−−−−→ 0 (δn > 0),
xn ∈ B(J, δn) and tn

n→∞−−−−→ ∞ (tn > 0) (because J ∩M = ∅ and J is positively
π̃-invariant) such that

ρ(π̃(xn, tn), J) ≥ ε0,

for each n ∈ N. Since xn ∈ B(J, δn), δn
n→∞−−−−→ 0 and J is compact, we can

assume without loss of generality that the sequence {xn}n≥1 is convergent. Let
x its limit and consider the compact set A = {x, x1, x2, . . . }. By Lemma 3.14,
L̃+(A) is non-empty, compact and π̃+(A) is relatively compact.

By the compactness of K, there is ε > 0 such that B(K, ε) ∩M = ∅ and by
the compact dissipativity of (X,π;M, I), there is � = �(ε) > 0 such that

π̃(A, t) ⊂ B(K, ε) for all t ≥ �.

Let B = π̃+(π̃(A, �)). Then B ∩M = ∅ and B is compact because π̃+(A) is
relatively compact. Let K ′ = K ∪ B, then K ′ is an attractor for the family
of all compacts from X such that K ′ ∩M = ∅. By Lemma 3.15, L̃+(K ′) =
L̃+(K) = J . In particular, L̃+(B) ⊂ L̃+(K ′) = J . By compactness of B the
sequence {π̃(xn, tn)}n≥1 can be considered convergent. Let p = lim

n→∞ π̃(xn, tn).
Then,

p = lim
n→∞ π̃(π̃(xn, �), tn − �)

and p ∈ L̃+(B) ⊂ J . On the other hand, the inequality ρ(π̃(xn, tn), J) ≥ ε0,
n ∈ N, implies that p /∈ J and it is a contradiction.

(c) LetA ∈ C(X). By Lemma 3.14 we have π̃+(A) relatively compact, L̃+(A)
compact and L̃+(A)∩M = ∅. By the compactness of L̃+(A) there is ε > 0 such
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that B(L̃+(A), ε) ∩M = ∅. By item (b) of Lemma 3.14, there is � = �(ε) > 0
such that

(3.8) π̃(A, t) ⊂ B(L̃+(A), ε)

for all t ≥ �. Let B = π̃+(π̃(A, �)). Then B∩M = ∅ and B ⊂ π̃+(A) is compact.
Define K ′ = K ∪ B, then K ′ is an attractor for the family of all compacts

from X such that K ′ ∩M = ∅. Then L̃+(K ′) = L̃+(K) = J (see Lemma 3.15)
and

L̃+(B) ⊂ L̃+(K ′) = J.

Since π̃(A, �) ⊂ B, we have L̃+(A) ⊂ L̃+(B). In fact, let z ∈ L̃+(A), then there
are sequences {an}n≥1 ⊂ A and tn

n→∞−−−−→ ∞ such that

π̃(an, tn) n→∞−−−−→ z,

that is,
π̃(π̃(an, �), tn − �) n→∞−−−−→ z.

Since π̃(an, �) ∈ π̃(A, �) ⊂ B, n = 1, 2, . . . , and tn − �
n→∞−−−−→ ∞, we have

z ∈ L̃+(B). Therefore,
L̃+(A) ⊂ J

and hence by using (3.8) we have

β(π̃(A, t), J) ≤ β(π̃(A, t), L̃+(A)) < ε,

for all t ≥ �, that is, lim
t→∞β(π̃(A, t), J) = 0.

(d) Let J1 be a compact positively π̃-invariant set such that J1 ⊂ π̃(J1, t)
for all t ≥ 0. By the positive π̃-invariance of J1 we have π̃(J1, t) ⊂ J1 for all
t ≥ 0. Then J1 = π̃(J1, t) for all t ≥ 0. The proof that J1 ⊂ J is the same proof
presented in item (4) of [8, Theorem 1.6]. �

Let {Kλ : λ ∈ Λ} be the family of all non-empty compact positively π̃-in-
variant sets that attract all compact subsets from X . Also, we assume that
Kλ ∩M = ∅ for all λ ∈ Λ.

Theorem 3.21. Let (X,π;M, I) be a compact k-dissipative semidynamical
system with impulses and J be its center of Levinson. Then

J = ∩{Kλ : λ ∈ Λ},
that is, J is the least compact positively π̃-invariant set attracting all compacts
from X.

Proof. Note that J = L̃+(Kλ) ⊂ Kλ, for all λ ∈ Λ. On the other hand,
since J attracts all compacts from X and it is non-empty, positively π̃-invariant
with J ∩M = ∅, then J ∈ {Kλ : λ ∈ Λ}. Hence, the lemma is proved. �

Next, we show that the stable manifold of A ⊂ X is positively π̃-invariant.
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Lemma 3.22. Let A ⊂ X. Then the set W̃ s(A) is positively π̃-invariant.

Proof. We may assume that W̃ s(A) is not empty. Let x ∈ W̃ s(A) and
λ ≥ 0. Given ε > 0 there is T = T (x, ε) > 0 such that ρ(π̃(x, t), A) < ε for all
t > T . Then

ρ(π̃(π̃(x, λ), t), A) = ρ(π̃(x, t+ λ), A) < ε

for all t > max{T − λ, 0}. Therefore, π̃(x, λ) ∈ W̃ s(A) for all λ ≥ 0. �

Theorem 3.23. Let A be a non-empty compact positively π̃-invariant asym-
ptotically π̃-stable set in the system (X,π;M, I). Suppose I(W̃ s(A) ∩ M) ⊂
W̃ s(A). Then the following statements hold:

(a) the domain of attraction W̃ s(A) of the set A is open in X ;
(b) the equality

lim
t→∞β(π̃(K, t), A) = 0,

holds for every compact K from W̃ s(A).

Proof. (a) Since A is π̃-attracting, there is γ > 0 such that B(A, γ) ⊂
W̃ s(A). It is enough to prove that for each point x ∈ W̃ s(A) \B(A, γ), there is
δx > 0 such that B(x, δx) ⊂ W̃ s(A). Let x ∈ W̃ s(A) \ B(A, γ) and 0 < ε < γ.
By the orbital stability of A, there is δ = δ(ε) > 0 such that π̃(B(A, δ), [0,∞)) ⊂
B(A, ε). By the other side, there is t1 = t1(x, ε) > 0 with t1 �=

k∑
j=0

φ(x+
j ),

k = 0, 1, . . . , such that
π̃(x, t1) ∈ B(A, δ).

Then, there is ν > 0 such that B(π̃(x, t1), ν) ⊂ B(A, δ). We have two cases to
consider: when x ∈M and otherwise.

First, suppose x /∈ M . By the continuity of π and I, there is ν1 > 0 such
that

π̃(B(x, ν1), t1) ⊂ B(π̃(x, t1), ν) ⊂ B(A, δ).

By the orbital stability, π̃(B(x, ν1), t) ⊂ B(A, ε) for all t ≥ t1(x, ε). Hence,
B(x, ν1) ⊂ W̃ s(A).

Second, suppose x ∈M . Since M satisfies the condition (STC) (by hypoth-
esis (H1)), there exists a STC-tube F (L, [0, 2λ]) through x given by a section S.
Since the tube is a neighbourhood of x, there is η > 0 such that

B(x, η) ⊂ F (L, [0, 2λ]).

