# EXISTENCE AND MULTIPLICITY RESULTS FOR A NON-HOMOGENEOUS FOURTH ORDER EQUATION 

Ali Mahlaoui - Vittorio Martino


#### Abstract

In this paper we investigate the problem of existence and multiplicity of solutions for a non-homogeneous fourth order Yamabe type equation. We exhibit a family of solutions concentrating at two points, provided the domain contains one hole and we give a multiplicity result if the domain has multiple holes. Also we prove a multiplicity result for vanishing positive solutions in a general domain.


## 1. Introduction and statements of the main results

In this paper we will study the existence and the multiplicity of positive solutions for a non-homogeneous problem of the form:

$$
\begin{cases}\Delta^{2} u=|u|^{p-1} u+f & \text { on } \Omega .  \tag{P}\\ u=\Delta u=0 & \text { on } \partial \Omega,\end{cases}
$$

where $\Omega$ is a smooth bounded set of $\mathbb{R}^{n}$ and $p=(n+4) /(n-4)$ is the so-called critical exponent. These kind of problems were deeply studied in the case of the Laplacian (see for instance [1], [11], [19]). Let us recall that problem (P) was studied by Selmi [26] and Ben Ayed-Selmi [9] where the authors prove the existence of a one-bubble solution to the problem under assumptions on $f$. Here we will show that we can get two-bubble solutions if the domain contains small

[^0]holes, and vanishing type solutions for a small generic perturbation $f$ in the $C^{0}$ sense.

We recall that for $f=0$, this problem has a deep geometrical meaning, in fact if ( $M, g$ ) is an $n$-dimensional compact closed riemannian manifold with $n \geq 5$, we can define the $Q$-curvature

$$
Q: \left.=\frac{n^{3}-4 n^{2}+16 n-16}{8(n-2)^{2}(n-1)^{2}} R^{2}-\frac{2}{(n-2)^{2}} \right\rvert\, \text { Ric }\left.\right|^{2}+\frac{1}{2(n-1)} \Delta R
$$

where $R$ is the scalar curvature and Ric is the Ricci curvature. After a conformal change of the metric one gets for $\widetilde{g}=u^{4 /(n-4)} g$,

$$
Q_{\widetilde{g}} u^{(n+4) /(n-4)}=P_{g} u
$$

where $P_{g}$ is the Paneitz operator, defined by

$$
P_{g} u:=\Delta_{g}^{2} u-\operatorname{div}\left(\left(\frac{(n-2)^{2}+4}{2(n-2)(n-1)} R g-\frac{4}{n-2} \text { Ric }\right) d u\right)+\frac{n-4}{2} Q u
$$

This gives rise to the problem of prescribing the $Q$-curvature, as the analogous problem on the scalar curvature (see [12], [13] and [23]). We remark that in the flat case, for instance if we consider an open set of $\mathbb{R}^{n}$, the problem of prescribing constant $Q$-curvature coincides with $(\mathrm{P})$ with $f=0$, namely

$$
\begin{equation*}
\Delta^{2} u=|u|^{p-1} u \tag{1.1}
\end{equation*}
$$

The variational formulation of (1.1) under Navier boundary conditions in a bounded set was deeply studied, especially with the methods of critical points at infinity theory, introduced by Bahri [3] (see [13], [18] and [17]). We also remark the fact that this problem is not compact, namely, for the case $f=0$ it corresponds exactly to the limiting case of the Sobolev embedding $H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \hookrightarrow$ $L^{2 n /(n-4)}$, (see [27]), and thus we loose the compact embedding, so the variational setting in the classical spaces fails to show existence of solutions: in fact as in the case of the Laplacian, if the domain is star shaped we know that it has no positive solutions ([27], [28]). Finally we recall that in the recent paper [22], we studied the same Yamabe type problem, with a slightly super-critical exponent.

This work contains two main parts. In the first one we deal with a perturbation of the form $\varepsilon f$, that is

$$
\begin{cases}\Delta^{2} u=|u|^{p-1} u+\varepsilon f & \text { on } \Omega \\ u=\Delta u=0 & \text { on } \partial \Omega\end{cases}
$$

where $f$ is a positive function in $C^{\alpha}(\Omega), 0<\alpha<1$, and $\Omega=\mathcal{D}-\overline{B(P, \mu)}$, for a given domain $\mathcal{D}$ and $P \in \mathcal{D}$. In this setting we have the following result:

Theorem 1.1. There exists a constant $\mu_{0}=\mu_{0}(\mathcal{D}, f)>0$ such that for each $0<\mu<\mu_{0}$ fixed, there exist $\varepsilon_{0}>0$ and a family of solutions $u_{\varepsilon}$ of (1.3) for $0<\varepsilon<\varepsilon_{0}$, having exactly two concentration points, namely:

$$
\begin{aligned}
& u_{\varepsilon}(x)=c_{n}\left(\frac{\varepsilon^{2 /(n-4)} \lambda_{1, \varepsilon}}{\varepsilon^{4 /(n-4)} \lambda_{1, \varepsilon}^{2}+\left|x-\xi_{1}^{\varepsilon}\right|^{2}}\right)^{(n-4) / 2} \\
&+c_{n}\left(\frac{\varepsilon^{2 /(n-4)} \lambda_{2, \varepsilon}}{\varepsilon^{4 /(n-4)} \lambda_{2, \varepsilon}^{2}+\left|x-\xi_{2}^{\varepsilon}\right|^{2}}\right)^{(n-4) / 2}+\theta_{\varepsilon}(x)
\end{aligned}
$$

and $\theta_{\varepsilon}(x) \rightarrow 0$ as $\varepsilon \rightarrow 0$ uniformly.
Indeed one gets more information about the solutions along the proof, for instance we will see that $\theta_{\varepsilon}(x)=\varepsilon w+o(\varepsilon)$, where $w$ is the solution of:

$$
\begin{cases}\Delta^{2} w=f & \text { on } \Omega \\ w=\Delta w=0 & \text { on } \partial \Omega\end{cases}
$$

And within the proof we have that the point $\left(\left(\xi_{1}^{\varepsilon}, \xi_{2}^{\varepsilon}\right),\left(a_{n}\left(\lambda_{1}^{\varepsilon}\right)^{n-4}, a_{n}\left(\lambda_{2}^{\varepsilon}\right)\right)^{n-4}\right)$ is a critical point of the function $\Psi$ defined by:

$$
\Psi(\xi, \Lambda)=\frac{1}{2}\left(\sum_{i=1}^{2} \Lambda_{i}^{2} H\left(\xi_{i}, \xi_{i}\right)-2 \Lambda_{1} \Lambda_{2} G\left(\xi_{1}, \xi_{2}\right)\right)+\sum_{i=1}^{2} \Lambda_{i} w\left(\xi_{i}\right)
$$

where $G$ is the Green's function of the $\Omega$ and $H$ its regular part.
Moreover, if we consider a domain with multiple holes we obtain a multiplicity result. In fact, if $\Omega=\mathcal{D}-\underset{1 \leq i \leq k}{ } \bar{B}\left(P_{i}, \mu\right)$ with $P_{1}, \ldots, P_{k} \in \Omega$, the previous result can be generalized as in [14] and [22] to the following:

Theorem 1.2. Let $1 \leq m \leq k$. There exists a constant $\mu_{0}=\mu_{0}(\mathcal{D}, f)>0$ such that for each $0<\mu<\mu_{0}$ fixed, there exist $\varepsilon_{0}>0$ and a family of solutions $u_{\varepsilon}$ of $\left(\mathrm{P}_{\varepsilon}\right)$ for $0<\varepsilon<\varepsilon_{0}$, of the following form:

$$
u_{\varepsilon}(x)=c_{n} \sum_{i=1}^{k} \sum_{j=1}^{2}\left(\frac{\varepsilon^{2 /(n-4)} \lambda_{i, j, \varepsilon}}{\varepsilon^{4 /(n-4)} \lambda_{i, j, \varepsilon}^{2}+\left|x-\xi_{i, j}^{\varepsilon}\right|^{2}}\right)^{(n-4) / 2}+\theta_{\varepsilon}(x)
$$

and $\theta_{\varepsilon}(x) \rightarrow 0$ as $\varepsilon \rightarrow 0$ uniformly.
In particular for a domain with $k$ holes we have at least $2^{k}-1$ two-bubble solutions.

In the second part of the paper we deal with the problem

$$
\begin{cases}\Delta^{2} u=|u|^{p-1} u+f & \text { on } \Omega  \tag{f}\\ u=\Delta u=0 & \text { on } \partial \Omega\end{cases}
$$

with no topological constraint on the domain $\Omega$ and $f \geq 0$ non identically zero. We prove the following:

Theorem 1.3. There exist a residual subset $D \subset C^{2}(\bar{\Omega})$ and $\varepsilon>0$, such that if $f \in D$ and $|f|_{C(\bar{\Omega})}<\varepsilon$, the problem $\left(\mathrm{P}_{\varepsilon}\right)$ has at least $\sum_{i=0}^{\infty} \operatorname{dim} H_{i}(\Omega)+1$ positive solutions.

Here $H_{*}(\Omega)$ denotes the singular homology of $\Omega$. We have additional information for these solutions as well. In fact we will see that they vanish when $|f|_{C(\bar{\Omega})} \rightarrow 0$, and they have energy smaller than the energy of a single bubble; in contrast with the solutions of the first theorem, where the energy of the solutions is greater than the one of the bubbles, and the solutions blow-up as $\varepsilon \rightarrow 0$.

Acknowledgements. This paper was completed during the year that the second author spent at the Mathematics Department of Rutgers University: the author wishes to express his gratitude for the hospitality and he is grateful to the Nonlinear Analysis Center for its support.

## 2. Preliminaries and first estimates

Let us start by defining the following functions:

$$
\bar{U}_{(\xi, \lambda)}(x)=\left(\frac{\lambda}{\lambda^{2}+|x-\xi|^{2}}\right)^{(n-4) / 2}
$$

where $\lambda>0$ and $\xi \in \Omega$. For $u \in D^{2}(\Omega)$, we will write $P u$ for the projection of $u$ on $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$, defined as the unique solution of the problem

$$
\begin{cases}\Delta^{2} v=u & \text { on } \Omega \\ v=\Delta v=0 & \text { on } \partial \Omega\end{cases}
$$

We also recall that the Green's function of $\Delta^{2}$ for a set $\Omega$, with Navier boundary conditions is defined as the solution of

$$
\begin{cases}\Delta_{x}^{2} G(x, y)=\delta_{y} & \text { on } \Omega \\ G(x, y)=\Delta_{x} G(x, y)=0 & \text { on } \partial \Omega\end{cases}
$$

This function can be written as

$$
G(x, y)=\frac{a_{n}}{|x-y|^{n-4}}-H(x, y), \quad \text { for all } x, y \in \Omega \text { and } x \neq y
$$

where $a_{n}$ is a positive constant depending on $n$ and $H$ the positive smooth solution to

$$
\begin{cases}\Delta_{x}^{2} H(x, y)=0 & \text { on } \Omega \\ H(x, y)=\frac{1}{|x-y|^{n-4}}, \Delta H(x, y)=\Delta \frac{1}{|x-y|^{n-4}} & \text { on } \partial \Omega\end{cases}
$$

Now let $\xi_{1}, \xi_{2}$ be two points in $\Omega$, and $\lambda_{1}, \lambda_{2}>0$, we will write $\bar{U}_{i}=\bar{U}_{\left(\xi_{i}, \lambda_{i}\right)}$ and $U_{i}=P \bar{U}_{i}$. Then one has $U_{i}=\bar{U}_{i}-\theta_{i}$ and

$$
\theta_{i}(x)=H\left(x, \xi_{i}\right) \lambda_{i}^{(n-4) / 2} \int_{\mathbb{R}^{n}} \bar{U}^{p}(y) d y+o\left(\lambda_{i}^{(n-4) / 2}\right)
$$

Away from $x=\xi$, we have

$$
U_{i}(x)=G\left(x, \xi_{i}\right) \lambda_{i}^{(n-4) / 2} \int_{\mathbb{R}^{n}} \bar{U}^{p}(y) d y+o\left(\lambda_{i}^{(n-4) / 2}\right)
$$

For more details about these estimates we refer to the Appendix.
Let us set now $J$ to be the functional defined by

$$
J(u)=\frac{1}{2} \int_{\Omega}|\Delta u|^{2}-\frac{1}{p+1} \int_{\Omega}|u|^{p},
$$

and let us find an expansion of

$$
J\left(U_{1}+U_{2}\right)=\frac{1}{2} \int_{\Omega}\left|\Delta\left(U_{1}+U_{2}\right)\right|^{2}-\frac{1}{p+1} \int_{\Omega}\left(U_{1}+U_{2}\right)^{p}
$$

For that we define the set

$$
O_{\delta}(\Omega)=\left\{\left(\xi_{1}, \xi_{2}\right) \in \Omega \times \Omega ;\left|\xi_{1}-\xi_{2}\right|>\delta, d\left(\xi_{i}, \partial \Omega\right)>\delta\right\}
$$

where $\delta>0$ is a small fixed number and we put

$$
C_{n}=\frac{1}{2} \int_{\Omega}|\Delta \bar{U}|^{2}-\frac{1}{p+1} \int_{\Omega} \bar{U}^{p}
$$

Then we have the following:
Lemma 2.1. For $\left(\xi_{1}, \xi_{2}\right)$ in $O_{\delta}(\Omega)$ we have

$$
\begin{aligned}
J\left(U_{1}+U_{2}\right)= & 2 C_{n}+\frac{1}{2}\left(\int_{\mathbb{R}^{n}} \bar{U}^{p}\right) \\
& \cdot\left(H\left(\xi_{1}, \xi_{1}\right) \lambda_{1}^{n-4}+H\left(\xi_{2}, \xi_{2}\right) \lambda_{2}^{n-4}-2 \lambda_{1}^{(n-4) / 2} \lambda_{2}^{(n-4) / 2} G\left(\xi_{1}, \xi_{2}\right)\right) \\
& +o\left(\max \left(\lambda_{1}, \lambda_{2}\right)^{n-4}\right)
\end{aligned}
$$

