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EXISTENCE AND MULTIPLICITY RESULTS
FOR A NON-HOMOGENEOUS FOURTH ORDER EQUATION

Ali Maalaoui — Vittorio Martino

Abstract. In this paper we investigate the problem of existence and mul-
tiplicity of solutions for a non-homogeneous fourth order Yamabe type equa-

tion. We exhibit a family of solutions concentrating at two points, provided

the domain contains one hole and we give a multiplicity result if the do-
main has multiple holes. Also we prove a multiplicity result for vanishing

positive solutions in a general domain.

1. Introduction and statements of the main results

In this paper we will study the existence and the multiplicity of positive
solutions for a non-homogeneous problem of the form:

(P)

{
∆2u = |u|p−1u+ f onΩ.

u = ∆u = 0 on ∂Ω,

where Ω is a smooth bounded set of Rn and p = (n+ 4)/(n− 4) is the so-called
critical exponent. These kind of problems were deeply studied in the case of
the Laplacian (see for instance [1], [11], [19]). Let us recall that problem (P)
was studied by Selmi [26] and Ben Ayed–Selmi [9] where the authors prove the
existence of a one-bubble solution to the problem under assumptions on f . Here
we will show that we can get two-bubble solutions if the domain contains small
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holes, and vanishing type solutions for a small generic perturbation f in the C0

sense.
We recall that for f = 0, this problem has a deep geometrical meaning, in fact

if (M, g) is an n-dimensional compact closed riemannian manifold with n ≥ 5,
we can define the Q-curvature

Q :=
n3 − 4n2 + 16n− 16
8(n− 2)2(n− 1)2

R2 − 2
(n− 2)2

|Ric|2 +
1

2(n− 1)
∆R,

where R is the scalar curvature and Ric is the Ricci curvature. After a conformal
change of the metric one gets for g̃ = u4/(n−4)g,

Q
egu

(n+4)/(n−4) = Pgu,

where Pg is the Paneitz operator, defined by

Pgu := ∆2
gu− div

((
(n− 2)2 + 4

2(n− 2)(n− 1)
Rg − 4

n− 2
Ric

)
du

)
+
n− 4

2
Qu.

This gives rise to the problem of prescribing the Q-curvature, as the analogous
problem on the scalar curvature (see [12], [13] and [23]). We remark that in the
flat case, for instance if we consider an open set of Rn, the problem of prescribing
constant Q-curvature coincides with (P) with f = 0, namely

(1.1) ∆2u = |u|p−1u.

The variational formulation of (1.1) under Navier boundary conditions in a boun-
ded set was deeply studied, especially with the methods of critical points at in-
finity theory, introduced by Bahri [3] (see [13], [18] and [17]). We also remark
the fact that this problem is not compact, namely, for the case f = 0 it corre-
sponds exactly to the limiting case of the Sobolev embedding H2(Ω)∩H1

0 (Ω) ↪→
L2n/(n−4), (see [27]), and thus we loose the compact embedding, so the varia-
tional setting in the classical spaces fails to show existence of solutions: in fact as
in the case of the Laplacian, if the domain is star shaped we know that it has no
positive solutions ([27], [28]). Finally we recall that in the recent paper [22], we
studied the same Yamabe type problem, with a slightly super-critical exponent.

This work contains two main parts. In the first one we deal with a pertur-
bation of the form εf, that is

(Pε)

{
∆2u = |u|p−1u+ εf on Ω,

u = ∆u = 0 on ∂Ω,

where f is a positive function in Cα(Ω), 0 < α < 1, and Ω = D − B(P, µ), for
a given domain D and P ∈ D. In this setting we have the following result:
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Theorem 1.1. There exists a constant µ0 = µ0(D, f) > 0 such that for each
0 < µ < µ0 fixed, there exist ε0 > 0 and a family of solutions uε of (1.3) for
0 < ε < ε0, having exactly two concentration points, namely:

uε(x) = cn

(
ε2/(n−4)λ1,ε

ε4/(n−4)λ2
1,ε + |x− ξε

1|2

)(n−4)/2

+ cn

(
ε2/(n−4)λ2,ε

ε4/(n−4)λ2
2,ε + |x− ξε

2|2

)(n−4)/2

+ θε(x)

and θε(x) → 0 as ε→ 0 uniformly.

Indeed one gets more information about the solutions along the proof, for
instance we will see that θε(x) = εw + o(ε), where w is the solution of:{

∆2w = f on Ω,

w = ∆w = 0 on ∂Ω.