Denote H1 and H2 by

H1 = F (L, (λ, 2λ]) ∩B(x, η) and H2 = F (L, [0, λ]) ∩B(x, η).

By the continuity of π and I, we can obtain η1 > 0, η1 < η, such that

π̃(B(x, η1) ∩H2, t1) ⊂ B(π̃(x, t1), ν) ⊂ B(A, δ).
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On the other hand, note that I(x) ∈ W̃ s(A) \ M because I(W̃ s(A) ∩ M) ⊂
W̃ s(A) and we have hypothesis (H2). Thus, there is t2 = t2(x, ε) > 0 with

t2 �=
k∑

j=0

φ(I(x)+j ), k = 0, 1, . . . , such that

π̃(I(x), t2) ∈ B(A, δ).

Then, there is ν2 > 0 such that B(π̃(I(x), t2), ν2) ⊂ B(A, δ). As we did before,
there is η2 > 0, η2 < η, such that

π̃(B(x, η2) ∩H1, t2) ⊂ B(π̃(I(x), t2), ν2) ⊂ B(A, δ).

By taking η3 > 0, η3 < min{η1, η2}, it follows by the orbital stability that

π̃(B(x, η3), t) ⊂ B(A, ε)

for all t ≥ max{t1(x, ε), t2(x, ε)}. Thus, we can conclude that B(x, η3) ⊂ W̃ s(A).
Therefore, W̃ s(A) is open in X .
(b) Since A is π̃-attracting, there is γ > 0 such that B(A, γ) ⊂ W̃ s(A). Let

ε > 0, ε < γ, and K be a compact from W̃ s(A). For the number ε > 0 we choose
δ = δ(ε) > 0 taking in account the stability of A. Since A attracts points from
W s(A), given x ∈ K there is t(x, ε) > 0 such that

π̃(x, t) ∈ B(A, δ),

for all t ≥ t(x, ε). By using the same ideas from item a), we can find ρ =
ρ(x, ε) > 0 and T (x, ε) such that

π̃(B(x, ρ), t) ⊂ B(A, ε),

for all t ≥ T (x, ε). The result follows by the compactness of K, the reader may
consult [11, Lemma 1.8] for a proof. �

If A is globally asymptotically π̃-stable in Theorem 3.23, we can drop out
the condition I(W̃ s(A) ∩M) ⊂ W̃ s(A) as show the next result.

Corollary 3.24. Let A be a non-empty compact positively π̃-invariant
globally asymptotically π̃-stable set. Then W̃ s(A) is open in X and the limit
lim

t→∞β(π̃(K, t), A) = 0 holds for every compact K from W̃ s(A).

Denote by {Hλ : λ ∈ Λ} the family of all non-empty compact positively π̃-
invariant and globally asymptotically π̃-stable sets of X . Also, we assume that
Hλ ∩M = ∅ for all λ ∈ Λ.

Theorem 3.25. Let (X,π;M, I) be compact k-dissipative and J be its center
of Levinson. Then J = ∩{Hλ : λ ∈ Λ}.

For a proof of Theorem 3.25, use Theorem 3.21, Corollary 3.24 and the proof
of [8, Theorem 1.8].
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Theorem 3.26. Let (X,π;M, I) be compact k-dissipative and K be a non-
empty compact positive π̃-invariant set from X. Suppose K ⊂ π̃(K, t) for all
t ≥ 0 and K ∩M = ∅. Then the following statements are equivalent:

(a) K is the center of Levinson of (X,π;M, I);
(b) K is globally asymptotically π̃-stable;
(c) K is maximal compact positively π̃-invariant set in X such that K ⊂

π̃(K, t) for all t ≥ 0.

Proof. Using Theorem 3.20 and Theorem 3.25 we get the result. The reader
may see [8, Theorem 1.9]. �

3.2. Criteria of compact dissipativity. Let (X,π;M, I) be an impulsive

semidynamical system and Ω = ∪{L̃+(x) : x ∈ X}. In this subsection by J we
denote the center of Levinson of a compact k-dissipative impulsive semidynamical
system.

If (X,π;M, I) is compact k-dissipative by Theorem 3.20 it follows by that
L̃+(x) ⊂ J for all x ∈ X , and therefore Ω ⊂ J .

Unless it is stated otherwise, we assume that (X,π;M, I) is an impulsive
semidynamical system.

Given A ⊂ X , we define D̃+(A) and J̃+(A) by

D̃+(A) =
⋂
ε>0

⋃
{π̃(B(A, ε), t) : t ≥ 0}

and

J̃+(A) =
⋂
ε>0

⋂
t≥0

⋃
{π̃(B(A, ε), τ) : τ ≥ t}.

We also define D̃+(x) = D̃+({x}) and J̃+(x) = J̃+({x}) for each x ∈ X . From
the definition of these sets, we have the following straightforward result:

Lemma 3.27. Let (X,π;M, I) be an impulsive semidynamical system. The
following statements hold:

(a) y ∈ J̃+(A) if and only if there exist sequences {xn}n≥1 ⊂ X and
{tn}n≥1 ⊂ R+ such that

ρ(xn, A) n→∞−−−−→ 0, tn
n→∞−−−−→ ∞, π̃(xn, tn) n→∞−−−−→ y;

(b) y ∈ D̃+(A) if and only if there exist sequences {xn}n≥1 ⊂ X and
{tn}n≥1 ⊂ R+ such that ρ(xn, A) n→∞−−−−→ 0 and π̃(xn, tn) n→∞−−−−→ y;

(c) The sets D̃+(A) and J̃+(A) are closed;
(d) If J̃+(A) ∩M = ∅ then J̃+(A) is positively π̃-invariant;
(e) If D̃+(A) ∩M = ∅ then D̃+(A) is positively π̃-invariant.
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In [16], Kaul considers an impulsive semidynamical system (Ω, π̃), where
Ω ⊂ X is an open set in a metric space X and the continuous impulse function
I is defined on the boundary ∂Ω of Ω in X and takes values in Ω. He proves
that D̃+(x) = π̃+(x) ∪ J̃+(x) for each x ∈ Ω (see [16, Lemma 2.11]). Under our
assumptions, an analogous result is true in more general situation, as is shown
in the next lemma.

Lemma 3.28. Let (X,π;M, I) be an impulsive semidynamical system. Given
x ∈ X, we have the following statements:

(a) π̃+(x) ⊂ D̃+(x) for all x ∈ X ;
(b) D̃+(x) = π̃+(x) ∪ J̃+(x) for all x ∈ X \M ;
(c) π̃+(I(x)) ⊂ D̃+(x) for all x ∈M ;
(d) D̃+(x) = π̃+(x) ∪ π̃+(I(x)) ∪ J̃+(x) for all x ∈M .

Proof. It is easy to prove item (a). Let us show item (b). It is enough to
prove that D̃+(x) ⊂ π̃+(x) ∪ J̃+(x). Let y ∈ D̃+(x), then there are sequences
{wn}n≥1 ⊂ X , {tn}n≥1 ⊂ R+ such that wn

n→∞−−−−→ x and

π̃(wn, tn) n→∞−−−−→ y.