Proof. The proof follows from the following estimates (see the Appendix):

$$
\int_{\Omega}\left|\Delta U_{i}\right|^{2}=\int_{\mathbb{R}^{n}}|\Delta \bar{U}|^{2}-\left(\int_{\mathbb{R}^{n}} \bar{U}^{p}\right)^{2} H\left(\xi_{i}, \xi_{i}\right) \lambda_{i}^{n-4}+o\left(\lambda_{i}^{n-4}\right)
$$

and

$$
\begin{aligned}
& \int_{\Omega} \Delta U_{1} \Delta U_{2}=\left(\int_{\mathbb{R}^{n}} \bar{U}^{p}\right)^{2} \lambda_{1}^{(n-4) / 2} \lambda_{2}^{(n-4) / 2} G\left(\xi_{1}, \xi_{2}\right)+o\left(\max \left(\lambda_{1}, \lambda_{2}\right)^{n-4}\right) \\
& \frac{1}{p+1} \int_{\Omega} U_{i}^{p+1}=\frac{1}{p+1} \int_{\Omega} \bar{U}^{p+1}-\left(\int_{\mathbb{R}^{n}} \bar{U}^{p}\right)^{2} H\left(\xi_{i}, \xi_{i}\right) \lambda_{i}^{n-4}+o\left(\lambda_{i}^{n-4}\right) \\
& \frac{1}{p+1} \int_{\Omega}\left(U_{1}+U_{2}\right)^{p+1}-U_{1}^{p+1}-U_{2}^{p+1} \\
&=2\left(\int_{\mathbb{R}^{n}} \bar{U}^{p}\right)^{2} \lambda_{1}^{(n-4) / 2} \lambda_{2}^{(n-4) / 2} G\left(\xi_{1}, \xi_{2}\right)+o\left(\max \left(\lambda_{1}, \lambda_{2}\right)^{n-4}\right)
\end{aligned}
$$

Therefore one has

$$
\begin{aligned}
J\left(U_{1}+U_{2}\right)= & \frac{1}{2} \int_{\Omega}\left|\Delta\left(U_{1}+U_{2}\right)\right|^{2}-\frac{1}{p+1} \int_{\Omega}\left(U_{1}+U_{2}\right)^{p} \\
= & \sum\left(\frac{1}{2} \int_{\Omega}\left|\Delta U_{i}\right|^{2}-\frac{1}{p+1} U_{i}^{p+1}\right) \\
& +\int_{\Omega} \Delta U_{1} \Delta U_{2}-\frac{1}{p+1} \int_{\Omega}\left(U_{1}+U_{2}\right)^{p+1}-U_{1}^{p+1}-U_{2}^{p+1} \\
= & \sum \frac{1}{2}\left(\int_{\mathbb{R}^{n}}|\Delta \bar{U}|^{2}-\left(\int_{\mathbb{R}^{n}} \bar{U}^{p}\right)^{2} H\left(\xi_{i}, \xi_{i}\right) \lambda_{i}^{n-4}\right)-\frac{1}{p+1} \int_{\Omega} \bar{U}^{p+1} \\
& +\sum\left(\int_{\mathbb{R}^{n}} \bar{U}^{p}\right)^{2} H\left(\xi_{i}, \xi_{i}\right) \lambda_{i}^{n-4} \\
& +\left(\int_{\mathbb{R}^{n}} \bar{U}^{p}\right)^{2} \lambda_{1}^{(n-4) / 2} \lambda_{2}^{(n-4) / 2} G\left(\xi_{1}, \xi_{2}\right) \\
& -2\left(\int_{\mathbb{R}^{n}} \bar{U}^{p}\right)^{2} \lambda_{1}^{(n-4) / 2} \lambda_{2}^{(n-4) / 2} G\left(\xi_{1}, \xi_{2}\right)+o\left(\max \left(\lambda_{1}, \lambda_{2}\right)^{n-4}\right) \\
= & 2 C_{n}+\frac{1}{2}\left(\int_{\mathbb{R}^{n}} \bar{U}^{p}\right)^{2}\left(H\left(\xi_{1}, \xi_{1}\right) \lambda_{1}^{n-4}+H\left(\xi_{2}, \xi_{2}\right) \lambda_{2}^{n-4}\right. \\
& \left.-2 \lambda_{1}^{(n-4) / 2} \lambda_{2}^{(n-4) / 2} G\left(\xi_{1}, \xi_{2}\right)\right)+o\left(\max \left(\lambda_{1}, \lambda_{2}\right)^{n-4}\right) .
\end{aligned}
$$

Now, we set $\Omega_{\varepsilon}=\varepsilon^{-2 /(n-4)} \Omega$, and we put:

$$
v\left(x^{\prime}\right)=\varepsilon u\left(\varepsilon^{2 /(n-4)} x^{\prime}\right)
$$

Then every solution $u$ of $\left(\mathrm{P}_{\varepsilon}\right)$ corresponds to a solution $v$, by means of the previous rescaling, of the following problem:

$$
\begin{cases}\Delta^{2} v=|v|^{p-1} v+\varepsilon^{p+1} \widetilde{f} & \text { on } \Omega_{\varepsilon} \\ v=\Delta v=0 & \text { on } \partial \Omega_{\varepsilon}\end{cases}
$$

where $\widetilde{f}\left(x^{\prime}\right)=f\left(\varepsilon^{2 /(n-4)} x^{\prime}\right)$. Hence we define the following perturbed energy functional:

$$
J_{\varepsilon}(u)=\frac{1}{2} \int_{\Omega_{\varepsilon}}|\Delta u|^{2}-\frac{1}{p+1} \int_{\Omega_{\varepsilon}}|u|^{p}-\varepsilon^{p+1} \int_{\Omega_{\varepsilon}} \widetilde{f} u
$$

We consider the function $w$ defined by

$$
\begin{cases}\Delta^{2} w=f & \text { on } \Omega  \tag{2.1}\\ w=\Delta w=0 & \text { on } \partial \Omega\end{cases}
$$

We obtain the following proposition. Set $\Lambda=\left(\Lambda_{1}, \Lambda_{2}\right)$ and $\lambda_{i}^{2}=\left(a_{n}^{-1} \Lambda_{i}\right)^{2 /(n-4)}$.

Proposition 2.2. Let $V$ be the sum of $U_{1}, U_{2}$ rescaled on $\Omega_{\varepsilon}$, then for $\left(\xi_{1}, \xi_{2}\right) \in O_{\delta}(\Omega)$, one has

$$
J_{\varepsilon}(V)=2 C_{n}+\varepsilon^{2} \Psi(\xi, \Lambda)+o\left(\varepsilon^{2}\right)
$$

where

$$
\Psi(\xi, \Lambda)=\frac{1}{2}\left(\sum_{i=1}^{2} \Lambda_{i}^{2} H\left(\xi_{i}, \xi_{i}\right)-2 \Lambda_{1} \Lambda_{2} G\left(\xi_{1}, \xi_{2}\right)\right)+\sum_{i=1}^{2} \Lambda_{i} w\left(\xi_{i}\right)
$$

Proof. The only term we need to estimate is

$$
\begin{aligned}
\int_{\Omega} f\left(U_{1}+U_{2}\right) & =\int_{\Omega}\left(\Delta^{2} w\right)\left(U_{1}+U_{2}\right) \\
& =\sum_{i=1}^{2} \int_{\Omega}\left(\Delta^{2} w\right)\left(G\left(x, \xi_{i}\right) \lambda_{i}^{(n-4) / 2} \int_{\mathbb{R}^{n}} \bar{U}^{p}(y) d y\right)+o\left(\lambda_{i}^{(n-4) / 2}\right) \\
& =\sum_{i=1}^{2} w\left(\xi_{i}\right) \lambda_{i}^{(n-4) / 2} \int_{\mathbb{R}^{n}} \bar{U}^{p}(y) d y+o\left(\lambda_{i}^{(n-4) / 2}\right)
\end{aligned}
$$

The conclusion follows.

## 3. Reduction process

From now on let $\Omega_{\varepsilon}=\varepsilon^{-2 /(n-4)} \Omega$. We will consider points $\xi_{i}^{\prime} \in \Omega_{\varepsilon}$ and numbers $\Lambda_{i}>0$, for $i=1,2$, such that $\left|\xi_{1}^{\prime}-\xi_{2}^{\prime}\right|>\delta \varepsilon^{-2 /(n-4)}, d\left(\xi_{i}^{\prime}, \partial \Omega_{\varepsilon}\right)>$ $\delta \varepsilon^{-2 /(n-4)}$ and $\delta<\Lambda_{i}<\delta^{-1}$. Here we will adopt the same notations as in [14], that is $\bar{V}_{i}(x)=\bar{U}_{\xi_{i}^{\prime}, \Lambda_{i}^{*}}$ for $\Lambda_{i}^{*}=\left(c_{n} \Lambda_{i}^{2}\right)^{1 /(n-4)}$; the related projections on $H^{2}\left(\Omega_{\varepsilon}\right) \cap H_{0}^{1}\left(\Omega_{\varepsilon}\right)$ will be denoted by $V_{i}$. Consider the functions

$$
\bar{Z}_{i j}=\frac{\partial \bar{V}_{i}}{\partial \xi_{i j}}, \quad i=1, \ldots, n \quad \text { and } \quad \bar{Z}_{i n+1}=\frac{\partial \bar{V}_{i}}{\partial \Lambda_{i}^{*}}
$$

and their projections $Z_{i j}=P \bar{Z}_{i j}$. Let $V=V_{1}+V_{2}$ and $\bar{V}=\bar{V}_{1}+\bar{V}_{2}$.
For a given smooth function $h$, we want to solve the following linear problem:

$$
\begin{cases}\Delta^{2} \varphi-p V^{p-1} \varphi=h+\sum_{i, j} c_{i j} V_{i}^{p-1} Z_{i j} & \text { on } \Omega_{\varepsilon}  \tag{3.1}\\ \varphi=\Delta \varphi=0 & \text { on } \partial \Omega_{\varepsilon} \\ \left\langle V_{i}^{p-1} Z_{i j}, \varphi\right\rangle:=\int_{\Omega_{\varepsilon}} V_{i}^{p-1} Z_{i j} \varphi=0 & \text { for } i=1,2, j=1, \ldots, n+1\end{cases}
$$

We define the following weighted $L^{\infty}$ norms : for a function $u$ defined on $\Omega_{\varepsilon}$

$$
\|u\|_{*}=\left\|\left(w_{1}+w_{2}\right)^{-\beta} u\right\|_{L^{\infty}}+\left\|\left(w_{1}+w_{2}\right)^{-\beta-1 /(n-4)} \nabla u\right\|_{L^{\infty}}
$$

where $w_{i}=\left(1 /\left(1+\left|x-\xi_{i}^{\prime}\right|^{2}\right)\right)^{(n-4) / 2}, \beta=4 /(n-4)$, and

$$
\|u\|_{* *}=\left\|\left(w_{1}+w_{2}\right)^{-\gamma} u\right\|_{L^{\infty}}
$$

where $\gamma=8 /(n-4)$. We define also the set

$$
O_{\delta}^{\prime}\left(\Omega_{\varepsilon}\right)=\left\{\left(\xi_{1}, \xi_{2}\right) \in \Omega_{\varepsilon} \times \Omega_{\varepsilon} ;\left|\xi_{1}-\xi_{2}\right|>\delta \varepsilon^{-2 /(n-4)}, d\left(\xi_{i}, \partial \Omega\right)>\delta \varepsilon^{-2 /(n-4)}\right\}
$$

We refer to [22] for the proof of the following:
Proposition 3.1. There exist $\varepsilon_{0}>0$ and $C>0$ such that for all $0<\varepsilon<\varepsilon_{0}$ and all $h \in C^{\alpha}\left(\Omega_{\varepsilon}\right)$, the problem (3.1) admits a unique solution $\varphi=L_{\varepsilon}(h)$. Moreover, we have

$$
\left\|L_{\varepsilon}(h)\right\|_{*} \leq C\|h\|_{* *}, \quad\left|c_{i j}\right| \leq C\|h\|_{* *},
$$

and

$$
\left\|\nabla_{\left(\xi^{\prime}, \Lambda\right)} L_{\varepsilon}(h)\right\|_{*} \leq C\|h\|_{* *}
$$

To split the difficulties, we start by finding a solution of

$$
\begin{cases}\Delta^{2}(V+\eta)-(V+\eta)_{+}^{p}-\varepsilon^{p+1} \tilde{f}=\sum_{i, j} c_{i j} V_{i}^{p-1} Z_{i j} & \text { on } \Omega_{\varepsilon} \\ \eta=\Delta \eta=0 & \text { on } \partial \Omega_{\varepsilon} \\ \left\langle V_{i}^{p-1} Z_{i j}, \eta\right\rangle=-\left\langle V_{i}^{p-1} Z_{i j}, \varphi\right\rangle & \text { for } i=1,2 \\ & j=1, \ldots, n+1\end{cases}
$$

where $\varphi$ is the solution of

$$
\begin{cases}\Delta^{2} \varphi=\varepsilon^{p+1} \tilde{f} & \text { on } \Omega_{\varepsilon} \\ \varphi=\Delta \varphi=0 & \text { on } \partial \Omega_{\varepsilon}\end{cases}
$$

If we take $\eta=\bar{\eta}+\varphi$, then the equation on $\bar{\eta}$ reads as follows:

$$
\begin{equation*}
\Delta^{2} \bar{\eta}-p V^{p-1} \bar{\eta}=N_{\varepsilon}(\bar{\eta})-R_{\varepsilon}+\sum_{i, j} c_{i j} V_{i}^{p-1} Z_{i j} \tag{3.2}
\end{equation*}
$$

with $N_{\varepsilon}(\bar{\eta})=|V+\bar{\eta}+\varphi|^{p-1}(V+\bar{\eta}+\varphi)_{+}-p V^{p-1}(\bar{\eta}+\varphi)-V^{p}$, and $R_{\varepsilon}=$ $V^{p}-\bar{U}_{1}^{p}-\bar{U}_{2}^{p}-p|V|^{p-2} \varphi$. Therefore, taking $\psi=-L_{\varepsilon}\left(R_{\varepsilon}\right)$ and $\bar{\eta}=\psi+v$, we get an equation on $v$ of the following form:

$$
\Delta^{2} v-p V^{p-1} v=N_{\varepsilon}(\bar{\eta})+\sum_{i, j} c_{i j} V_{i}^{p-1} Z_{i j}
$$