And within the proof we have that the point ((ξε
1, ξ

ε
2), (an(λε

1)
n−4, an(λε

2))
n−4)

is a critical point of the function Ψ defined by:

Ψ(ξ,Λ) =
1
2

( 2∑
i=1

Λ2
iH(ξi, ξi)− 2Λ1Λ2G(ξ1, ξ2)

)
+

2∑
i=1

Λiw(ξi),

where G is the Green’s function of the Ω and H its regular part.
Moreover, if we consider a domain with multiple holes we obtain a multiplicity

result. In fact, if Ω = D−
⋃

1≤i≤k

B(Pi, µ) with P1, . . . , Pk ∈ Ω, the previous result

can be generalized as in [14] and [22] to the following:

Theorem 1.2. Let 1 ≤ m ≤ k. There exists a constant µ0 = µ0(D, f) > 0
such that for each 0 < µ < µ0 fixed, there exist ε0 > 0 and a family of solutions
uε of (Pε) for 0 < ε < ε0, of the following form:

uε(x) = cn

k∑
i=1

2∑
j=1

(
ε2/(n−4)λi,j,ε

ε4/(n−4)λ2
i,j,ε + |x− ξε

i,j |2

)(n−4)/2

+ θε(x)

and θε(x) → 0 as ε→ 0 uniformly.

In particular for a domain with k holes we have at least 2k − 1 two-bubble
solutions.

In the second part of the paper we deal with the problem

(Pf )

{
∆2u = |u|p−1u+ f on Ω,

u = ∆u = 0 on ∂Ω,

with no topological constraint on the domain Ω and f ≥ 0 non identically zero.
We prove the following:
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Theorem 1.3. There exist a residual subset D ⊂ C2(Ω) and ε > 0, such

that if f ∈ D and |f |C(Ω̄) < ε, the problem (Pε) has at least
∞∑

i=0

dimHi(Ω) + 1

positive solutions.

Here H∗(Ω) denotes the singular homology of Ω. We have additional infor-
mation for these solutions as well. In fact we will see that they vanish when
|f |C(Ω) → 0, and they have energy smaller than the energy of a single bubble; in
contrast with the solutions of the first theorem, where the energy of the solutions
is greater than the one of the bubbles, and the solutions blow-up as ε→ 0.

Acknowledgements. This paper was completed during the year that the
second author spent at the Mathematics Department of Rutgers University: the
author wishes to express his gratitude for the hospitality and he is grateful to
the Nonlinear Analysis Center for its support.

2. Preliminaries and first estimates

Let us start by defining the following functions:

U(ξ,λ)(x) =
(

λ

λ2 + |x− ξ|2

)(n−4)/2

,

where λ > 0 and ξ ∈ Ω. For u ∈ D2(Ω), we will write Pu for the projection of
u on H2(Ω) ∩H1

0 (Ω), defined as the unique solution of the problem{
∆2v = u on Ω,

v = ∆v = 0 on ∂Ω.

We also recall that the Green’s function of ∆2 for a set Ω, with Navier boundary
conditions is defined as the solution of{

∆2
xG(x, y) = δy on Ω,

G(x, y) = ∆xG(x, y) = 0 on ∂Ω.

This function can be written as

G(x, y) =
an

|x− y|n−4
−H(x, y), for all x, y ∈ Ω and x 6= y,

where an is a positive constant depending on n and H the positive smooth
solution to ∆2

xH(x, y) = 0 on Ω,

H(x, y) =
1

|x− y|n−4
, ∆H(x, y) = ∆

1
|x− y|n−4

on ∂Ω.

Now let ξ1, ξ2 be two points in Ω, and λ1, λ2 > 0, we will write Ui = U(ξi,λi)

and Ui = PUi. Then one has Ui = Ui − θi and

θi(x) = H(x, ξi)λ
(n−4)/2
i

∫
Rn

U
p
(y) dy + o(λ(n−4)/2

i ).
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Away from x = ξ, we have

Ui(x) = G(x, ξi)λ
(n−4)/2
i

∫
Rn

U
p
(y) dy + o(λ(n−4)/2

i ).

For more details about these estimates we refer to the Appendix.
Let us set now J to be the functional defined by

J(u) =
1
2

∫
Ω

|∆u|2 − 1
p+ 1

∫
Ω

|u|p,

and let us find an expansion of

J(U1 + U2) =
1
2

∫
Ω

|∆(U1 + U2)|2 −
1

p+ 1

∫
Ω

(U1 + U2)p.