If tn
n→∞−−−−→ ∞ then y ∈ J̃+(x). In contrary, {tn}n≥1 admits a convergent

subsequence, we say

tn�

�→∞−−−−→ t,

where t ≥ 0. Then π̃(wn�
, tn�

) �→∞−−−−→ y. Since x /∈ M , by the proof of Case 1
of Lemma 3.7, we conclude that the sequence {π̃(wn�

, tn�
)}�≥1 converges to

a point in π̃+(x). Therefore, y ∈ π̃+(x) ∪ J̃+(x) and the result is proved.
Now, we show item (c). Given x ∈ M , there are y ∈ X and t > 0 such that

π(y, t) = x. Let {λn}n≥1 ⊂ R+ be an increase sequence such that π(y, λn) n→∞−−−−→
x. Define wn = π(y, λn), n = 1, 2, . . . Then

π̃(wn, φ(wn)) n→∞−−−−→ I(x).

Note that I(x) /∈ M because I(M) ∩ M = ∅. Given s ≥ 0, it follows by
Lemma 3.3 that there is a sequence {εn}n≥1 ⊂ R such that εn

n→∞−−−−→ 0 and

π̃(wn, φ(wn) + εn + s) n→∞−−−−→ π̃(I(x), s).

Hence, π̃(I(x), s) ∈ D̃+(x) and since s is taken arbitrary the result follows.
In order to show item (d), we follow the ideas of item (b) and we use the

proof of Case 2 of Lemma 3.7. �

For any subset A ⊂ X we have ∪{D̃+(a) : a ∈ A} ⊂ D̃+(A) and ∪{J̃+(a) :
a ∈ A} ⊂ J̃+(A). The equality does not hold in general as is shown in the next
example.



Autonomous Dissipative Semidynamical Systems with Impulses 23

Example 3.29. Consider the impulsive differential system in R2 given by
ẋ1 = −x1,

ẋ2 = x2,

I:M → N,

where M = {(3, x2) ∈ R2 : x2 ∈ R}, N = {(2, x2) ∈ R2 : x2 ∈ R} and the
impulse function assigns to every point x ∈ M a point y ∈ N which is on the
ray joining x to the origin in R2. Let A = {(x1, 0) ∈ R2 : 2 < x1 < 4}. For any
a ∈ A we have

D̃+(a) = π̃+(a) ∪ {(0, x2) ∈ R2 : x2 ∈ R}.
Then,

∪{D̃+(a) : a ∈ A} = {(x1, 0) ∈ R2 : 0 < x1 < 4} ∪ {(0, x2) ∈ R2 : x2 ∈ R}.
On the other hand,

D̃+(A) = {(x1, 0) ∈ R2 : 0 < x1 ≤ 4} ∪ {(0, x2) ∈ R2 : x2 ∈ R}.
Note that (4, 0) ∈ D̃+(A), so ∪{D̃+(a) : a ∈ A} � D̃+(A).

However, if A is compact we have the equality as is shown in the next propo-
sition.

Proposition 3.30. If the set A ⊂ X is compact, then

D̃+(A) = ∪{D̃+(a) : a ∈ A} and J̃+(A) = ∪{J̃+(a) : a ∈ A}.

Proof. Let x ∈ D̃+(A) (J̃+(A)). Then there exist sequences {tn}n≥1 ⊂ R+

(tn
n→∞−−−−→ ∞), {xn}n≥1 ⊂ X such that ρ(xn, A) n→∞−−−−→ 0 and π̃(xn, tn) n→∞−−−−→ x.

Since A is compact, we may assume

xn
n→∞−−−−→ y ∈ A.

Then x ∈ D̃+(y) ⊂ ∪{D̃+(a) : a ∈ A} (x ∈ J̃+(y) ⊂ ∪{J̃+(a) : a ∈ A}). �

Next, we prove that Ω ⊂ J̃+(Ω). But before that, we present an auxiliary
result which is a generalization for the impulsive case from the result of the
classical theory of dynamical systems, see Lemma 1.10, Chapter V in [1] for
instance.

Lemma 3.31. Let x /∈M and y ∈ L̃+(x), then J̃+(x) ⊂ J̃+(y).

Proof. Let y ∈ L̃+(x) and take z ∈ J̃+(x), then there are sequences
{tn}n≥1 ⊂ R+, {τn}n≥1 ⊂ R+ and {xn}n≥1 ⊂ X where

tn
n→∞−−−−→ ∞, τn

n→∞−−−−→ ∞, xn
n→∞−−−−→ x,

π̃(x, tn) n→∞−−−−→ y, π̃(xn, tn) n→∞−−−−→ z,
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We may assume without loss of generality that {τn}n≥1 and {tn}n≥1 are increas-
ing sequences and τn − tn ≥ n for all n ∈ N.

For each fixed tk, k = 1, 2, . . . , it follows by Lemma 3.3 that there is a se-
quence {εk

n}n≥1 ⊂ R, εk
n

n→∞−−−−→ 0 such that

π̃(xn, tk + εk
n) n→∞−−−−→ π̃(x, tk).

Thus for each natural k > 0 there exists nk ≥ k such that

ρ(π̃(xnk
, tk + εk

nk
), π̃(x, tk)) ≤ 1

k
.

Note that

ρ(y, π̃(xnk
, tk + εk

nk
)) ≤ ρ(y, π̃(x, tk)) + ρ(π̃(x, tk), π̃(xnk

, tk + εk
nk

))

≤ ρ(y, π̃(x, tk)) +
1
k
.

Then π̃(xnk
, tk + εk

nk
) k→∞−−−−→ y because π̃(x, tk) k→∞−−−−→ y. Since

π̃(xnk
, τnk

) = π̃(π̃(xnk
, tk + εk

nk
), τnk

− tk − εk
nk

) k→∞−−−−→ z,

π̃(xnk
, tk + εk

nk
) k→∞−−−−→ y and τnk

− tk − εk
nk

k→∞−−−−→ ∞
(because τnk

− tk − εk
nk

≥ τk − tk − εk
nk

), we have z ∈ J̃+(y). �

In [8, Corollary 1.4], the author shows that in general systems with different
semigroups acting on X , under some assumptions, in particular the compactness
of Ω, we have Ω ⊂ J+(Ω). In Proposition 3.32 below we show that under
additional assumption on semigroup even in impulsive systems the compactness
of Ω and the point dissipativity are not required. The proof presented below
works for non-impulsive systems, so we improve Corollary 1.4 in [8] in the case
where the subgroup acting on X is R+.

Proposition 3.32. The inclusion Ω ⊂ J̃+(Ω) holds.

Proof. Let us prove that ∪{L̃+(x) : x ∈ X} ⊂ J̃+(Ω). Indeed, let y ∈
∪{L̃+(x) : x ∈ X}, then y ∈ L̃+(x) for some x ∈ X .

First suppose x /∈ M . Since y ∈ L̃+(x) it follows by Lemma 3.31 that
J̃+(x) ⊂ J̃+(y). Since y ∈ Ω then J̃+(y) ⊂ J̃+(Ω). Thus

y ∈ L̃+(x) ⊂ J̃+(x) ⊂ J̃+(y) ⊂ J̃+(Ω).