Lemma 3.2. There exists $C>0$ such that for $\varepsilon>0$ small enough and $\|v\|_{*} \leq 1 / 4$, we have

$$
\left\|N_{\varepsilon}(\psi+v)\right\|_{* *} \leq \begin{cases}C\left(\|v\|_{*}^{2}+\varepsilon\|v\|_{*}+\varepsilon^{p+1}\right) & \text { if } n \leq 12 \\ C\left(\varepsilon^{2 \beta-1}\|v\|_{*}^{2}+\varepsilon^{2 \beta}\|v\|_{*}+\varepsilon^{3 p}\right) & \text { if } n>12\end{cases}
$$

Proof. First, we recall that $\|\psi\|_{*} \leq C \varepsilon^{2}$ and since $|\varphi| \leq C \varepsilon^{p+1}$, we have

$$
|\varphi| \bar{V}^{-\beta} \leq C \varepsilon^{p+1} \bar{V}^{-\beta} \leq C \varepsilon^{2}
$$

hence $\|\varphi\|_{*} \leq C \varepsilon^{2}$ and we can choose $\varepsilon$ small enough so that

$$
\|\bar{\eta}\|_{*} \leq\|\psi\|_{*}+\|v\|_{*}<1
$$

Now, we have

$$
N_{\varepsilon}(\bar{\eta})=\frac{p(p-1)}{2}(V+t(\bar{\eta}+\varphi))^{p-2}(\bar{\eta}+\varphi)^{2}
$$

for a certain $t \in(0,1)$ and hence if $n \leq 12$ we have

$$
\left|\bar{V}^{-8 /(n-4)} N_{\varepsilon}(\bar{\eta})\right| \leq C \bar{V}^{2 \beta-8 /(n-4)} \bar{V}^{p-2}\|\bar{\eta}+\varphi\|_{*}^{2} \leq C\|\bar{\eta}+\varphi\|_{*}^{2}
$$

If $n>12$ we have to distinguish two cases. First consider $\delta>0$ and take the region $d\left(y, \partial \Omega_{\varepsilon}\right)>\delta \varepsilon^{-(n+2) /(n-4)}$, then one has the existence of $C_{\delta}>0$ such that $V>C_{\delta} \bar{V}$ and therefore we get

$$
\left|N_{\varepsilon}(\bar{\eta}) \bar{V}^{-8 /(n-4)}\right| \leq C \bar{V}^{2 \beta-8 /(n-4)+p-2}\|\bar{\eta}+\varphi\|_{*}^{2} \leq C \varepsilon^{p-2}\|\bar{\eta}+\varphi\|_{*}^{2} .
$$

If $d\left(y, \partial \Omega_{\varepsilon}\right) \leq \delta \varepsilon^{-(n+2) /(n-4)}$ we have, by using Hopf lemma, that for $\delta$ sufficiently small $V(y) \sim \frac{\partial V}{\partial \nu} d\left(y, \partial \Omega_{\varepsilon}\right)$, (recall that $\left.|\nabla V|=|\nabla \bar{V}|+o(1)\right)$ and $|\nabla V| \geq$ $C \varepsilon^{(n-3) /(n-4)}$, for $\varepsilon$ small enough. Thus $V(y) \geq C \varepsilon^{2(n-3) /(n-4)} d\left(y, \partial \Omega_{\varepsilon}\right)$, therefore

$$
\begin{aligned}
\left|N_{\varepsilon}(\bar{\eta}) \bar{V}^{-8 /(n-4)}\right| & \leq C \bar{V}^{-8 /(n-4)}\left(\varepsilon^{2(n-3) /(n-4)} d\left(y, \partial \Omega_{\varepsilon}\right)\right)^{p-2}(\bar{\eta}+\varphi)^{2} \\
& \leq C \bar{V}^{-8 /(n-4)}\left(\varepsilon^{2(n-3) /(n-4)} d\left(y, \partial \Omega_{\varepsilon}\right)\right)^{p-2}(\bar{\eta}+\varphi)^{2} \\
& \leq C\left(\varepsilon^{2(n-3) /(n-4)-(n+2) /(n-4)}\right)^{p-2}\|\bar{\eta}+\varphi\|_{*}^{2} \\
& \leq C \varepsilon^{2 \beta-1}\|\bar{\eta}+\varphi\|_{*}^{2} .
\end{aligned}
$$

Finally

$$
\left\|N_{\varepsilon}(\psi+v)\right\|_{* *} \leq \begin{cases}C\left(\|\psi+v+\varphi\|_{*}^{2}\right) & \text { if } n \leq 12 \\ C\left(\varepsilon^{2 \beta-1}\|\psi+v+\varphi\|_{*}^{2}\right) & \text { if } n>12\end{cases}
$$

which finishes the proof.
Now we want to find a solution to (3.2). The problem can be seen as a fixed point problem if we write it in the following way

$$
\begin{equation*}
v=-L_{\varepsilon}\left(N_{\varepsilon}(\psi+v)\right)=A_{\varepsilon}(v) \tag{3.3}
\end{equation*}
$$

We have the following:
Proposition 3.3. There exists $C>0$ such that for $\varepsilon>0$ small enough, the problem (3.3) has a unique solution $v$, with $\|v\|_{*}<C \varepsilon^{2}$. Moreover, the map $\left(\xi^{\prime}, \Lambda\right) \rightarrow v$ is $C^{1}$ with respect to the norm $\|\cdot\|_{*}$, and $\left\|\nabla_{\left(\xi^{\prime}, \Lambda\right)} v\right\|_{*} \leq C \varepsilon^{2}$.

Proof. Let $F=\left\{u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega),\|u\|_{*}<\varepsilon^{2}\right\}$, and then consider $A_{\varepsilon}: F \rightarrow H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$. By using the previous lemma and Proposition 3.1 we
get

$$
\begin{aligned}
\left\|A_{\varepsilon}(u)\right\|_{*} \leq C\left\|N_{\varepsilon}(u+\psi)\right\|_{* *} & \leq \begin{cases}C\left(\|u\|_{*}^{2}+\varepsilon\|u\|_{*}+\varepsilon^{p+1}\right) & \text { if } n \leq 12 \\
C\left(\varepsilon^{2 \beta-1}\|u\|_{*}^{2}+\varepsilon^{2 \beta}\|u\|_{*}+\varepsilon^{3 p}\right) & \text { if } n>12\end{cases} \\
& \leq \begin{cases}C \varepsilon^{3} & \text { if } n \leq 12 \\
C \varepsilon^{2 \beta+3} & \text { if } n>12\end{cases}
\end{aligned}
$$

so for $\varepsilon>0$ small enough, we have that $A_{\varepsilon}$ maps $F$ into itself. Now we estimate $\left\|A_{\varepsilon}(a)-A_{\varepsilon}(b)\right\|_{*}$ for $a, b \in F$. Since

$$
\left\|A_{\varepsilon}(a)-A_{\varepsilon}(b)\right\|_{*} \leq C\left\|N_{\varepsilon}(a+\psi)-N_{\varepsilon}(b+\psi)\right\|_{* *}
$$

it suffices to show that $N_{\varepsilon}$ is a contraction to finish the proof of the proposition. Note that by construction we have

$$
D_{u} N_{\varepsilon}(u+\psi)=p|V+u+\psi+\varphi|^{p-2}(V+u+\psi+\varphi)-p V^{p-1}
$$

Then arguing as in [22], we obtain that $N_{\varepsilon}$ is a contraction. Hence the existence and uniqueness of $v$ follows. Next we prove that the map is $C^{1}$. We will apply the implicit function theorem to the map $K$ defined by

$$
K\left(\xi^{\prime}, \Lambda, v\right)=v-A_{\varepsilon}(v)
$$

We recall that

$$
D_{\xi^{\prime}} N_{\varepsilon}(u)=p\left[|V+u+\varphi|^{p-2}(V+u+\varphi)-(p-1) V^{p-2}(u+\varphi)-V^{p-1}\right] D_{\xi^{\prime}} V
$$

same goes for $D_{\Lambda} N_{\varepsilon}(u)$. Also,

$$
D_{u} K\left(\xi^{\prime}, \Lambda, u\right) h=h+L_{\varepsilon}\left(D_{u} N_{\varepsilon}(u+\psi) h\right)=h+M(h)
$$

Now

$$
\|M(h)\|_{*} \leq\left\|D_{u} N_{\varepsilon}(u+\psi) h\right\|_{* *} \leq C\left\|\bar{V}^{-8 /(n-4)+\beta} D_{u} N_{\varepsilon}(u+\psi)\right\|_{\infty}\|h\|_{*}
$$

and since

$$
\left|\bar{V}^{-8 /(n-4)+\beta} D_{u} N_{\varepsilon}(u+\psi)\right| \leq C \bar{V}^{2 \beta-1}\|u+\psi\|_{*}
$$

we get

$$
\left\|\bar{V}^{-8 /(n-4)+\beta} D_{u} N_{\varepsilon}(u+\psi)\right\|_{\infty} \leq C \begin{cases}\varepsilon^{2} & \text { if } n \leq 12 \\ \varepsilon^{2 \beta+1} & \text { if } n>12\end{cases}
$$

hence

$$
\|M(h)\|_{*} \leq C \varepsilon^{\min (2,2 \beta+1)}\|h\|_{*}
$$

Therefore by using the implicit function theorem, we have that $\varphi$ depends continuously on the parameter $\left(\xi^{\prime}, \Lambda\right)$. On the other hand if we differentiate with respect to $\xi^{\prime}$ we get

$$
D_{\xi^{\prime}} K\left(\xi^{\prime}, \Lambda, u\right)=D_{\xi^{\prime}} u+D_{\xi^{\prime}} L_{\varepsilon}\left(N_{\varepsilon}(u+\psi)\right)
$$

From Proposition 3.1 we get that

$$
\left\|D_{\xi^{\prime}} L_{\varepsilon}(h)\right\|_{*} \leq C\|h\|_{* *}
$$

Thus we need to compute

$$
D_{\xi^{\prime}} \psi=\left(D_{\xi^{\prime}} L_{\varepsilon}\right)\left(R_{\varepsilon}\right)+L_{\varepsilon}\left(D_{\xi^{\prime}} R_{\varepsilon}\right)
$$

but

$$
D_{\xi_{1}^{\prime}} R_{\varepsilon}=p V^{p-1} D_{\xi_{1}^{\prime}} V-p \bar{U}_{1}^{p-1} D_{\xi_{1}^{\prime}} \bar{U}_{1}-p(p-2)|V|^{p-3} D_{\xi_{1}^{\prime}} V \varphi
$$

which depends continuously on the parameters, and this is enough to prove that $v$ is $C^{1}$ with respect to the parameters $\left(\xi^{\prime}, \Lambda\right)$. Moreover, we have

$$
\begin{aligned}
D_{\xi^{\prime}} v=-\left(D_{v} K\left(\xi^{\prime}, \Lambda, v\right)\right)^{-1} & {\left[\left(D_{\xi^{\prime}} L_{\varepsilon}\right)\left(N_{\varepsilon}(v+\psi)\right)\right.} \\
& \left.+L_{\varepsilon}\left(D_{\xi^{\prime}}\left(N_{\varepsilon}(v+\psi)\right)\right)+L_{\varepsilon}\left(D_{v}\left(N_{\varepsilon}\right)(v+\psi) D_{\xi^{\prime}} \psi\right)\right]
\end{aligned}
$$

hence
$\left\|D_{\xi^{\prime}} v\right\|_{*} \leq C\left(\left\|N_{\varepsilon}(v+\psi)\right\|_{* *}+\left\|D_{\xi^{\prime}}\left(N_{\varepsilon}(v+\psi)\right)\right\|_{* *}+\left\|D_{v}\left(N_{\varepsilon}\right)(v+\psi) D_{\xi^{\prime}} \psi\right\|_{* *}\right)$.
Now, from Lemma 3.2, we know that

$$
\left\|N_{\varepsilon}(v+\psi)\right\|_{* *} \leq \begin{cases}C \varepsilon^{3} & \text { if } n \leq 12 \\ C \varepsilon^{2 \beta+3} & \text { if } n>12\end{cases}
$$

and also

$$
\begin{aligned}
\left|D_{\xi^{\prime}}\left(N_{\varepsilon}(u)\right)\right|= & p\left[|V+u+\varphi|^{p-2}(V+u+\varphi)\right. \\
& \left.-(p-1) V^{p-2}(u+\varphi)-V^{p-1}\right] D_{\xi^{\prime}} V \\
\leq & C V^{p-2}\left|D_{\xi^{\prime}} V\right||u| \leq C \bar{V}^{p-2+(n-3) /(n-4)+\beta}|u|_{*} .
\end{aligned}
$$

We get

$$
\bar{V}^{-8 /(n-4)}\left|D_{\xi^{\prime}}\left(N_{\varepsilon}(u)\right)\right| \leq C \bar{V}^{(n-3) /(n-4)+\beta-1}|u|_{*},
$$

therefore

$$
\left|D_{\xi^{\prime}}\left(N_{\varepsilon}(v+\psi)\right)\right|_{* *} \leq C \varepsilon^{2}
$$

A similar estimate gives

$$
\left|D_{v}\left(N_{\varepsilon}\right)(v+\psi) D_{\xi^{\prime}} \psi\right|_{* *} \leq C \varepsilon^{2}
$$

Since there is no difference in the case of the differentiation with respect to $\Lambda$, we omit it.