Now suppose x ∈ M . Let λ > 0 such that π̃(x, λ) = π(x, λ) := z /∈ M . We
note that L̃+(x) ⊂ L̃+(z) because if w ∈ L̃+(x), there is a sequence tn

n→∞−−−−→ ∞
(tn > 0) such that π̃(x, tn) n→∞−−−−→ w. Then π̃(z, tn−λ) n→∞−−−−→ w and w ∈ L̃+(z).
Consequently,

y ∈ L̃+(x) ⊂ L̃+(z) ⊂ J̃+(z) ⊂ J̃+(y) ⊂ J̃+(Ω),
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where the inclusion J̃+(z) ⊂ J̃+(y) follows by Lemma 3.31, since z /∈ M and
y ∈ L̃+(z). Since J̃+(Ω) is closed, the result follows. �

Proposition 3.33. If the impulsive semidynamical system (X,π;M, I) is
point k-dissipative and D̃+(Ω) (J̃+(Ω)) is compact such that D̃+(Ω) ∩M = ∅
(J̃+(Ω) ∩M = ∅), then D̃+(Ω) = D̃+(D̃+(Ω)) (J̃+(Ω) = J̃+(J̃+(Ω))).

Proof. Since Ω ⊂ D̃+(Ω) we have D̃+(Ω) ⊂ D̃+(D̃+(Ω)). Let us show the
other set inclusion. By the compactness of D̃+(Ω), given y ∈ D̃+(D̃+(Ω)) there
is x ∈ D̃+(Ω) such that y ∈ D̃+(x), see Proposition 3.30.

By Lemma 3.27 we have D̃+(Ω) positively π̃-invariant. Since D̃+(Ω) is com-
pact, positively π̃-invariant and x ∈ D̃+(Ω) it follows that π̃+(x) ⊂ D̃+(Ω),
L̃+(x) �= ∅ and L̃+(x) ⊂ D̃+(Ω). Let z ∈ L̃+(x), then by Lemma 3.31 it follows

J̃+(x) ⊂ J̃+(z).

Now, by the compactness of Ω we have J̃+(Ω) = ∪{J̃+(w) : w ∈ Ω}. Therefore,
J̃+(z) ⊂ J̃+(Ω) and

y ∈ D̃+(x) = π̃+(x) ∪ J̃+(x) ⊂ D̃+(Ω) ∪ J̃+(z) ⊂ D̃+(Ω) ∪ J̃+(Ω) ⊂ D̃+(Ω).

We can prove that J̃+(Ω) = J̃+(J̃+(Ω)) by using the same ideas. We note
that by Proposition 3.32 we have Ω ⊂ J̃+(Ω) and then J̃+(Ω) ⊂ J̃+(J̃+(Ω)). �

When the metric space X is locally compact, a compact set A is orbitally
π̃-stable if and only if D̃+(A) = A. This result is an impulsive version of the
Theorem of Ura and a proof of it may be found in [10]. Theorem 3.34 deals with
this result for compact k-dissipative systems where X is not necessarily locally
compact.

Theorem 3.34. Let (X,π;M, I) be compact k-dissipative. The compact set
A ⊂ X is orbitally π̃-stable if and only if D̃+(A) = A.

Proof. Let us prove the necessary condition. It is enough to prove that
D̃+(A) ⊂ A. Let z ∈ D̃+(A). Since A is compact it follows by Proposition 3.30
that there is x ∈ A such that z ∈ D̃+(x). Then there are sequences {xn}n≥1 ⊂ X ,
{tn}n≥1 ⊂ R+ with xn

n→∞−−−−→ x and

π̃(xn, tn) n→∞−−−−→ z.

Since A is orbitally π̃-stable, given ε > 0 there is δ = δ(ε) > 0 such that

π̃(B(A, δ), [0,∞)) ⊂ B(A, ε).

Then, for n sufficiently large, we have π̃(xn, tn) ∈ B(A, ε) and then

z ∈ B(A, ε).
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Since ε > 0 is arbitrary, we have z ∈
⋂
ε>0

B(A, ε)=A=A. Therefore, D̃+(A)=A.

Let us prove the sufficient condition. Suppose A is not orbitally π̃-stable.
Then there are ε0 > 0, δn

n→∞−−−−→ 0 (δn > 0), xn ∈ B(A, δn) and tn > 0 such that

(3.9) ρ(π̃(xn, tn), A) ≥ ε0,

n ∈ N. We may assume that xn
n→∞−−−−→ x ∈ A. By Lemma 3.14 the set π̃+(B)

is relatively compact, where B = {x, x1, x2, . . . }. Consequently, we may assume
that {π̃(xn, tn)}n≥1 is convergent with limit y. Since xn

n→∞−−−−→ x ∈ A, we have
y ∈ D̃+(A) = A. But by (3.9) we have y /∈ A and it is a contradiction. �

Proposition 3.35. If (X,π;M, I) is compact k-dissipative, then

D̃+(Ω) = D̃+(D̃+(Ω)) (J̃+(Ω) = J̃+(J̃+(Ω))).

Proof. By Theorems 3.20 and 3.34 we have

D̃+(J) = J.

Note that D̃+(Ω) ⊂ D̃+(J) = J because Ω ⊂ J . Since J is compact and D̃+(Ω)
is closed we have D̃+(Ω) compact. On the other hand, since D̃+(Ω) ⊂ J and
J ∩M = ∅ it follows D̃+(Ω) ∩M = ∅. The result follows by Proposition 3.33.

To prove the other equality J̃+(Ω) = J̃+(J̃+(Ω)) it is enough to note that
J̃+(Ω) ⊂ D̃+(Ω) ⊂ J . �

If the impulsive semidynamical system is compact k-dissipative, we can show
that its center of Levinson is the set J̃+(Ω). See Theorem 3.36.

Theorem 3.36. If the impulsive semidynamical system (X,π;M, I) is com-
pact k-dissipative, then J = J̃+(Ω).

Proof. Since Ω ⊂ J we have J̃+(Ω) ⊂ J̃+(J) ⊂ D̃+(J) = J . Let us
show that J ⊂ J̃+(Ω). In fact, note that J̃+(Ω) is non-empty (Ω ⊂ J̃+(Ω)
by Proposition 3.32), compact (because J̃+(Ω) is closed and J is compact) and
positively π̃-invariant (because J̃+(Ω) ⊂ J and J ∩M = ∅).

Now, we are going to show that J̃+(Ω) is globally asymptotically π̃-stable.
First, let us prove that it is orbitally π̃-stable. Since J̃+(Ω) ⊂ D̃+(J̃+(Ω))
we need just to prove the another set inclusion and use Theorem 3.34. Let
z ∈ D̃+(J̃+(Ω)), then z ∈ D̃+(y) for some y ∈ J̃+(Ω). By Lemma 3.28, we have
z ∈ π̃+(y) or z ∈ J̃+(y), because y /∈M . If z ∈ π̃+(y), since J̃+(Ω) is closed and
positively π̃-invariant, it follows that π̃+(y) ⊂ J̃+(Ω), consequently z ∈ J̃+(Ω).
But if z ∈ J̃+(y), then by Proposition 3.35 we have z ∈ J̃+(J̃+(Ω)) = J̃+(Ω).
Thus z ∈ J̃+(Ω) and therefore D̃+(J̃+(Ω)) = J̃+(Ω). Hence, J̃+(Ω) is orbitally
π̃-stable by Theorem 3.34.
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Now, let us show that W̃ s(J̃+(Ω)) = X . Suppose there is x ∈ X such that
x /∈ W̃ s(J̃+(Ω)). Then there is ε0 > 0 such that for all n ∈ N there is tn > n

with

(3.10) ρ(π̃(x, tn), J̃+(Ω)) ≥ ε0.

Since π̃+(x) is relatively compact (see Lemma 3.14), we can assume

π̃(x, tn) n→∞−−−−→ p ∈ L̃+(x).

Then, p ∈ L̃+(x) ⊂ Ω ⊂ J̃+(Ω). On the other hand, by (3.10) we have p /∈ J̃+(Ω)
which is a contradiction.

Consequently, J̃+(Ω) is non-empty, compact, positively π̃-invariant and glob-
ally asymptotically π̃-stable. Then by Theorem 3.25 we have J ⊂ J̃+(Ω) and
the theorem is proved. �

Since J̃+(Ω) ⊂ D̃+(Ω) ⊂ J , we have the following result.

Corollary 3.37. If (X,π;M, I) is compact k-dissipative, then J = D̃+(Ω).

Corollary 3.38. If (X,π;M, I) is compact k-dissipative, then J = Ω if
and only if Ω is orbitally π̃-stable.

We have the following result for compact k-dissipative impulsive systems.

Lemma 3.39. Let (X,π;M, I) be compact k-dissipative. Given ε > 0 and
x ∈ X, there exist γ(x, ε) > 0 and �(x, ε) > 0 such that

π̃(B(x, γ(x, ε)), t) ⊂ B(J, ε) for all t ≥ �(x, ε).

Proof. Let ε > 0 and x ∈ X be given. There is δ = δ(ε) > 0 such that

(3.11) π̃(B(J, δ), [0,∞)) ⊂ B(J, ε),

because J is orbitally π̃-stable. Since L̃+(x) ⊂ J , there is t1 = t1(x, ε) > 0,

t1 �=
k∑

j=0

φ(x+
j ), k = 0, 1, 2, . . . , such that

π̃(x, t1) ∈ B(J, δ).

By the openness of B(J, δ) there exists ν > 0 such that B(π̃(x, t1), ν) ⊂ B(J, δ).
We have two cases to consider: x ∈M and x /∈M .

First, suppose x /∈ M . It follows by the continuity of π and I that there is
γ = γ(x, ε) > 0 such that

π̃(B(x, γ), t1) ⊂ B(π̃(x, t1), ν) ⊂ B(J, δ).

By (3.11), we have π̃(B(x, γ), t) ⊂ B(J, ε) for all t ≥ t1(x, ε). The result is
proved in this case.
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If x ∈ M , there exists a STC-tube F (L, [0, 2λ]) through x given by a sec-
tion S, because M satisfies the condition STC (by hypothesis (H1)). Since the
tube is a neighbourhood of x, there is η > 0 such that

B(x, η) ⊂ F (L, [0, 2λ]).

Denote H1 and H2 by

H1 = F (L, (λ, 2λ]) ∩B(x, η) and H2 = F (L, [0, λ]) ∩B(x, η).

Then, there exists η1 > 0, η1 < η, such that

π̃(B(x, η1) ∩H2, t1) ⊂ B(π̃(x, t1), ν) ⊂ B(J, δ).

Again, by (3.11) we have π̃(B(x, η1) ∩H2, t) ⊂ B(J, ε) for all t ≥ t1(x, ε).
Since I(x) /∈M becauseM∩I(M)=∅ (see hypothesis (H2)) and L̃+(I(x))⊂J ,

there is t2 = t2(x, ε) > 0, t2 �=
k∑

j=0

φ(I(x)+j ), k = 0, 1, . . . , such that π̃(I(x), t2) ∈
B(J, δ). Since B(J, δ) is open there is ν1 > 0 such that B(π̃(I(x), t2), ν1) ⊂
B(J, δ), and by the continuity of π and I there is 0 < η2 < η such that

π̃(B(x, η2) ∩H1, t2) ⊂ B(π̃(I(x), t2), ν1) ⊂ B(J, δ).

Hence, by (3.11) we conclude that π̃(B(x, η2)∩H1, t) ⊂ B(J, ε) for all t ≥ t2(x, ε).
By taking γ > 0, γ = γ(x, ε) < min{η1, η2}, we have

π̃(B(x, γ), t) ⊂ B(J, ε),

for all t ≥ max{t1(x, ε), t2(x, ε)}. Therefore, the proof is complete. �

The next four results deal with necessary and sufficient conditions to obtain
compact dissipativity.

Theorem 3.40. For the impulsive semidynamical system (X,π;M, I) to be
compact k-dissipative, it is necessary and sufficient that there exists a non-empty
compact set K ⊂ X, K ∩M = ∅, satisfying the condition: for every ε > 0 and
x ∈ X, there exist γ(x, ε) > 0 and �(x, ε) > 0 such that

π̃(B(x, γ(x, ε)), t) ⊂ B(K, ε) for all t ≥ �(x, ε).

Proof. The necessary condition follows by Lemma 3.39 and the sufficient
condition follows by the proof of [8, Theorem 1.12]. �

Theorem 3.41. Let (X,π;M, I) be point k-dissipative. For the impulsive
semidynamical system (X,π;M, I) to be compact k-dissipative, it is necessary
and sufficient that there exists a non-empty compact set A possessing the follow-
ing properties:

(a) A ∩M = ∅;
(b) Ω ⊂ A;
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(c) A is orbital π̃-stable.

In this case J ⊂ A where J is the center of Levinson of (X,π;M, I).

Proof. Take A = J to prove the necessary condition. Let us prove the
sufficient condition. By Theorem 3.40 we need to prove that for every ε > 0 and
x ∈ X , there exist γ(x, ε) > 0 and �(x, ε) > 0 such that

π̃(B(x, γ(x, ε)), t) ⊂ B(A, ε)

for all t ≥ �(x, ε). The proof is analogous to the proof of Lemma 3.39, we only
need to replace J by A, because A is orbitally π̃-stable and L̃+(x) ⊂ Ω ⊂ A.
Using Corollary 3.37, it follows from Ω ⊂ A that J = D̃+(Ω) ⊂ D̃+(A) = A. �

As a consequence of Corollary 3.37 and Theorem 3.41, we have the following
straightforward result:

Theorem 3.42. Let (X,π;M, I) be point k-dissipative. For the impulsive
semidynamical system (X,π;M, I) to be compact k-dissipative, it is necessary
and sufficient that the set D̃+(Ω) (J̃+(Ω)) be compact, orbitally π̃-stable and
D̃+(Ω) ∩M = ∅ (J̃+(Ω) ∩M = ∅). In this case J = D̃+(Ω) (J = J̃+(Ω)).

Theorem 3.43. Let (X,π;M, I) be point k-dissipative. For the impulsive
semidynamical system (X,π;M, I) to be compact k-dissipative, it is necessary
and sufficient that D̃+(Ω) ∩ M = ∅ and π̃+(A) be relatively compact for any
compact A ⊂ X.