## 4. Reduction of the functional

Here we want to go back to our original set $\Omega$, therefore we will denote $\xi_{i}^{\prime}=\varepsilon^{-2 /(n-4)} \xi_{i}$ where $\xi_{i} \in \Omega$ and we remark that if we take $\xi_{i}$ and $\Lambda$ so that $c_{i j}=0$, then we obtain a solution of our original problem. Let $\mathcal{I}_{\varepsilon}$ be the functional defined by

$$
\mathcal{I}_{\varepsilon}(u)=\frac{1}{2} \int_{\Omega}|\Delta u|^{2}-\frac{1}{p+1} \int_{\Omega}|u|^{p+1}-\varepsilon \int_{\Omega} f u
$$

so that $u=V+v+\varphi+\psi$ is a solution for our problem if and only if it is a critical point for this functional. Let us consider the functions defined on $\Omega$ by

$$
\begin{aligned}
\widehat{v}(\xi, \Lambda)(x) & =\varepsilon^{-1} v\left(\varepsilon^{-2 /(n-4)} \xi, \Lambda\right)\left(\varepsilon^{-2 /(n-4)} x\right) \\
\widehat{\psi}(x) & =\varepsilon^{-1} \psi\left(\varepsilon^{-2 /(n-4)} x\right) \\
\widehat{\varphi}(x) & =\varepsilon^{-1} \varphi\left(\varepsilon^{-2 /(n-4)} x\right) \\
\widehat{U}_{i}(x) & =\varepsilon^{-1} V_{i}\left(\varepsilon^{-2 /(n-4)} x\right)
\end{aligned}
$$

Therefore if we set $\widehat{U}(x)=\widehat{U}_{2}(x)+\widehat{U}_{1}(x)$ and $I(\xi, \Lambda)=\mathcal{I}_{\varepsilon}(\widehat{U}+\widehat{\psi}+\widehat{v}(\xi, \Lambda)+\widehat{\varphi})$ then

$$
I(\xi, \Lambda)=J_{\varepsilon}(V+\psi+v+\varphi)
$$

Next we state the following result and we refer to [22] for the proof.
LEMMA 4.1. $u=\widehat{U}+\widehat{\psi}+\widehat{v}(\xi, \Lambda)+\widehat{\varphi}$ is a solution of the problem (1.1) if and only if $(\xi, \Lambda)$ is a critical point of $I$.

Now we define

$$
\sigma_{f}=\int_{\Omega} f w
$$

and we obtain
Proposition 4.2. We have the following expansion:

$$
I(\xi, \Lambda)=2 C_{n}+\varepsilon^{2}\left(\Psi(\xi, \Lambda)+\sigma_{f}\right)+o\left(\varepsilon^{2}\right)
$$

where $o\left(\varepsilon^{2}\right) \longrightarrow 0$ as $\varepsilon \rightarrow 0$ in the $C^{1}$ sense, uniformly in $O_{\delta}(\Omega) \times\left(\delta, \delta^{-1}\right)^{2}$.
Proof. Let us show first that

$$
I(\xi, \Lambda)-\mathcal{I}_{\varepsilon}(\widehat{U}+\widehat{\psi}+\widehat{\varphi})=o\left(\varepsilon^{2}\right)
$$

and

$$
\nabla_{(\xi, \Lambda)}\left(I(\xi, \Lambda)-\mathcal{I}_{\varepsilon}(\widehat{U}+\widehat{\psi}+\widehat{\varphi})\right)=o\left(\varepsilon^{2}\right)
$$

Indeed, using a Taylor expansion we have

$$
J_{\varepsilon}(\widehat{U}+\widehat{\psi}+\widehat{v}(\xi, \Lambda)+\widehat{\varphi})-J_{\varepsilon}(\widehat{U}+\widehat{\psi}+\widehat{\varphi})=\int_{0}^{1} t D^{2} J_{\varepsilon}(\widehat{U}+\widehat{\psi}+\widehat{\varphi}+t \widehat{v})[\widehat{v}, \widehat{v}] d t
$$

and this holds since $D J_{\varepsilon}(\widehat{U}+\widehat{\psi}+\widehat{\varphi}+\widehat{v})=0$. Therefore, we have

$$
\begin{aligned}
\int_{0}^{1} t D^{2} J_{\varepsilon}(\widehat{U} & +\widehat{\psi}+\widehat{\varphi}+t \widehat{v})[\widehat{\varphi}, \widehat{\varphi}] d t=\int_{0}^{1} t\left[\int_{\Omega_{\varepsilon}}|\nabla v|^{2}-p(V+\psi+\varphi+t v)^{p-1} v^{2}\right] d t \\
& =\int_{0}^{1} t \int_{\Omega_{\varepsilon}} p\left[V^{p-1}-(V+\psi+\varphi+t v)^{p-1}\right] v^{2}+N_{\varepsilon}(v+\psi) v d t
\end{aligned}
$$

We have $|v|_{*}+|\varphi|_{*}+|\psi|_{*}=O\left(\varepsilon^{2}\right)$, and by using Lemma 3.2, we get

$$
\int_{\Omega_{\varepsilon}} N_{\varepsilon}(v+\psi) v \leq \int_{\Omega_{\varepsilon}} \bar{V}^{p-1+\beta}\left|N_{\varepsilon}(v+\psi)\right|_{* *}|v|_{*} \leq C \varepsilon^{3} \int_{\Omega_{\varepsilon}} \bar{V}^{p-1+\beta} \leq C \varepsilon^{3}
$$

Now, the remaining part can be estimated as follows

$$
\begin{aligned}
\int_{\Omega_{\varepsilon}}\left[V^{p-1}-(V+\right. & \left.\psi+\varphi+t v)^{p-1}\right] v^{2} \\
& \leq C \varepsilon^{4} \int_{\Omega_{\varepsilon}} \bar{V}^{2 \beta}\left[V^{p-1}-(V+\psi+t \varphi)^{p-1}\right] \leq C \varepsilon^{4}
\end{aligned}
$$

Same estimates hold if we differentiate with respect to $\xi$. In fact we have

$$
\begin{aligned}
& D_{\xi}\left(J_{\varepsilon}(\widehat{U}+\widehat{\psi}+\widehat{v}(\xi, \Lambda)+\widehat{\varphi})-J_{\varepsilon}(\widehat{U}+\widehat{\psi}+\widehat{\varphi})\right) \\
= & \varepsilon^{-2 /(n-4)} \int_{0}^{1} t \int_{\Omega_{\varepsilon}} p D_{\xi^{\prime}}\left(\left[V^{p-1}-(V+\psi+\varphi+t v)^{p-1}\right] v^{2}\right)+D_{\xi^{\prime}}\left(N_{\varepsilon}(v+\psi) v\right) d t
\end{aligned}
$$

and the conclusion follows again from Lemma 3.2. Next step is to prove that

$$
\mathcal{I}_{\varepsilon}(\widehat{U}+\widehat{\psi}+\widehat{\varphi})-\mathcal{I}_{\varepsilon}(\widehat{U}+\widehat{\varphi})=o\left(\varepsilon^{2}\right)
$$

and

$$
D_{\xi}\left(\mathcal{I}_{\varepsilon}(\widehat{U}+\widehat{\psi}+\widehat{\varphi})-\mathcal{I}_{\varepsilon}(\widehat{U}+\widehat{\varphi})\right)=o\left(\varepsilon^{2}\right)
$$

so we start by writing

$$
\begin{aligned}
\mathcal{I}_{\varepsilon}(\widehat{U}+\widehat{\psi}+\widehat{\varphi}) & -\mathcal{I}_{\varepsilon}(\widehat{U}+\widehat{\varphi})=I_{\varepsilon}(U+\psi+\varphi)-I_{\varepsilon}(U+\varphi) \\
= & \int_{0}^{1}(1-t)\left(\left[p \int_{\Omega_{\varepsilon}}(V+\varphi+t \psi)^{p-1} \psi^{2}-\int_{\Omega_{\varepsilon}}|\Delta \psi|^{2}\right]\right. \\
& \left.-\int_{\Omega_{\varepsilon}}\left(|V|^{p}-|V+\varphi|^{p}+p|V|^{p-1} \varphi\right) \psi+\int_{\Omega_{\varepsilon}} R^{\varepsilon} \psi\right) .
\end{aligned}
$$

Also

$$
\begin{aligned}
& D_{\xi}\left(\mathcal{I}_{\varepsilon}(\widehat{U}+\widehat{\psi}+\widehat{\varphi})-\mathcal{I}_{\varepsilon}(\widehat{U}+\widehat{\varphi})\right) \\
&=\varepsilon^{-2 /(n-4)}[ \int_{0}^{1}(1-t)\left(D_{\xi^{\prime}}\left[p \int_{\Omega_{\varepsilon}}(V+\varphi+t \psi)^{p-1} \psi^{2}-\int_{\Omega_{\varepsilon}}|\Delta \psi|^{2}\right] d t\right. \\
&\left.\left.\quad-D_{\xi^{\prime}} \int_{\Omega_{\varepsilon}}\left(|V|^{p}-|V+\varphi|^{p}+p|V|^{p-1} \varphi\right) \psi+D_{\xi^{\prime}} \int_{\Omega_{\varepsilon}} R^{\varepsilon} \psi\right)\right] .
\end{aligned}
$$

Again, by using the fact that $|\psi|_{*}+\left|R^{\varepsilon}\right|_{* *}+\left|\nabla_{(\xi, \Lambda)} \psi\right|_{*}+\left|\nabla_{(\xi, \Lambda)} R^{\varepsilon}\right|_{* *} \leq C \varepsilon^{2}$, with $|\varphi|_{*} \leq C \varepsilon^{p}$ if $n \leq 12$ and $|\varphi|_{*} \leq C \varepsilon^{2}$ if $n>12$, we get the desired result. The final steps, namely showing

$$
\mathcal{I}_{\varepsilon}(\widehat{U}+\widehat{\varphi})-\mathcal{I}_{\varepsilon}(\widehat{U})=\varepsilon^{2} \sigma_{f}+o\left(\varepsilon^{2}\right)
$$

and

$$
D_{\xi}\left(\mathcal{I}_{\varepsilon}(\widehat{U}+\widehat{\varphi})-\mathcal{I}_{\varepsilon}(\widehat{U})\right)=o\left(\varepsilon^{2}\right)
$$

are also obtained by using the same kind of estimates.

## 5. Analysis of the exterior domain

Let us consider here $\Omega=\mathcal{D}-\overline{B(0, \mu)}$ for $\mu>0$ small enough. Also for $E=\mathbb{R}^{n}-\overline{B(0,1)}$ define the set

$$
\mathcal{V}=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n} ; G_{E}(x, y)-H_{E}^{1 / 2}(x, x) H_{E}^{1 / 2}(y, y)<0\right\} \cap\left(\mu^{-1} \Omega\right)
$$

where $G_{E}$ and $H_{E}$ are the Green's function and its regular part on the set $E$.
Let us take $f=1$ and $\mathcal{F}_{a}=\left\{x \in \mathbb{R}^{n} ; 1<|x|<a, a>1\right\}$, then the solution of

$$
\begin{cases}\Delta^{2} w_{a}=f & \text { on } \mathcal{F}_{a} \\ w_{a}=\Delta w_{a}=0 & \text { on } \partial \mathcal{F}_{a}\end{cases}
$$

is given by

$$
w_{a}(x)=-\frac{1}{8 n(n+2)}\left(\frac{a^{4}-1}{a^{4-n}-1}|x|^{4-n}-|x|^{4}+a^{4-n} \frac{\left(1-a^{n}\right)}{a^{4-n}-1}\right)
$$

It is easy to see that it has a maximum for

$$
\left|x_{a}\right|=\left(\frac{4\left(1-a^{4-n}\right)}{(n-4)\left(a^{4}-1\right)}\right)^{-1 / n}
$$

and $\left|x_{a}\right| \rightarrow \infty$ as $a \rightarrow \infty$. Now we consider the function $\varphi_{\mathcal{F}_{a}}$ defined, on the set $\mathcal{F}_{a}$ by

$$
\varphi_{\mathcal{F}_{a}}(x, y)=\frac{1}{2} \frac{H_{\mathcal{F}_{a}}(x, x) w_{a}(y)^{2}+H_{\mathcal{F}_{a}}(y, y) w_{a}(x)^{2}+2 G_{\mathcal{F}_{a}}(x, y) w_{a}(y) w_{a}(x)}{-H_{\mathcal{F}_{a}}(x, x) H_{\mathcal{F}_{a}}(y, y)+G_{\mathcal{F}_{a}}^{2}(x, y)}
$$

we will extend it to the full exterior domain $E=\left\{x \in \mathbb{R}^{n} ; 1<|x|\right\}$, for that we just extend $w_{a}$ by zero for $|x|>a$. Hence knowing that

$$
H_{E}(x, y)=\frac{a_{n}}{||y|(x-\bar{y})|^{n-4}}
$$

where $\bar{y}=y /|y|^{2}$, and since $w_{a}$ is radially symmetric, we get that $\varphi_{E}$ has a critical point $(x, y)$ if and only if $\sin (\theta)=0$ where $\theta$ is the angle between $x$ and $y$. Now we set $x=s e$ and $y=-t e$, where $e$ is a unit vector and $s$ and $t$ are real number greater than 1 . We write

$$
\widetilde{\varphi}_{E}(s, t)=\varphi_{E}(s e,-t e)
$$

Explicitly:

$$
\begin{aligned}
2 a_{n} \widetilde{\varphi}_{E}(s, t)= & \left(\frac{\widetilde{w}_{a}(t)^{2}}{\left(s^{2}-1\right)^{n-4}}+\frac{\widetilde{w}_{a}(s)^{2}}{\left(t^{2}-1\right)^{n-4}}\right. \\
& \left.+2 \widetilde{w}_{a}(t) \widetilde{w}_{a}(s)\left(\frac{1}{(s+t)^{n-4}}-\frac{1}{(s t+1)^{n-4}}\right)\right) \\
& \left(\left(\frac{1}{(s+t)^{n-4}}-\frac{1}{(s t+1)^{n-4}}\right)^{2}-\left(\frac{1}{\left(t^{2}-1\right)^{n-4}\left(t^{2}-1\right)^{n-4}}\right)\right)^{-1}
\end{aligned}
$$

We recall now (see [22] ) that the function defined by

$$
\widetilde{\rho}(s, t)=a_{n}\left(-\frac{1}{\left(t^{2}-1\right)^{(n-4) / 2}\left(s^{2}-1\right)^{(n-4) / 2}}-\frac{1}{(1+s t)^{n-4}}+\frac{1}{(s+t)^{n-4}}\right)
$$

has a unique maximum point of the form $(K, K)$, for $s, t>1$ and a unique $k$ satisfying $\widetilde{\rho}(k, k)=0$. we can choose $a_{0}>0$, big enough, such that for $a>a_{0}$, we have $k<K<\left|x_{a}\right|$. Hence we can get the following:

Lemma 5.1. The function $\widetilde{\varphi}_{E}$ admits a unique minimum, of the form $\left(\tau_{a}, \tau_{a}\right)$. Moreover, $\tau_{a} \in(k, K)$.