Proof. The proof of the necessary condition follows by Lemma 3.14 and
Theorem 3.42. Let us prove the sufficient condition. At first, let us show
that D̃+(Ω) is non-empty and compact. Indeed, since (X,π;M, I) is point
k-dissipative it follows that Ω �= ∅. Thus D̃+(Ω) is non-empty. Now, let
{yn}n≥1 ⊂ D̃+(Ω) and εn

n→∞−−−−→ 0 (εn > 0, n = 1, 2, . . . ), then there exist
xn ∈ Ω, xn ∈ B(xn, εn) and tn > 0 such that yn ∈ D̃+(xn) and

(3.12) ρ(yn, π̃(xn, tn)) < εn,

n = 1, 2, . . . Since {xn}n≥1 is relatively compact because Ω is compact (since the
system is point k-dissipative), we have {xn}n≥1 relatively compact. It follows
that {π̃(xn, tn)}n≥1 is relatively compact. By (3.12) we have {yn}n≥1 relatively
compact. Hence, D̃+(Ω) is compact.

We claim that D̃+(Ω) is orbitally π̃-stable. Suppose the contrary. Then there
are ε0 > 0, δn

n→∞−−−−→ 0 (δn > 0), xn ∈ B(D̃+(Ω), δn) and tn > 0 such that

(3.13) ρ(π̃(xn, tn), D̃+(Ω)) ≥ ε0,

n ∈ N. We can assume xn
n→∞−−−−→ x ∈ D̃+(Ω) since D̃+(Ω) is compact. By the

assumptions, the set π̃+(B) is relatively compact, where B = {x, x1, x2, . . . }.
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Consequently, we may assume that {π̃(xn, tn)}n≥1 is convergent with limit y.
By (3.13) we get

(3.14) y /∈ D̃+(Ω).

On the other hand, since xn
n→∞−−−−→ x ∈ D̃+(Ω) and D̃+(D̃+(Ω)) = D̃+(Ω) (see

Proposition 3.33), we have y ∈ D̃+(D̃+(Ω)) = D̃+(Ω) which contradicts (3.14).
Thus D̃+(Ω) is orbitally π̃-stable. Hence, by Theorem 3.42 we have the result.�

Example 3.44. Consider the impulsive differential system in R2 given by
ẋ1 = x1,

ẋ2 = 0,

I:M → N,

where M = {(x1, x2) ∈ R2 : x2
1 + x2

2 = 9}, N = {(x1, x2) ∈ R2 : x2
1 + x2

2 = 1}
and the impulse function I:M → N assigns to every point x ∈M a point y ∈ N

which is on the ray joining x to the origin in R2. In [5, Example 3.1], we showed
that L̃+((1, 2)) = [1, 3] × {0}. Then Ω ∩M �= ∅ because L̃+((1, 2)) ∩M �= ∅.
Hence, the impulsive semidynamical systems is not point k-dissipative.

Example 3.45. Given c > 0, we define ϕc:R→ R by

ϕc(t) =



0, t ≤ −1 − 1
c
,

exp
(

1
t2 − (1 + c−1)2

)
, −1 − 1

c
< t < 1 +

1
c
,

0, t ≥ 1 +
1
c
.

Also, define ψ:R→ R by

ψ(t) =


0, t ≤ −1,

exp
(

1
t2 − 1

)
, −1 < t < 1,

0, t ≥ 1.

Set X = {ψ, ϕc : c > 0} ⊂ C(R,R) and define π:X × R+ → X by

π(ϕc, t) = ϕc+t if c > 0, and π(ψ, t) = ψ,

for all t ≥ 0. Then (X,π) is a semidynamical system. By defining M =
{ϕc1 , . . . , ϕck

} with 0 < c1 < . . . < ck let I:M → X be the impulse function
given by I(ϕcj ) = ϕcj+α, j = 1, . . . , k, where α > 0 is such that I(M) ∩M = ∅.
Hence, we have the impulsive semidynamical system (X,π;M, I) associated
to (X,π).

Since lim
c→∞ϕc(t) = ψ(t) for all t ∈ R, and I(ϕcj ) = ϕcj+α, j = 1, . . . , k, we

have the following properties:

(1) L̃+(φ) = {ψ} for all φ ∈ X ;
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(2) (X,π;M, I) is point k-dissipative (take K = {ψ});
(3) Ω = {ψ} and D̃+(Ω) = Ω is orbitally π̃-stable.

Therefore, by Theorem 3.42, (X,π;M, I) is compact k-dissipative.

3.4. Local dissipative impulsive semidynamical systems. This sub-
section deals with local k-dissipative impulsive semidynamical systems. Through-
out all this subsection by J we denote the center of Levinson of a compact
k-dissipative impulsive system (X,π;M, I).

The first result gives conditions for a compact k-dissipative impulsive system
be local k-dissipative.

Theorem 3.46. For the compact k-dissipative impulsive semidynamical sys-
tem (X,π;M, I) to be locally k-dissipative, it is necessary and sufficient that for
every point x ∈ X there exists δ = δ(x) > 0 such that

lim
t→∞β(π̃(B(x, δ), t), J) = 0.

Proof. It is enough to prove the necessary condition. By the local dissipa-
tivity, there is a non-empty compact set K ⊂ X , K ∩M = ∅, such that for every
point x ∈ X there exists δx > 0 such that

(3.15) lim
t→∞β(π̃(B(x, δx), t),K) = 0.

By Lemma 3.6, ωx := L̃+(B(x, δx)) is non-empty, compact and

(3.16) lim
t→∞β(π̃(B(x, δx), t), ωx) = 0.

If we prove that ωx = L̃+(ωx) then the result follows. Indeed, first let us show
that ωx is positively π̃-invariant. Since K is compact and K ∩M = ∅, there is
ε > 0 such that B(K, ε) ∩M = ∅. Thus by using (3.15) we have

(3.17) ωx ⊂ B(K, ε) and B(K, ε) ∩M = ∅.

Then from Lemma 3.5 we have ωx positively π̃-invariant, that is, π̃(ωx, t) ⊂ ωx

for all t ≥ 0. Now, we claim that ωx ⊂ π̃(ωx, t) for all t ≥ 0. In fact, let z ∈ ωx

and t ≥ 0. Then there exist sequences {wn}n≥1 ⊂ B(x, δx) and {tn}n≥1 ⊂ R+

such that tn
n→∞−−−−→ ∞ and

(3.18) π̃(wn, tn) n→∞−−−−→ z.

Note that there is n0 > 0 such that tn > t for all n > n0. Thus π̃(wn, tn) =
π̃(π̃(wn, tn − t), t) for all n > n0. By Lemma 3.6 we may assume

π̃(wn, tn − t) n→∞−−−−→ b,
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where b ∈ L̃+(B(x, δx)) = ωx because {wn}n≥1 ⊂ B(x, δx) and tn − t
n→∞−−−−→ ∞.

Since ωx is positively π̃-invariant, it follows by equation (3.17) that

π̃(a, s) = π(a, s) ∈ ωx,

for all a ∈ ωx and for all s ≥ 0. Thus, by Lemma 3.4 we have

π̃(π̃(wn, tn − t), t) n→∞−−−−→ π̃(b, t),

that is,

(3.19) π̃(wn, tn) n→∞−−−−→ π̃(b, t).