Next we will work on the domain $\Omega=D-\overline{B(0, \mu)}$. We set $m$, (resp. $M$ ) the radius of the largest (resp. smallest) ball contained (resp. containing) $D$, and set $\alpha=\min _{\Omega} f$ and $\beta=\max _{\Omega} f$. Thus, by using the maximum principle, we have $z_{m} \leq w \leq z_{M}$ for $\mu<|x|<m$, with $w$ as defined in (2.1),

$$
z_{m}(x)=\alpha \mu^{4} w_{a_{1}}\left(\mu^{-1} x\right) \quad \text { and } \quad z_{M}(x)=\beta \mu^{4} w_{a_{2}}\left(\mu^{-1} x\right)
$$

here $a_{1}=\mu^{-1} m$ and $a_{1}=\mu^{-1} M$. We obtain the following
Lemma 5.2. For $\mu>0$ small enough the function $\varphi_{E}$ has a relative minimum in a point $\left(\widetilde{x}_{\mu}, \widetilde{y}_{\mu}\right)$, with $\left|\widetilde{x}_{\mu}\right|$ and $\left|\widetilde{y}_{\mu}\right|$ belonging to $(k, \widetilde{k})$, and $\widetilde{k}$ independent of $\mu$.

The proof of this lemma follows if we show that there exist $\widetilde{k} \geq K$ satisfying

$$
\frac{\widetilde{\varphi}_{\mathcal{F}_{a_{1}}}(\widetilde{k}, \widetilde{k})}{\widetilde{\varphi}_{\mathcal{F}_{a_{2}}}(K, K)} \geq 1
$$

the conclusion will follow from the fact that $\varphi_{\mathcal{F}_{a_{1}}} \leq \varphi_{E} \leq \varphi_{\mathcal{F}_{a_{2}}}$ and $\varphi_{\mathcal{F}_{a}}$ has a unique minimum point for $a$ big enough.

Let us Define the set

$$
\mathcal{X}=\{(x, y) \in \mathcal{V}, \text { such that } k<|x|,|y|<\widetilde{k}\}
$$

and call $c_{\mu}=\varphi_{E}\left(\widetilde{x}_{\mu}, \widetilde{y}_{\mu}\right)$. Now we choose $\delta_{\mu}>c_{\mu}$ in such way that the set $\left\{(x, y) \in \mathcal{X}, \varphi_{E}=\delta_{\mu}\right\}$ is a closed curve on which $\nabla \varphi_{E} \neq 0$. Observe then that if we call

$$
\mathcal{J}=\left\{(x, y) \in \mathcal{X}, \text { such that } \varphi_{E} \leq \delta_{\mu}\right\}
$$

two situations might happen on $\partial \mathcal{J}$ : either there exists a tangential direction $\tau$ such that $\nabla \varphi_{E} \cdot \tau \neq 0$, or $x$ and $y$ point in two different directions and $\nabla \varphi_{E}(x, y) \neq 0$ points in the normal direction to $\partial \mathcal{J}$.

Now if we look at $E_{\mu}=\mathbb{R}^{n}-\overline{B(0, \mu)}$, then we can easily see that $G_{E_{\mu}}$ and $H_{E_{\mu}}$, are defined by

$$
G_{E_{\mu}}(x, y)=\mu^{4-n} G_{E}\left(\mu^{-1} x, \mu^{-1} y\right) \quad \text { and } \quad H_{E_{\mu}}(x, y)=\mu^{4-n} H_{E}\left(\mu^{-1} x, \mu^{-1} y\right) .
$$

Note that $S_{\mu}=\mu \mathcal{J}$, corresponds exactly to the set $\left\{\varphi_{E}\left(\mu^{-1} x, \mu^{-1} y\right) \leq \delta_{\mu}\right\}$. Also

$$
G(x, y)=G_{E_{\mu}}(x, y)+O(1)
$$

on the set $\mu \mathcal{X}$. Therefore, it follows that:

$$
\varphi_{\Omega}(x, y)=\mu^{n+4} \varphi_{E}\left(\mu^{-1} x, \mu^{-1} y\right)+o(1)
$$

where

$$
\varphi_{\Omega}(x, y)=\frac{1}{2} \frac{H_{\Omega}(x, x) w(y)^{2}+H_{\Omega}(y, y) w(x)^{2}+2 G_{\Omega}(x, y) w(y) w(x)}{G_{\Omega}^{2}(x, y)-H_{\Omega}(x, x) H_{\Omega}(y, y)}
$$

and $o(1) \rightarrow 0$ as $\mu \rightarrow 0$ in the $C^{1}$ sense.

## 6. Proof of Theorem 1.1

Since the function $\Psi$ defined in Section 2 is singular on the diagonal of $\Omega \times \Omega$, we replace the terms $G\left(\xi_{1}, \xi_{2}\right)$ by $G_{M}\left(\xi_{1}, \xi_{2}\right)=\min \left(G\left(\xi_{1}, \xi_{2}\right), M\right)$ for a constant $M>0$ to be fixed later. Hence $\Psi$ is well defined on $S_{\mu} \times \mathbb{R}_{+}^{2}$.

We remark that in that set, we have

$$
\rho(x, y)=H(x, x)^{1 / 2} H(y, y)^{1 / 2}-G(x, y)<0
$$

therefore the principal part of $\Psi$ which is a quadratic form, has a negative direction. We will set $\mathbf{e}\left(\xi_{1}, \xi_{2}\right)$ the vector defining the negative direction:

We have

$$
\mathbf{e}\left(\xi_{1}, \xi_{2}\right)=\left(\frac{H\left(\xi_{1}, \xi_{1}\right)^{1 / 2}}{H\left(\xi_{2}, \xi_{2}\right)^{1 / 2} \rho\left(\xi_{1}, \xi_{2}\right)}, \frac{H\left(\xi_{2}, \xi_{2}\right)^{1 / 2}}{H\left(\xi_{1}, \xi_{1}\right)^{1 / 2} \rho\left(\xi_{1}, \xi_{2}\right)}\right)
$$

Now we are going to consider the vector $\widetilde{\mathbf{e}}$ such that, for each $\left(\xi_{1}, \xi_{2}\right), \widetilde{\mathbf{e}}\left(\xi_{1}, \xi_{2}\right)$ is the critical point of $\Psi\left(\left(\xi_{1}, \xi_{2}\right), \cdot\right)$. This vector can be written explicitly in the following form

$$
\begin{aligned}
& \widetilde{\mathbf{e}}\left(\xi_{1}, \xi_{2}\right)=\left(\frac{\left.\left.\left.H\left(\xi_{2}, \xi_{2}\right) w\left(\xi_{1}\right)+G\left(\xi_{1}, \xi_{2}\right)\right) w\left(\xi_{2}\right)\right) w\left(\xi_{1}\right)\right)}{G^{2}\left(\xi_{1}, \xi_{2}\right)-H\left(\xi_{2}, \xi_{2}\right) H\left(\xi_{1} \xi_{2=1}\right)}\right. \\
&\left.\frac{\left.\left.\left.H\left(\xi_{1}, \xi_{1}\right) w\left(\xi_{2}\right)+G\left(\xi_{1}, \xi_{2}\right)\right) w\left(\xi_{2}\right)\right) w\left(\xi_{1}\right)\right)}{G^{2}\left(\xi_{1}, \xi_{2}\right)-H\left(\xi_{2}, \xi_{2}\right) H\left(\xi_{1} \xi_{2=1}\right)}\right) .
\end{aligned}
$$

Therefore we can check that $\Psi\left(\left(\xi_{1}, \xi_{2}\right), \widetilde{\mathbf{e}}\left(\xi_{1}, \xi_{2}\right)\right)=\varphi_{\Omega}\left(\xi_{1}, \xi_{2}\right)$.

Now we can set the min-max scheme, in a similar way as in [1], [14] and [22]. Let us define

$$
K_{\mu}=\left\{(x, y) \in \mathcal{X},(|x|,|y|)=\mu\left(\left|\widetilde{x}_{\mu}\right|,\left|\widetilde{y}_{\mu}\right|\right)\right\}
$$

We consider the family of curves $\mathcal{R}$, satisfying the following properties, $\gamma: K_{\mu}^{2} \times$ $\left[s, s^{-1}\right] \times[0,1] \rightarrow A_{\mu} \times \mathbb{R}_{+}^{2}$ such that:
(i) for $\left(\xi_{1}, \xi_{2}\right) \in K_{\mu}^{2}, t \in[0,1]$ it holds

$$
\gamma\left(\xi_{1}, \xi_{2}, s, t\right)=\left(\xi_{1}, \xi_{2}, s \widetilde{\mathbf{e}}\left(\xi_{1}, \xi_{2}\right)\right)
$$

and

$$
\gamma\left(\xi_{1}, \xi_{2}, s^{-1}, t\right)=\left(\xi_{1}, \xi_{2}, s^{-1} \widetilde{\mathbf{e}}\left(\xi_{1}, \xi_{2}\right)\right)
$$

(ii) $\gamma\left(\xi_{1}, \xi_{2}, t, 0\right)=\left(\xi_{1}, \xi_{2}, \overparen{\mathbf{e}}\left(\xi_{1}, \xi_{2}\right)\right)$, for all $\left(\xi_{1}, \xi_{2}, t\right) \in K_{\mu}^{2} \times t\left[s, s^{-1}\right]$.

Now arguing as in [22], the min-max value defined by

$$
C(\Omega)=\inf _{\gamma \in \mathcal{R}} \sup _{\left(\xi_{1}, \xi_{2}, t\right) \in K_{\mu}^{2} \times\left[s, s^{-1}\right]} \Psi\left(\gamma\left(\xi_{1}, \xi_{2}, t, 1\right)\right)
$$

is a critical value of $\Psi$.
Then the proof of Theorem 1.1 follows as in [15].

## 7. Vanishing solutions

In this section we will prove a multiplicity result concerning problem ( $\mathrm{P}_{f}$ ). Let us start by introducing a slightly different notation from the previous part. We set

$$
\bar{U}_{(z, a)}=c_{n}\left(\frac{a}{1+a^{2}|x-z|^{2}}\right)^{(n-4) / 2}
$$

for every $z \in \Omega$ (it corresponds to $a=1 / \lambda$ in the first part of the paper). Also, we set:

$$
\bar{Z}_{(z, a), i}=\frac{\partial}{\partial z_{i}} \bar{U}_{(z, a)},
$$

for $i=1, \ldots, n$, and

$$
\bar{Z}_{(z, a), n+1}=\frac{\partial}{\partial a} \bar{U}_{(z, a)}
$$

Now we consider the functional $I$ defined on $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ by

$$
I(u)=\frac{1}{2} \int_{\Omega}|\Delta u|^{2}-\frac{1}{p+1} \int_{\Omega}\left|u^{+}\right|^{p+1}
$$

We know that critical points of this functional are positive solutions to the problem

$$
\begin{cases}\Delta^{2} u=u^{p} & \text { on } \Omega \\ u=\Delta u=0 & \text { on } \partial \Omega\end{cases}
$$

and, if $\Omega=\mathbb{R}^{n}$ then the solutions for

$$
\left\{\begin{array}{l}
\Delta^{2} u=u^{p} \text { on } \mathbb{R}^{n} \\
u>0 \text { and } u \text { in } D^{2,2}\left(\mathbb{R}^{n}\right)
\end{array}\right.
$$

are of the form $\bar{U}_{(z, a)}$. We define the set

$$
S=\left\{u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)-\{0\} ; \int_{\Omega}|\Delta u|^{2}=\int_{\Omega}\left|u^{+}\right|^{p+1}\right\}
$$

It is easy to show that for every $u \in S$, we have $I(u)>C_{n} / n$. Now we take $0<d_{0}<1$ small enough so that, if $d(x, \partial \Omega)<d_{0}$, then there exists a unique $y \in \partial \Omega$ such that $|x-y|=d(x, \partial \Omega)$. We put $d(x)=\min \left(d_{0}, d(x, \partial \Omega)\right)$, for every $x$ in $\Omega$. Next we set

$$
\begin{aligned}
& \mathcal{O}(r)=\{(x, a) \in \Omega \times(1, \infty) ; d(x) a=r\} \\
& \overline{\mathcal{O}}(r)=\{(x, a) \in \Omega \times(1, \infty) ; d(x) a \geq r\}
\end{aligned}
$$

If we consider the eigenvalue problem

$$
\Delta^{2} v=\gamma p \bar{U}_{(z, a)}^{p} v \quad \text { on } D^{2}\left(\mathbb{R}^{n}\right)
$$

then obviously $\bar{U}_{(z, a)}$ is an eigenfunction corresponding to $\gamma_{1}=1 / p$. We take

$$
T_{(z, a)}=\operatorname{span}\left\{\bar{Z}_{(z, a), i}, i=1, \ldots, n+1\right\}
$$

and by using the classification in [21], we have that $T_{(z, a)}$ is exactly the eigenspace corresponding to the eigenvalue 1 . We set $T_{0}$ the eigenspace corresponding to the eigenvalue $\gamma_{1}$ and

$$
T_{(z, a)}^{+}=\left(T_{0} \oplus T_{(z, a)}\right)^{\perp}
$$

where orthogonality here is with respect to the scalar product $(u, v)=\int_{\Omega} \Delta u \Delta v$, for every $u, v \in D^{2}(\Omega)$. Now by means of the stereographic projection from $\mathbb{R}^{n}$ to the sphere, we obtain a linear eigenvalue problem on a compact manifold, with operator (Paneitz) having compact resolvent. Therefore we have the following:

Lemma 7.1. There exists $\gamma>0$ such that for every $(z, a) \in \Omega \times(1, \infty)$, $v \in T_{(z, a)}^{+}$, we have

$$
\left\langle v, \Delta^{2} v-p \bar{U}_{(z, a)}^{p} v\right\rangle \geq \gamma \int_{\Omega} p \bar{U}_{(z, a)}^{p} v^{2}
$$

We are going to find a particular solution to the problem $\left(\mathrm{P}_{f}\right)$ :
Lemma 7.2. There exist $\varepsilon_{0}>0$ and $C_{0}>0$ such that if $|f|_{C(\bar{\Omega})}<\varepsilon_{0}$, the problem $\left(\mathrm{P}_{f}\right)$ has a unique solution $u_{0} \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$, satisfying

$$
\left|u_{0}\right|_{C^{1}} \leq C_{0}|f|_{C(\bar{\Omega})}
$$

Moreover:

$$
\frac{1}{2} \int_{\Omega}\left(\Delta u_{0}\right)^{2}-\frac{1}{p+1} \int_{\Omega} u_{0}^{p+1}-\int_{\Omega} u_{0} f<\frac{C_{n}}{2 n}
$$

Proof. Let $\lambda_{1}$ be the first eigenvalue of the operator $\Delta^{2}$. For a fixed $0<$ $\lambda<\lambda_{1}$, consider the function

$$
h(t)= \begin{cases}\left|t^{+}\right|^{p} & \text { if } t<t_{0} \\ \lambda|t|^{\prime} & \text { if } t \geq t_{0}\end{cases}
$$

where $t_{0}$ is chosen such that $h$ is continuous. Hence, since $h$ has a linear growth at infinity and it is non-resonant, we can always find a solution to the problem

$$
\begin{cases}\Delta^{2} u=h(u)+f & \text { on } \Omega \\ u=\Delta u=0 & \text { on } \partial \Omega\end{cases}
$$

Moreover, using Schauder estimates we get that $\left|u_{0}\right|_{C^{1}} \leq C_{0}|f|_{C(\bar{\Omega})}$. Thus by taking $\varepsilon_{0}>0$ small enough, we have the desired result.

Let us consider $f \geq 0$ in $C(\bar{\Omega})$ with $f \neq 0$. We get, by using Hopf's lemma, that there exists $c_{1}>0$ such that

$$
\frac{c_{1}}{2}<-\frac{\partial u_{0}}{\partial \nu}<c_{1}, \quad \text { for all } x \in \partial \Omega
$$

Therefore, there exists $c_{2}>0$ such that

$$
u_{0}(x) \geq c_{2} d(x), \quad \text { for all } x \in \partial \Omega
$$

Next we want to find solutions of the form $u_{0}+v$. We define on $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ the functional

$$
J(u)=\frac{1}{2} \int_{\Omega}(\Delta u)^{2}-\frac{1}{p+1} \int_{\Omega}\left(\left(u_{0}+u\right)^{+}\right)^{p+1}-(p+1) u_{0}^{p} v-u_{0}^{p+1}
$$

We note that $v$ is a critical point of $J$ if and only if $u_{0}+v$ is a positive solution to $\left(\mathrm{P}_{f}\right)$.

Lemma 7.3. There exists $\varepsilon_{1}>0$ such that for $|f|_{C(\bar{\Omega})}<\varepsilon_{1}$, and $v \in H^{2}(\Omega) \cap$ $H_{0}^{1}(\Omega), v^{+} \neq 0$, there exists a unique $t_{v}>t_{1}>0$ such that $J(t v)$ is increasing on $\left(t_{1}, t_{v}\right]$, decreasing on $\left(t_{v}, \infty\right)$, and $J\left(t_{v} v\right)=\max _{t>0} J(t v)$.

Proof. We give a sketch of the proof: since we can pick $\varepsilon_{1}$ small enough, it suffices to prove the result for $u_{0}=0$ and then argue by continuity. The functional $J$ is now equal to $I$. Let us consider then

$$
I(t v)=t^{2} a_{1}-t^{p+1} a_{2}
$$

where $a_{1}=\frac{1}{2} \int_{\Omega}(\Delta v)^{2}$ and $a_{2}=(1 /(p+1)) \int_{\Omega}\left(v^{+}\right)^{p+1}$. This is just a polynomial equation to study. The result follows.

Now we define the Nehari manifold

$$
\mathcal{S}=\left\{t_{v} v ; v \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)-\{0\}\right\}
$$

A. Maalaoui - V. Martino

We have that for $v$ in $S, J(v)>0$, and $\langle\nabla J(v), v\rangle=0$ if and only if $v \in \mathcal{S} \cup\{0\}$. Therefore the critical points of $J$ are in $\mathcal{S}$.

Lemma 7.4. The functional $J$ satisfies the Palais-Smale condition on $\left(0, \frac{C_{n}}{n}\right)$.
Proof. Let $\left\{u_{j}\right\}$ be a (PS) sequence at the level $0<d<C_{n} / n$. Then we know by using the concentration compactness lemma, that there exists $\bar{u}$, $z_{1}, \ldots, z_{k} \in \Omega, a_{1}, \ldots, a_{k} \in \mathbb{R}_{+}^{*}$ such that

$$
u_{j}=\bar{u}+\sum_{i=1}^{k} \bar{U}_{\left(z_{i}, a_{i}\right)}+o(1)
$$

in the weak sense. After localization of the blow-up points, namely by testing against a function with support around the $z_{i}$, we get that the energy $J\left(u_{j}\right) \geq k C_{n} / n$. This happens if and only if $k=0$ since $d<C_{n} / n$, therefore the convergence holds.

We will need the following estimates.
Lemma 7.5. There exists $r_{0}>2$ such that, for every $(z, a) \in \overline{\mathcal{O}}\left(r_{0}\right)$,

$$
\begin{aligned}
\int_{\Omega} u_{0} U_{(z, a)}^{p} & \geq O\left(d(z) a^{-(n-4) / 2}\right) \\
\left|U_{(z, a)}\right|_{L^{n /(n-4)}} & \leq O\left(a^{-n / 2}|\ln (a)|\right) \\
\int_{\Omega} u_{0}^{n /(n-4)} U_{(z, a)}^{n /(n-4)} & \leq O\left(d(z)^{n /(n-4)} a^{-n / 2}|\ln (a)|\right) .
\end{aligned}
$$

Proof. We have (see Appendix):

$$
\int_{\Omega} u_{0} U_{(z, a)}^{p} \geq c \int_{\Omega} d(x)\left(\bar{U}_{(z, a)}^{p}-p \theta_{(z, a)} \bar{U}_{(z, a)}^{p-1}\right)
$$

and

$$
\begin{aligned}
\int_{\Omega} d(x) \bar{U}_{(z, a)}^{p} & \geq \frac{d(z)}{2} \int_{2 d(z)>d(x)>d(z) / 2} \bar{U}_{(z, a)}^{p} \\
& \geq \frac{d(z)}{2} \int_{0}^{d(z)} r^{n-1}\left(\frac{a}{1+a^{2} r^{2}}\right)^{(n+4) / 2} d r \geq C \frac{d(z)}{2} a^{(n-4) / 2} .
\end{aligned}
$$

Moreover:

$$
\int_{\Omega} \theta_{(z, a)} \bar{U}_{(z, a)}^{p-1}=o\left(a^{-(n-4) / 2}\right)
$$

Then the first inequality is proved. For the second one, we get:

$$
\left|U_{(z, a)}\right|_{L^{n /(n-4)}}^{n /(n-4)} \leq\left|\bar{U}_{(z, a)}\right|_{L^{n /(n-4)}}^{n /(n-4)} \leq\left|\bar{U}_{(0, a)}\right|_{L^{n /(n-4)}(B(0, C)}^{n /(n-4)} \leq C a^{-n / 2}|\ln (a)|
$$

Finally, for the last inequality we have:

$$
\int_{\Omega} u_{0}^{n /(n-4)} U_{(z, a)}^{n /(n-4)} \leq \int_{\Omega} u_{0}^{n /(n-4)} \bar{U}_{(z, a)}^{n /(n-4)}
$$

and by using the fact that there exists $c>0$ such that $u_{0}(x) \leq c d(z)$ whenever $|x-z| \leq d(z)$, we get the desired result.

Now we define the following sets :

$$
\begin{aligned}
\mathcal{M} & =\left\{U_{(z, a)} ;(z, a) \in \Omega \times(1, \infty)\right\} \\
\mathcal{N} & =\left\{\lambda U_{(z, a)} ;(z, a) \in \Omega \times(1, \infty), \lambda \in(1 / 2,2)\right\}
\end{aligned}
$$

and we call $\bar{T}_{(z, a)}$ the tangent space to $\mathcal{N}$ at $U_{(z, a)}$. We also set $F_{(z, a)}^{-}=\left\{\lambda U_{(z, a)}\right.$; $\lambda \in \mathbb{R}\}$ and $F_{(z, a)}^{+}=\bar{T}_{(z, a)}^{\perp}$. Finally, let $F_{(z, a)}=F_{(z, a)}^{+} \oplus F_{(z, a)}^{-}$and $K$ be the linear operator defined by

$$
K u=u_{1}-u_{2}
$$

for any $u=u_{1}+u_{2}$, with $u_{1} \in F_{(z, a)}^{+}$and $u_{2} \in F_{(z, a)}^{-}$. We have the following
Lemma 7.6. There exist positive constants $\varepsilon_{2}, r_{1}, \delta$ and $C_{1}$ such that for $f \in C(\bar{\Omega})$ with $|f|_{C(\bar{\Omega})}<\varepsilon_{2},(z, a) \in \overline{\mathcal{O}}\left(r_{1}\right)$ and $w \in B_{\delta}\left(U_{(z, a)}\right)$, it holds:

$$
\begin{equation*}
\left\langle\Delta^{2} v-p\left(w+u_{0}\right)_{+}^{p} v, K v\right\rangle \geq C_{1} \int_{\Omega}(\Delta v)^{2} \tag{7.1}
\end{equation*}
$$

for every $v \in F_{(z, a)}$.
Proof. Again it is enough to show this inequality for $u_{0}=0$ and then argue by continuity. So let us take $u_{0}=0$ and by contradiction, let us assume that the inequality does not hold. Then there exists a sequence $\left(z_{k}, a_{k}\right) \in \overline{\mathcal{O}}\left(r_{0}\right)$, $v_{k} \in F_{\left(z_{k}, a_{k}\right)}$ with $\left|v_{k}\right|=1, d\left(z_{k}\right) a_{k}=r_{k} \rightarrow \infty$, and $w_{k} \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ such that $\left|w_{k}-U_{\left(z_{k}, a_{k}\right)}\right| \rightarrow 0$ as $k \rightarrow \infty$, verifying

$$
\lim \sup \left\langle\Delta^{2} v_{k}-p\left(w_{k}\right)_{+}^{p} v_{k}, K v_{k}\right\rangle \leq 0
$$

We can always write $v_{k}=v_{k, 1}+v_{k, 2}$ according to the splitting of $F_{\left(z_{k}, a_{k}\right)}$. Since $r_{k} \rightarrow \infty$, we have $\left|\bar{U}_{\left(z_{k}, a_{k}\right)}-U_{\left(z_{k}, a_{k}\right)}\right| \rightarrow 0$. Therefore it is easy to see that

$$
\operatorname{dist}\left(F_{\left(z_{k}, a_{k}\right)}, \operatorname{span}\left\{T_{\left(z_{k}, a_{k}\right)}, U_{\left(z_{k}, a_{k}\right)}\right\}\right) \rightarrow 0
$$

Thus,

$$
\lim _{k \rightarrow \infty} \operatorname{dist}\left(v_{k, 1}, F_{\left(z_{k}, a_{k}\right)}^{+}\right)=0
$$

and, by using Lemma 7.1, we have for $k$ big enough

$$
\left\langle v_{k, 1}, \Delta^{2} v_{k, 1}-p\left(w_{k}^{+}\right)^{p-1} v_{k, 1}\right\rangle \geq \frac{\gamma}{2} \int_{\Omega} p\left(w_{k}^{+}\right)^{p-1} v_{k, 1}^{2}
$$

Now let us assume for instance that $\left|v_{k, 1}\right|>c$, for $k$ big enough. Then there exists $\widetilde{c}>0$, such that $\left\langle v_{k, 1}, \Delta^{2} v_{k, 1}-p\left(w_{k}^{+}\right)^{p-1} v_{k, 1}\right\rangle>\widetilde{c}$, and hence

$$
\lim \sup \left\langle v_{k, 1}, \Delta^{2} v_{k, 1}-p\left(w_{k}^{+}\right)^{p-1} v_{k, 1}\right\rangle>\tilde{c}
$$

By definition of $v_{k, 2}$ we have

$$
\left\langle v_{k, 2}, \Delta^{2} v_{k, 2}-p\left(w_{k}^{+}\right)^{p-1} v_{k, 2}\right\rangle \leq\left|v_{k, 2}\right|(1-p)
$$

Therefore, knowing also that

$$
\lim _{k \rightarrow \infty} \operatorname{dist}\left(v_{k, 2}, F_{\left(z_{k}, a_{k}\right)}^{-}\right)=0
$$

we get that either $\left|v_{k, 1}\right|=\left|v_{k, 2}\right|=0$, that is $\left|v_{k}\right|=0$, or

$$
\lim \sup \left\langle\Delta^{2} v_{k}-p\left(w_{k}\right)_{+}^{p} v_{k}, K v_{k}\right\rangle>0
$$

which is a contradiction. Then the lemma holds.
Proposition 7.7. There exist $r_{2}>0$ and $C_{2}>0$ satisfying: for every $f \in$ $C(\bar{\Omega}),|f|_{C(\bar{\Omega})}<\varepsilon_{2}$ and each $(z, a) \in O\left(r_{2}\right)$, there exists $w_{(a, z)} \in S \cap B_{\delta / 2}\left(U_{(z, a)}\right)$ such that

$$
\begin{equation*}
\left|w_{(a, z)}-U_{(z, a)}\right| \leq C_{2}\left|\nabla J\left(U_{(z, a)}\right)\right| \tag{7.2}
\end{equation*}
$$

and

$$
J\left(w_{(a, z)}\right)=\min _{u \in F_{(z, a)}^{+} \cap B_{\delta / 2}(0) v \in F_{(z, a)}^{-} \cap B_{\delta / 2}(0)} J\left(U_{(z, a)}+u+v\right)
$$

that is

$$
J\left(w_{(a, z)}+v\right) \leq J\left(w_{(a, z)}\right) \leq J\left(w_{(a, z)}+u\right)
$$

for every $u \in F_{(z, a)}^{+} \cap B_{\delta}(0)$ and $v \in F_{(z, a)}^{-} \cap B_{\delta}(0)$.
Proof. The existence of $w_{(a, z)}$ follows from the fact that $\left|\nabla J\left(U_{(z, a)}\right)\right| \rightarrow 0$ as $d(z) a \rightarrow \infty$ and (7.1): by Taylor expansion we see that the functional is convex in the direction of $F_{(z, a)}^{+}$and concave in the direction of $F_{(z, a)}^{-}$. We have a saddle point, therefore $w(a, z)$ exists as in [2] and it is in $F_{(z, a)}$. Now we want to prove that

$$
\left|w_{(a, z)}-U_{(z, a)}\right| \leq C_{2}\left|\nabla J\left(U_{(z, a)}\right)\right|
$$