By (3.18) and (3.19), it follows that z = π̃(b, t) ∈ π̃(ωx, t) and the assertion
follows. Therefore, ωx = π̃(ωx, t) for all t ≥ 0, consequently L̃+(ωx) = ωx. Since
J is an attractor of compacts sets, we have

ωx = L̃+(ωx) ⊂ J.

From the last inclusion and (3.16) it follows

lim
t→∞ β(π̃(B(x, δx), t), J) = 0. �

Next, we present an auxiliary result whose proof is in [8, Lemma 1.9].

Lemma 3.47. Let K ⊂ X be a non-empty compact set, xi ∈ X and δi > 0,
i = 1, . . . ,m. If K ⊂ ∪{B(xi, δi) : i = 1, . . . ,m}, then there is γ > 0 such that

B(K, γ) ⊂ ∪{B(xi, δi) : i = 1, . . . ,m}.

Theorem 3.48. Let (X,π;M, I) be compact k-dissipative. Then (X,π;M, I)
is locally k-dissipative if and only if its Levinson’s center J is uniformly π̃-
attracting.

Proof. First, let us prove the necessary condition. Let (X,π;M, I) be
locally k-dissipative. Given x ∈ J , by Theorem 3.46, there exists δx > 0 such
that

lim
t→∞ β(π̃(B(x, δx), t), J) = 0.

Since {B(x, δx) : x ∈ J} is an open covering of J , from its compactness we
can extract a finite sub-covering {B(xi, δxi) : i = 1, . . . ,m}. According to
Lemma 3.47, there is γ > 0 such that

B(J, γ) ⊂
m⋃

i=1

B(xi, δxi).

Then, lim
t→∞β(π̃(B(J, γ), t), J) = 0 holds and J is uniformly π̃-attracting.
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Now, we prove the sufficient condition. Suppose that J is uniformly π̃-
attracting set, that is, there is γ > 0 such that

(3.20) lim
t→∞ β(π̃(B(J, γ), t), J) = 0.

Given x ∈ X , there is �1 = �1(x) > 0, �1 �=
k∑

j=0

φ(x+
j ), k = 0, 1, 2, . . . , such

that ρ(π̃(x, t), J) < γ, for all t ≥ �1. Choose ν > 0 such that B(π̃(x, �1), ν) ⊂
B(J, γ). By equation (3.20), given ε > 0 there is �2 = �2(ε) > 0 such that

(3.21) ρ(π̃(y, t), J) < ε,

for all t ≥ �2 and y ∈ B(J, γ). We have two cases to consider: when x ∈M and
otherwise.

Let x /∈M . Then, we can find δx > 0 such that

π̃(B(x, δx), �1) ⊂ B(π̃(x, �1), ν) ⊂ B(J, γ).

By virtue of (3.21),
π̃(B(x, δx), t+ �1) ⊂ B(J, ε),

for all t ≥ �2. By taking �(x, ε) = �1 + �2, we have

π̃(B(x, δx), t) ⊂ B(J, ε),

for all t ≥ �(x, ε). In this case, the result follows by Theorem 3.46.
Now, let x ∈M . Since M satisfies the condition STC (see hypothesis (H1)),

there is a STC-tube F (L, [0, 2λ]) through x given by a section S. By the prop-
erties of a tube, there is η > 0 such that B(x, η) ⊂ F (L, [0, 2λ]). Denote H1 and
H2 by

H1 = F (L, (λ, 2λ]) ∩B(x, η) and H2 = F (L, [0, λ]) ∩B(x, η).

By the continuity of π and I, there is η1 > 0, η1 < η, such that π̃(z, �1) ∈
B(π̃(x, �1), ν) ⊂ B(J, γ) for all z ∈ B(x, η1) ∩H2. Thus, π̃(B(x, η1) ∩ H2, t) ⊂
B(J, ε) for all t ≥ �1 + �2. Also, there is �3 = �3(x) > 0, �3 �=

k∑
j=0

φ(I(x)+j ),

k = 0, 1, . . . , such that ρ(π̃(I(x), t), J) < γ, for all t ≥ �3. Set ν2 > 0 such
that B(π̃(I(x), �3), ν2) ⊂ B(J, γ). Thus, there is η2 > 0, η2 < η, such that
π̃(z, t) ∈ B(J, ε) for all z ∈ B(x, η2) ∩ H1 and t ≥ �2 + �3. Taking η3 > 0,
η3 < min{η1, η2}, we have

π̃(B(x, η3), t) ⊂ B(J, ε)

for all t ≥ max{�1 + �2, �2 + �3}. In this case, the result also follows by Theo-
rem 3.46. �

Next, we present a theorem which give conditions for a point k-dissipative
system to be local k-dissipative. Before that, we prove a auxiliary result.
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Lemma 3.49. Let A ⊂ X be a non-empty positively π̃-invariant compact set
in (X,π;M, I) such that A ∩M = ∅. If A is uniformly π̃-attracting then it is
orbitally π̃-stable.

Proof. Suppose the contrary. Then, there are ε0 > 0, δn
n→∞−−−−→ 0 (δn > 0),

xn ∈ B(A, δn) and tn
n→∞−−−−→ ∞ (tn > 0) such that

(3.22) ρ(π̃(xn, tn), A) ≥ ε0,

n = 1, 2, . . . Since A is uniformly π̃-attracting, there is γ > 0 such that

lim
t→∞ sup

x∈B(A,γ)

ρ(π̃(x, t), A) = 0.

For the number ε0 > 0, there exists a positive number � = �(ε0) > 0 such that

(3.23) ρ(π̃(x, t), A) <
ε0
2

for all x ∈ B(A, γ) and t ≥ �.
On the other hand, since xn ∈ B(A, δn) and δn

n→∞−−−−→ 0, we may assume
that the sequence {xn}n≥1 is convergent. Let x0 = lim

n→∞ xn. Then x0 ∈ A and

tn ≥ � for sufficiently large n. By (3.23) we have

ρ(π̃(xn, tn), A) <
ε0
2
,

for a sufficiently large n, which contradicts (3.22). �

Theorem 3.50. For a point k-dissipative impulsive semidynamical system
(X,π;M, I) to be local k-dissipative, it is necessary and sufficient that the fol-
lowing three conditions hold:

(a) D̃+(Ω) ∩M = ∅;
(b) D̃+(Ω) is compact;
(c) D̃+(Ω) is uniformly π̃-attracting.

Proof. Suppose conditions (a), (b) and (c) hold. By Lemma 3.49, D̃+(Ω)
is orbitally π̃-stable. By Theorem 3.42, the system (X,π;M, I) is compact k-
dissipative and D̃+(Ω) = J . By Theorem 3.48 the result follows.