We note first that since $w_{(a, z)}$ is a saddle point, we have $\langle\nabla J(w(a, z)), w(a, z)\rangle=$ 0 , then $w(a, z) \in S$. Using again a Taylor expansion we have

$$
\begin{aligned}
&\left\langle\nabla J\left(w_{(z, a)}\right), K\left(w_{(z, a)}-U_{(z, a)}\right)\right\rangle \\
&=\left\langle\nabla J\left(U_{(z, a)}\right)+J^{\prime \prime}\left(U_{(z, a)}\right)\left(w_{(z, a)}-U_{(z, a)}\right),\right.\left.K\left(w_{(z, a)}-U_{(z, a)}\right)\right\rangle \\
&+o\left(\left|w_{(a, z)}-U_{(z, a)}\right|^{2}\right)
\end{aligned}
$$

By noticing that $J^{\prime \prime}\left(U_{(z, a)}\right) h=\Delta^{2} h-p\left|U_{(z, a)}\right|^{p-1} h$ and by using (7.1), we get

$$
\begin{aligned}
\left\langle\nabla J\left(w_{(z, a)}\right), K\left(w_{(z, a)}-U_{(z, a)}\right)\right\rangle & \geq\left\langle\nabla J\left(U_{(z, a)}\right), K\left(w_{(z, a)}-U_{(z, a)}\right)\right\rangle \\
& +C_{1}\left|w_{(a, z)}-U_{(z, a)}\right|^{2}+o\left(\left|w_{(a, z)}-U_{(z, a)}\right|^{2}\right)
\end{aligned}
$$

But $\left\langle\nabla J\left(w_{(z, a)}\right), K\left(w_{(z, a)}-U_{(z, a)}\right)\right\rangle=0$ by construction of $w_{(z, a)}$, therefore we obtain the desired result by a simple application of Cauchy-Schwartz inequality.

Lemma 7.8. Let $f=0$. There exists $r_{2}>0$ such that for every $r>r_{2}$, there exists $c_{r}>C_{n} / n$ verifying

$$
J\left(w_{(z, a)}\right)>c_{r}, \quad \text { for every }(z, a) \in \mathcal{O}(r)
$$

Proof. By using the expansion of $\left|U_{(z, a)}\right|^{2}$ (see Appendix), we have the existence of $m>0$, such that $\left|U_{(z, a)}\right|>m$ for $(z, a) \in \bar{O}\left(r_{2}\right)$. Let now $r \geq r_{2}$. Since $f=0$ and $w_{(z, a)} \in S$, then $J\left(w_{(z, a)}\right)>\frac{C_{n}}{n}$ for all $(z, a) \in O(r)$. So let us assume by contradiction that

$$
\inf _{(z, a) \in O(r)} J\left(w_{(z, a)}\right)=\frac{C_{n}}{n} .
$$

Then there exists a sequence $\left(z_{k}, a_{k}\right) \in O(r)$, such that

$$
\left|w_{\left(z_{k}, a_{k}\right)}-\bar{U}_{\left(z_{k}^{\prime}, a_{k}^{\prime}\right)}\right| \rightarrow 0
$$

where $\left(z_{k}^{\prime}, a_{k}^{\prime}\right) \in \Omega \times(1, \infty)$ is such that $d\left(z_{k}^{\prime}\right) a_{k}^{\prime} \rightarrow \infty$. Thus

$$
\left|w_{\left(z_{k}, a_{k}\right)}-U_{\left(z_{k}^{\prime}, a_{k}^{\prime}\right)}\right| \rightarrow 0
$$

Using (7.2), we have $\left|w_{\left(z_{k}, a_{k}\right)}-U_{\left(z_{k}, a_{k}\right)}\right|<m / 4$, since $\left(z_{k}, a_{k}\right) \in \bar{O}\left(r_{2}\right)$. This leads to $\left|U_{\left(z_{k}, a_{k}\right)}-U_{\left(z_{k}^{\prime}, a_{k}^{\prime}\right)}\right| \leq m / 4$. But we know that $d\left(z_{k}^{\prime}\right) a_{k}^{\prime} \rightarrow \infty$ and $d\left(z_{k}\right) a_{k}=r$, therefore

$$
\lim _{k \rightarrow \infty}\left|U_{\left(z_{k}, a_{k}\right)}-U_{\left(z_{k}^{\prime}, a_{k}^{\prime}\right)}\right| \geq 2 m
$$

which is a contradiction.
Lemma 7.9. Let $f \in C(\bar{\Omega})$, such that $|f|_{C(\bar{\Omega})}<\varepsilon_{2}$, then there exist $r_{3}>0$, $C_{3}, C_{4}>0$ such that

$$
J\left(w_{(z, a)}\right) \leq \frac{C_{n}}{n}+C_{3}(d(z) a)^{-(n-4)}-C_{4} d(z) a^{(n-4) / 2}
$$

for every $(z, a) \in \overline{\mathcal{O}}\left(r_{3}\right)$.
Proof. For $(z, a) \in \overline{\mathcal{O}}\left(r_{2}\right)$, we take $\widetilde{U}_{(z, a)}=t_{U_{(z, a)}} U_{(z, a)}$ as in [19]. So we have $J\left(\widetilde{U}_{(z, a)}\right)=\max _{t \geq 0}\left(t U_{(z, a)}\right)$. Hence by construction of $w_{(z, a)}$, we have

$$
J\left(w_{(z, a)}\right) \leq J\left(\widetilde{U}_{(z, a)}\right)
$$

We see that in fact, $t_{1}<t_{U_{(z, a)}}<t_{2}$ for every $(z, a) \in \bar{O}\left(r_{2}\right)$ with $t_{1}$ and $t_{2}$ two fixed real numbers. Now

$$
\begin{aligned}
& J\left(\widetilde{U}_{(z, a)}\right) \leq \max _{t \geq 0}\left\{\frac{1}{2} \int_{\Omega} t^{2}\left(\Delta U_{(z, a)}\right)^{2}-\frac{1}{p+1} \int_{\Omega} t^{p+1} U_{(z, a)}^{p+1}\right\} \\
- & \min _{t_{1} \leq t \leq t_{2}}\left\{\frac{1}{p+1} \int_{\Omega}\left(\left(u_{0}+t U_{(z, a)}\right)^{+}\right)^{p+1}-t^{p+1} U_{(z, a)}^{p+1}-(p+1) t u_{0}^{p} U_{(z, a)}-u_{0}^{p+1}\right\}
\end{aligned}
$$

after studying the polynomial equation

$$
\frac{1}{2} \int_{\Omega} t^{2}\left(\Delta U_{(z, a)}\right)^{2}-\frac{1}{p+1} \int_{\Omega} t^{p+1} U_{(z, a)}^{p+1}
$$

and using the estimate in the Appendix, one can see that

$$
\begin{aligned}
\max _{t \geq 0}\left\{\frac{1}{2} \int_{\Omega} t^{2}\left(\Delta U_{(z, a)}\right)^{2}-\frac{1}{p+1}\right. & \left.\int_{\Omega} t^{p+1} U_{(z, a)}^{p+1}\right\} \\
& =\frac{C_{n}}{n}+O\left(a^{-(n-4)}\right) \leq c+O\left((\operatorname{ad}(z))^{-(n-4)}\right)
\end{aligned}
$$

By using a Taylor expansion near zero and at infinity, we find that

$$
\begin{aligned}
& \frac{1}{p+1} \int_{\Omega}\left(\left(u_{0}+t U_{(z, a)}\right)^{+}\right)^{p+1}-t^{p+1} U_{(z, a)}^{p+1}-(p+1) t u_{0}^{p} U_{(z, a)}-u_{0}^{p+1} \\
& \geq \int_{\Omega} u_{0} t^{p} U_{(z, a)}^{p}-C \int_{\Omega} t^{n /(n-4)} u_{0}^{n /(n-4)} U_{(z, a)}^{n /(n-4)}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
&-\min _{t_{1} \leq t \leq t_{2}}\left\{\frac { 1 } { p + 1 } \int _ { \Omega } \left(\left(u_{0}+\right.\right.\right.\left.\left.\left.t U_{(z, a)}\right)^{+}\right)^{p+1}-t^{p+1} U_{(z, a)}^{p+1}-(p+1) t u_{0}^{p} U_{(z, a)}-u_{0}^{p+1}\right\} \\
& \leq C \int_{\Omega} t_{2}^{n /(n-4)} u_{0}^{n /(n-4)} U_{(z, a)}^{n /(n-4)}-\int_{\Omega} u_{0} t_{1}^{p} U_{(z, a)}^{p}
\end{aligned}
$$

By using the estimates in Lemma 7.5, we get

$$
\begin{aligned}
& C \int_{\Omega} t_{2}^{n /(n-4)} u_{0}^{n /(n-4)} U_{(z, a)}^{n /(n-4)}-\int_{\Omega} u_{0} t_{1}^{p} U_{(z, a)}^{p} \\
& \leq O\left(d(z)^{n /(n-4)} a^{-n / 2}|\ln (a)|\right)-O\left(d(z) a^{-(n-4) / 2}\right)
\end{aligned}
$$

therefore

$$
\begin{aligned}
J\left(\widetilde{U}_{(z, a)}\right) \leq & \frac{C_{n}}{n}+O\left((a d(z))^{-(n-4)}\right) \\
& +O\left(d(z)^{n /(n-4)} a^{-n / 2}|\ln (a)|\right)-O\left(d(z) a^{-(n-4) / 2}\right) \\
\leq & \frac{C_{n}}{n}+O(a d(z))^{-(n-4)}+A d(z)^{n /(n-4)} a^{-n / 2}|\ln (a)|-B d(z) a^{-(n-4) / 2}
\end{aligned}
$$

for $A$ and $B$ two positive constants. The conclusion follows.
Now we define the set:

$$
\mathcal{R}=\left\{(z, a) \in \overline{\mathcal{O}}\left(r_{3}\right) ; C_{3}(d(z) a)^{-(n-4)}<C_{4} d(z) a^{(n-4) / 2}\right\}
$$

In this set we have $J\left(w_{(z, a)}\right)<C_{n} / n$ and thus Palais-Smale holds.
Proof of Theorem 1.3. Now the proof of the theorem follows straightforward. In fact, using a minmax argument on the homology classes of $\mathcal{R}$, we obtain critical points of $(z, a) \mapsto J\left(w_{(z, a)}\right)$, namely for each $[\alpha] \in H_{*}(\mathcal{R}) \cong H_{*}(\Omega)$, we have that the values $c_{\alpha}$ defined by

$$
c_{\alpha}=\min _{\alpha \in[\alpha]} \max _{(z, a) \in \alpha} J\left(w_{(z, a)}\right)
$$

are critical values of the function defined before. Moreover, these critical values corresponds to critical points belonging to the inside of the set $\overline{\mathcal{O}}\left(r_{3}\right)$, by

Lemma 7.8. Now we use a transversality theorem (see Appendix) on the map defined by

$$
\Psi(u, f)=\Delta^{2} u-|u|^{p-1} u-f
$$

to show that these critical points are non-degenerate. This ends the proof.

## 8. Appendix

Here we will give a list of estimates that we used in some of the proofs. Here the $O$ is for $d_{i} / \lambda_{i} \rightarrow \infty$ and $\varepsilon_{12} \rightarrow 0$. Let

$$
\bar{U}_{(\xi, \lambda)}(x)=\left(\frac{\lambda}{1+\lambda^{2}|x-\xi|^{2}}\right)^{(n-4) / 2}
$$

and for $i=1,2$, we will set $\bar{U}_{i}=\bar{U}_{\left(\xi_{i}, \lambda_{i}\right)}$. By using the same notation as in Section 1, we set

$$
U_{i}=P \bar{U}_{i}, \quad \varepsilon_{12}=\frac{1}{\lambda_{2} / \lambda_{1}+\lambda_{1} / \lambda_{2}+\lambda_{1} \lambda_{2}\left|\xi_{1}-\xi_{2}\right|^{2}} \quad \text { and } \quad d_{i}=\operatorname{dist}\left(\xi_{i}, \partial \Omega\right)
$$

Lemma 8.1. Let $\theta_{1}=\bar{U}_{1}-U_{1}$, then:
(a) $0 \leq \theta_{1} \leq \bar{U}_{1}$,
(b) $\theta_{1}(x)=H\left(\xi_{1}, x\right) \lambda_{1}^{(n-4) / 2}+f_{1}(x)$,
(c) $f_{1}(x)=O\left(\frac{\lambda_{1}^{n / 2}}{d_{1}^{n-2}}\right), \frac{\partial}{\partial \lambda_{1}} f_{1}(x)=O\left(\frac{\lambda_{1}^{n / 2+1}}{d_{1}^{n-2}}\right)$,
(d) $\frac{\partial}{\partial \xi_{1}} f_{1}(x)=O\left(\frac{\lambda_{1}^{n / 2}}{d_{1}^{n-1}}\right)$.

Lemma 8.2. It holds
(a) $\left|U_{1}\right|^{2}=\left\langle U_{1}, U_{1}\right\rangle=C_{n}-c_{1} H\left(\xi_{1}, \xi_{1}\right) \lambda_{1}^{n-4}+O\left(\frac{\lambda_{1}^{n-2}}{d_{1}^{n-2}}\right)$,
(b) $\left\langle U_{2}, U_{1}\right\rangle=c_{1}\left(\varepsilon_{12}-H\left(\xi_{1}, \xi_{2}\right) \lambda_{1}^{(n-4) / 2} \lambda_{2}^{(n-4) / 2}\right)$

$$
+O\left(\varepsilon_{12}^{(n-2) /(n-4)}+\frac{\lambda_{1}^{n-2}}{d_{1}^{n-2}}+\frac{\lambda_{2}^{n-2}}{d_{2}^{n-2}}\right)
$$

(c) $\int_{\Omega U_{1}^{2 n /(n-4)}}=C_{n}-\frac{2 n}{n-4} H\left(\xi_{1}, \xi_{1}\right) \lambda_{1}^{n-4}+O\left(\frac{\lambda_{1}^{n-2}}{d_{1}^{n-2}}\right)$,
(d) $\int_{\Omega} U_{1}^{(n+4) /(n-4)} U_{2}=\left\langle U_{2}, U_{1}\right\rangle$

$$
+ \begin{cases}O\left(\varepsilon_{12}^{n /(n-4)} \ln \left(\varepsilon_{12}^{-1}\right)+\frac{\lambda_{1}^{n}}{d_{1}^{n}} \ln \left(\frac{d_{1}}{\lambda_{1}}\right)\right) & \text { if } n \geq 8 \\ O\left(\varepsilon_{12} \ln \left(\varepsilon_{12}^{-1}\right)^{(n-4) / n} \frac{\lambda_{1}^{n-4}}{d_{1}^{n-4}}\right) & \text { if } n \leq 7\end{cases}
$$

Lemma 8.3. We have the following estimates on $\frac{\partial}{\partial \lambda} U_{1}$ :
(a) $\left\langle U_{1}, \frac{1}{\lambda_{1}} \frac{\partial}{\partial \lambda} U_{1}\right\rangle=\frac{n-4}{2} c_{1} H\left(\xi_{1}, \xi_{1}\right) \lambda_{1}^{n-4}+O\left(\frac{\lambda_{1}^{n-2}}{d_{1}^{n-2}}\right)$,
(b) $\int_{\Omega} U_{1}^{(n+4) /(n-4)} \frac{1}{\lambda_{1}} \frac{\partial}{\partial \lambda} U_{1}=2\left\langle U_{1}, \frac{1}{\lambda_{1}} \frac{\partial}{\partial \lambda} U_{1}\right\rangle+O\left(\frac{\lambda_{1}^{n-2}}{d_{1}^{n-2}}\right)$,
(c) $\left\langle U_{2}, \frac{1}{\lambda_{1}} \frac{\partial}{\partial \lambda} U_{1}\right\rangle=c_{1}\left(\frac{1}{\lambda_{1}} \frac{\partial}{\partial \lambda_{1}} \varepsilon_{12}+\frac{n-4}{2} H\left(\xi_{1}, \xi_{2}\right) \lambda_{1}^{(n-4) / 2} \lambda_{2}^{(n-4) / 2}\right)$

$$
+O\left(\varepsilon_{12}^{(n-2) /(n-4)}+\frac{\lambda_{1}^{n-2}}{d_{1}^{n-2}}+\frac{\lambda_{2}^{n-2}}{d_{2}^{n-2}}\right)
$$

(d) $\int_{\Omega} U_{2}^{(n+4) /(n-4)} \frac{1}{\lambda_{1}} \frac{\partial}{\partial \lambda} U_{1}=\left\langle U_{2}, \frac{1}{\lambda_{1}} \frac{\partial}{\partial \lambda} U_{1}\right\rangle$

$$
+ \begin{cases}O\left(\varepsilon_{12}^{n /(n-4)} \ln \left(\varepsilon_{12}^{-1}\right)+\frac{\lambda_{1}^{n}}{d_{1}^{n}} \ln \left(\frac{d_{1}}{\lambda_{1}}\right)\right) & \text { if } n \geq 8 \\ O\left(\varepsilon_{12} \ln \left(\varepsilon_{12}^{-1}\right)^{(n-4) / n} \frac{\lambda_{1}^{n-4}}{d_{1}^{n-4}}\right) & \text { if } n \leq 7\end{cases}
$$

(e) $\int_{\Omega} U_{2} \frac{1}{\lambda_{1}}\left(\frac{\partial}{\partial \lambda} U_{1}\right)^{(n+4) /(n-4)}=\left\langle U_{2}, \frac{1}{\lambda_{1}} \frac{\partial}{\partial \lambda} U_{1}\right\rangle$

$$
+ \begin{cases}O\left(\varepsilon_{12}^{n /(n-4)} \ln \left(\varepsilon_{12}^{-1}\right)+\frac{\lambda_{1}^{n}}{d_{1}^{n}} \ln \left(\frac{d_{1}}{\lambda_{1}}\right)\right) & \text { if } n \geq 8 \\ O\left(\varepsilon_{12} \ln \left(\varepsilon_{12}^{-1}\right)^{(n-4) / n} \frac{\lambda_{1}^{n-4}}{d_{1}^{n-4}}\right) & \text { if } n \leq 7\end{cases}
$$

Lemma 8.4. We have the following estimates on $\frac{\partial}{\partial \xi} U_{1}$ :
(a) $\left\langle U_{1}, \frac{1}{\lambda_{1}} \frac{\partial}{\partial \xi_{1}} U_{1}\right\rangle=-\frac{1}{2} c_{1} H\left(\xi_{1}, \xi_{1}\right) \lambda_{1}^{n-3}+O\left(\frac{\lambda_{1}^{n-2}}{d_{1}^{n-2}}\right)$,
(b) $\int_{\Omega} U_{1}^{(n+4) /(n-4)} \frac{1}{\lambda_{1}} \frac{\partial}{\partial \xi_{1}} U_{1}=2\left\langle U_{1}, \frac{1}{\lambda_{1}} \frac{\partial}{\partial \xi_{1}} U_{1}\right\rangle+O\left(\frac{\lambda_{1}^{n-2}}{d_{1}^{n-2}}\right)$,
(c) $\left\langle U_{2}, \frac{1}{\lambda_{1}} \frac{\partial}{\partial \xi_{1}} U_{1}\right\rangle=c_{1}\left(\frac{1}{\lambda_{1}} \frac{\partial}{\partial \xi_{1}} \varepsilon_{12}-\frac{\partial}{\partial \xi_{1}} H\left(\xi_{1}, \xi_{2}\right) \lambda_{1}^{(n-4) / 2} \lambda_{2}^{(n-4) / 2}\right)$

$$
+O\left(\varepsilon_{12}^{(n-1) /(n-4)} \frac{\left|\xi_{1}-\xi_{2}\right|}{\lambda_{2}}+\frac{\lambda_{1}^{n-2}}{d_{1}^{n-2}}+\frac{\lambda_{2}^{n-2}}{d_{2}^{n-2}}\right)
$$

(d) $\int_{\Omega} U_{2}^{(n+4) /(n-4)} \frac{1}{\lambda_{1}} \frac{\partial}{\partial \xi_{1}} U_{1}=\left\langle U_{2}, \frac{1}{\lambda_{1}} \frac{\partial}{\partial \xi_{1}} U_{1}\right\rangle$

$$
+ \begin{cases}O\left(\varepsilon_{12}^{n /(n-4)} \ln \left(\varepsilon_{12}^{-1}\right)+\frac{\lambda_{1}^{n}}{d_{1}^{n}} \ln \left(\frac{d_{1}}{\lambda_{1}}\right)\right) & \text { if } n \geq 8 \\ O\left(\varepsilon_{12} \ln \left(\varepsilon_{12}^{-1}\right)^{(n-4) / n} \frac{\lambda_{1}^{n-4}}{d_{1}^{n-4}}\right) & \text { if } n \leq 7\end{cases}
$$

(e) $\int_{\Omega} U_{2} \frac{1}{\lambda_{1}}\left(\frac{\partial}{\partial \xi_{1}} U_{1}\right)^{(n+4) /(n-4)}=\left\langle U_{2}, \frac{1}{\lambda_{1}} \frac{\partial}{\partial \xi_{1}} U_{1}\right\rangle$

$$
+ \begin{cases}O\left(\varepsilon_{12}^{n /(n-4)} \ln \left(\varepsilon_{12}^{-1}\right)+\frac{\lambda_{1}^{n}}{d_{1}^{n}} \ln \left(\frac{d_{1}}{\lambda_{1}}\right)\right) & \text { if } n \geq 8 \\ O\left(\varepsilon_{12} \ln \left(\varepsilon_{12}^{-1}\right)^{(n-4) / n} \frac{\lambda_{1}^{n-4}}{d_{1}^{n-4}}\right) & \text { if } n \leq 7\end{cases}
$$

The proof of these estimates are similar to the ones in [3]. For more details we refer also to $[7],[8]$ and $[17]$.

Next we state a Transversality Theorem: see [19] for the proof.
Theorem 8.5. Let $X, Y$ and $Z$ be three Banach spaces, and $\Psi: X \times Y \longrightarrow Z$ be a $C^{1}$ map satisfying the following conditions for given $z \in Z$ :
(a) for every $(x, y) \in \Psi^{-1}(z)$, the map $D_{x} \Psi(x, y): X \rightarrow Z$ is a Fredholm operator of index 0 ,
(b) for every $(x, y) \in \Psi^{-1}(z)$, the map $D \Psi(x, y): X \times Y \longrightarrow Z$ is surjective. Then the set of $y \in Y$, satisfying that $z$ is a regular value of $\Psi(\cdot, y)$, is a residual set in $Y$.

## References

[1] S. Alarcon, Double-spike solutions for a critical inhomogeneous elliptic problem in domains with small holes, Proc. Roy. Soc. Edinburgh Sect. A 138 (2008), 671-692.
[2] H. Amann and E. Zehnder, Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 7 (1980), 539-603.
[3] A. Bahri, Critical points at infinity in some variational problems, Pitman Research Notes in Mathematics Series, vol. 182, Longman, New York, 1989.
[4] A. Bahri and J.M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988), 255-294.
[5] A. Bahri, Y. Li and O. Rey, On a variational problem with lack of compactness: the topological effect of the critical points at infinity, Calc. Var. Partial Differential Equations 3 (1995), 67-93.
[6] M. Ben Ayed and K. El Mehdi, The Paneitz curvature problem on lower-dimensional spheres, Ann. Global Anal. Geom. 31 (2007), 1-36.
[7] , On a biharmonic equation involving nearly critical exponent, NoDEA Nonlinear Differential Equations Appl. 13 (2006), 485-509.
[8] M. Ben Ayed, K. El Mehdi and M. Hammami, Some existence results fora Paneitz type problem via the theory of critical points at infinity, J. Math. Pures Appl. (9) 84 (2005), 247-278.
[9] M. Ben Ayed and A. Selmi, Asymptotic behavior and existence results for a biharmonic equation involving the critical Sobolev exponent in a five-dimensional domain, Commun. Pure Appl. Anal. (9) 6 (2010), 1705-1722.
[10] H. Brezis, Elliptic equations with limiting Sobolev exponent the impact of topology, Proceedings 50th Anniv. Courant Inst., Comm. Pure Appl. Math., vol. 39, 1986, pp. S17S39.
[11] D. Cao and J. Chabrowski, Multiple solutions of nonhomogeneous elliptic equation with critical nonlinearity, Differential Integral Equations 10 (1997), 797-814.
[12] Z. Djadli, E. Hebey and M. Ledoux, Paneitz type operators and applications, Duke Math. J. 104 (2000), 129-169.
[13] Z. Djadli, A. Malchiodi and M. Ould Ahmedou, Prescribing a fourth order conformal invariant on the standard sphere I. A perturbation result, Commun. Contemp. Math. 4 (2002), 375-408.
[14] M. del Pino, P. Felmer and M. Musso, Multi-peak solutions for super-critical elliptic problems in domains with small holes, J. Differential Equation 182 (2002), 511-540.
[15] , Two-bubble solutions in the supercritical Bahri-Coron's problem, Calc. Var. Partial Differential Equations 16 (2003), 113-145.
[16] K. El Mehdi and M. Hammami, Blowing up solutions for a biharmonic equation with critical nonlinearity, Asymptotic Anal. 45 (2005), 191-225.
[17] F. Ebobissea and M. Ould Ahmedoub, On a nonlinear fourth-order elliptic equation involving the critical Sobolev exponent, Nonlinear Anal. 52 (2003), 1535-1552.
[18] M. Hammami, Concentration phenomena for fourth-order elliptic equations with critical exponent, Electron. J. Differential Equations (2004), 22 pp.
[19] N. Hirano, Multiplicity of solutions for nonhomogeneous nonlinear elliptic equations with critical exponents, Topol. Methods Nonlinear Anal. 18 (2001), 269-281.
[20] C.S. Lin, A classification of solutions of a conformally invariant fourth order equation in $\mathbb{R}^{n}$, Comment. Math. Helv. 73 (1998), 206-231.
[21] G. Lu and J. Wei, On a Sobolev Inequality with remainder terms, Proc. Amer. Math. Soc. 128, 75-84.
[22] A. Maalaoui and V. Martino, Existence and concentration of positive solutions for a super-critical fourth order equation, Nonlinear Anal. 75 (2012), 5482-5498.
[23] A. Malchiodi, Conformal metrics with constant $Q$-curvature, Sigma Ser. Symmetry Integrability Geom. Methods Appl. 3 (2007), paper 120.
[24] A.M. Micheletti and A. Pistoia, Existence of blowing-up solutions for a slightly subcritical or a slightly supercritical non-linear elliptic equation on $\mathbb{R}^{n}$, Nonlinear Anal. 52 (2003), 173-195.
[25] M. Musso and A. Pistoia, Persistence of Coron's solutions in nearly critical problems, Ann. Sc. Norm. Super. Pisa Cl. Sci. 6 (2007), 331-357.
[26] A. Selmi, Concentration phenomena in a biharmonic equation involving the critical Sobolev exponent, Adv. Nonlinear Stud. 6 (2006), 591-616.
[27] R.C.A.M. VAN DER Vorst, Best constant for the embedding of the space $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ into, $L^{2 n /(n-4)}(\Omega)$, Differential Integral Equations 6 (1993), 259-276.
[28] , Fourth-order elliptic equations with critical growth, C.R. Acad. Sci. Paris 320 (1995), 295-299.

Ali Maalaoui and Vittorio Martino
Department of Mathematics
Rutgers University
Hill Center for the Mathematical Sciences
110 Frelinghuysen Rd.
Piscataway 08854-8019 NJ, USA
E-mail address: maalaoui@math.rutgers.edu, martino@dm.unibo.it
TMNA: Volume $40-2012-\mathrm{N}^{\mathrm{o}} 2$


[^0]:    2010 Mathematics Subject Classification. 35J91, 53C21, 58J05.
    Key words and phrases. Critical exponent, Paneitz-Branson operator.