Now, suppose the impulsive system is local k-dissipative. By Lemma 3.12,
(X,π;M, I) is compact k-dissipative. Then, by Theorem 3.42, J = D̃+(Ω) is
compact, orbitally π̃-stable and D̃+(Ω) ∩M = ∅. By Theorem 3.48, D̃+(Ω) is
uniformly π̃-attracting. �

Definition 3.51. The impulsive semidynamical system (X,π;M, I) is called
local asymptotically π̃-condensing, if for every point x ∈ X there are δx > 0 and
a non-empty compact Kx ⊂ X with Kx ∩M = ∅ such that

lim
t→∞β(π̃(B(x, δx), t),Kx) = 0.
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Theorem 3.52. Let (X,π;M, I) be point k-dissipative. For (X,π;M, I)
be local k-dissipative it is necessary and sufficient that (X,π;M, I) be locally
asymptotically π̃-condensing and D̃+(Ω) ∩M = ∅.

Proof. The second part of the necessary condition, that is, D̃+(Ω)∩M = ∅
follows by Theorem 3.50.

Let us prove the sufficient condition. First we prove that (X,π;M, I) is
compact k-dissipative. In fact, let A ∈ C(X). Given x ∈ A, there are δx > 0
and a non-empty compact set Kx with Kx ∩M = ∅ such that

lim
t→∞β(π̃(B(x, δx), t),Kx) = 0.

By the compactness of A, the open covering {B(x, δx) : x ∈ A} admits a finite
sub-covering {B(xi, δxi) : i = 1, . . . ,m}. Let K = Kx1 ∪ . . . ∪Kxm . Then K is
compact and

lim
t→∞ sup

x∈A
ρ(π̃(x, t),K) = 0.

By Lemma 3.6, L̃+(A) is non-empty, compact and

lim
t→∞ sup

x∈A
ρ(π̃(x, t), L̃+(A)) = 0.

By Proposition 3.8, π̃+(A) is relatively compact. Hence, by Theorem 3.43 the
system (X,π;M, I) is compact k-dissipative.

Now, given x ∈ X there are δx > 0 and Kx ∈ C(X), Kx ∩M = ∅, such
that lim

t→∞β(π̃(B(x, δx), t),Kx) = 0. By Lemma 3.6, L̃+(B(x, δx)) is non-empty,
compact and

(3.24) lim
t→∞β(π̃(B(x, δx), t), L̃+(B(x, δx))) = 0.

Let ωx = L̃+(B(x, δx)). Since ωx ⊂ Kx and Kx∩M = ∅, it follows by Lemma 3.5
that ωx is positively π̃-invariant. By the proof of Theorem 3.46, we also have
that ωx ⊂ π̃(ωx, t) for all t ≥ 0. Then ωx = L̃+(ωx) and since J is the attractor
of compact sets, we have

ωx = L̃+(ωx) ⊂ J.

Hence, using equation (3.24) we have

lim
t→∞β(π̃(B(x, δx), t), J) = 0

and by Theorem 3.46 the result is proved. �

Now, we present an example of an impulsive semidynamical system which is
compact k-dissipative but it is not local k-dissipative. We consider Example 1.8
presented in [8] with impulsive action.
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Example 3.53. Consider a linear differential equation ẋ = Ax in the Hilbert
spaceH = L2[0, 1], with the continuous operatorA:L2[0, 1] → L2[0, 1] defined by

(Aϕ)(τ) = −τϕ(τ),

for all τ ∈ [0, 1] and ϕ ∈ L2[0, 1]. Let U(t) be given by (U(t)ϕ)(τ) = e−τtϕ(τ),
for all t ∈ R and ϕ ∈ L2[0, 1]. Thus, the dynamical system generated by ẋ = Ax

is given by (L2[0, 1], π) where

π(ϕ, t) = U(t)ϕ, for all ϕ ∈ L2[0, 1] and t ∈ R.

Consider the closed set M = {ψ ∈ L2[0, 1] :
∫ 1

0 |ψ(s)|2 ds = 1} and let the
impulse function I:M → L2[0, 1] satisfy

‖I(ψ)‖L2 ≤ α‖ψ‖L2 ,

for all ψ ∈ M , where 0 < α < 1. Note that I(M) ∩M = ∅. Thus, we have the
associate impulsive system (L2[0, 1], π;M, I).

Since ‖π(ϕ, t)‖L2

t→∞−−−−→ 0 for each ϕ ∈ L2[0, 1] (see [8, Example 1.8]) and
‖I(ψ)‖L2 < ‖ψ‖L2 for ψ ∈M , we obtain

‖π̃(ϕ, t)‖L2

t→∞−−−−→ 0, for all ϕ ∈ L2[0, 1].

Hence, (L2[0, 1], π;M, I) is point k-dissipative and L̃+(ϕ) = {0} for every ϕ ∈
L2[0, 1]. Consequently, Ω = {0}.

Now, since ‖π(ϕ, t)‖L2 ≤ ‖ϕ‖L2 for ϕ ∈ L2[0, 1] and t ≥ 0 (see [8, Exam-
ple 1.8]), and ‖I(ψ)‖L2 ≤ ‖ψ‖L2 for all ψ ∈M , we have

(3.25) ‖π̃(ϕ, t)‖L2 ≤ ‖ϕ‖L2

for all ϕ ∈ L2[0, 1] and for all t ≥ 0. Let us show that D̃+(Ω) = {0}. Indeed,
given ϕ ∈ D̃+(Ω) there are sequences {ψn}n≥1 ⊂ L2[0, 1], {tn}n≥1 ⊂ R+ such
that ‖ψn − 0‖L2

n→∞−−−−→ 0 and

‖π̃(ψn, tn) − ϕ‖L2

n→∞−−−−→ 0.

Since ‖π̃(ψn, tn)‖L2 ≤ ‖ψn‖L2 and ‖ψn‖L2

n→∞−−−−→ 0 we have ϕ = 0. Then
D̃+(Ω) = {0}. Therefore, D̃+(Ω) is compact, orbitally π̃-stable (by (3.25)) and
D̃+(Ω)∩M = ∅. By Theorem 3.42 the impulsive system is compact k-dissipative
and its center of Levinson is J = {0}.

Let us prove that (L2[0, 1], π;M, I) is not local k-dissipative. Suppose the
contrary, then by Theorem 3.48 the center of Levinson J = {0} is uniformly
π̃-attracting, that is, there is γ > 0 such that

(3.26) lim
t→∞ sup

‖ϕ‖L2≤γ

‖π̃(ϕ, t)‖L2 = 0.
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Define ψn ∈ L2[0, 1], n = 1, 2, . . . , by

ψn(t) = γ n

√
χ[0,1/n](t),

for t ∈ [0, 1], where χ[0,1/n](t) is the characteristic function of the set [0, 1/n].
Note that ‖ψn‖L2 = γ for all n = 1, 2, . . . . Moreover, by considering tn = n/2,
n ∈ N, we have

lim
n→∞ ‖π(ψn, tn)‖2

L2
= lim

n→∞

∫ 1/n

0

ne−2tns ds = 1 − 1
e
�= 0,

which contradicts (3.26). Then the system is not local k-dissipative.

Acknowledgements. We thank the anonymous referee for the careful cor-
rection and useful suggestions.
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[19] H. Ye, A.N. Michel and L. Hou, Stability analysis of systems with impulse effects,
IEEE Trans. Automatic Control 43 (1998), 1719–1723.

Manuscript received August 10, 2011

Everaldo M. Bonotto

Instituto de Ciências Matemáticas e de Computação
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