For that we define the set

Oδ(Ω) = {(ξ1, ξ2) ∈ Ω× Ω; |ξ1 − ξ2| > δ, d(ξi, ∂Ω) > δ},

where δ > 0 is a small fixed number and we put

Cn =
1
2

∫
Ω

|∆U |2 − 1
p+ 1

∫
Ω

U
p
.

Then we have the following:

Lemma 2.1. For (ξ1, ξ2) in Oδ(Ω) we have

J(U1 + U2) = 2Cn +
1
2

( ∫
Rn

U
p
)

· (H(ξ1, ξ1)λn−4
1 +H(ξ2, ξ2)λn−4

2 − 2λ(n−4)/2
1 λ

(n−4)/2
2 G(ξ1, ξ2))

+ o(max(λ1, λ2)n−4).

Proof. The proof follows from the following estimates (see the Appendix):∫
Ω

|∆Ui|2 =
∫

Rn

|∆U |2 −
( ∫

Rn

U
p
)2

H(ξi, ξi)λn−4
i + o(λn−4

i )

and∫
Ω

∆U1∆U2 =
( ∫

Rn

U
p
)2

λ
(n−4)/2
1 λ

(n−4)/2
2 G(ξ1, ξ2) + o(max(λ1, λ2)n−4),

1
p+ 1

∫
Ω

Up+1
i =

1
p+ 1

∫
Ω

U
p+1 −

( ∫
Rn

U
p
)2

H(ξi, ξi)λn−4
i + o(λn−4

i ),

1
p+ 1

∫
Ω

(U1 + U2)p+1 − Up+1
1 − Up+1

2

= 2
( ∫

Rn

U
p
)2

λ
(n−4)/2
1 λ

(n−4)/2
2 G(ξ1, ξ2) + o(max(λ1, λ2)n−4).
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Therefore one has

J(U1 + U2) =
1
2

∫
Ω

|∆(U1 + U2)|2 −
1

p+ 1

∫
Ω

(U1 + U2)p

=
∑ (

1
2

∫
Ω

|∆Ui|2 −
1

p+ 1
Up+1

i

)
+

∫
Ω

∆U1∆U2 −
1

p+ 1

∫
Ω

(U1 + U2)p+1 − Up+1
1 − Up+1

2

=
∑ 1

2

( ∫
Rn

|∆U |2 −
( ∫

Rn

U
p
)2

H(ξi, ξi)λn−4
i )− 1

p+ 1

∫
Ω

U
p+1

+
∑ ( ∫

Rn

U
p
)2

H(ξi, ξi)λn−4
i

+
( ∫

Rn

U
p
)2

λ
(n−4)/2
1 λ

(n−4)/2
2 G(ξ1, ξ2)

− 2
( ∫

Rn

U
p
)2

λ
(n−4)/2
1 λ

(n−4)/2
2 G(ξ1, ξ2) + o(max(λ1, λ2)n−4)

= 2Cn +
1
2

( ∫
Rn

U
p
)2

(H(ξ1, ξ1)λn−4
1 +H(ξ2, ξ2)λn−4

2

− 2λ(n−4)/2
1 λ

(n−4)/2
2 G(ξ1, ξ2)) + o(max(λ1, λ2)n−4). �

Now, we set Ωε = ε−2/(n−4)Ω, and we put:

v(x′) = εu(ε2/(n−4)x′)

Then every solution u of (Pε) corresponds to a solution v, by means of the
previous rescaling, of the following problem:{

∆2v = |v|p−1v + εp+1f̃ on Ωε,

v = ∆v = 0 on ∂Ωε

where f̃(x′) = f(ε2/(n−4)x′). Hence we define the following perturbed energy
functional:

Jε(u) =
1
2

∫
Ωε

|∆u|2 − 1
p+ 1

∫
Ωε

|u|p − εp+1

∫
Ωε

f̃u.

We consider the function w defined by

(2.1)

{
∆2w = f on Ω,

w = ∆w = 0 on ∂Ω.

We obtain the following proposition. Set Λ = (Λ1,Λ2) and λ2
i = (a−1

n Λi)2/(n−4).
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Proposition 2.2. Let V be the sum of U1, U2 rescaled on Ωε, then for
(ξ1, ξ2) ∈ Oδ(Ω), one has

Jε(V ) = 2Cn + ε2Ψ(ξ,Λ) + o(ε2),

where

Ψ(ξ,Λ) =
1
2

( 2∑
i=1

Λ2
iH(ξi, ξi)− 2Λ1Λ2G(ξ1, ξ2)

)
+

2∑
i=1

Λiw(ξi).

Proof. The only term we need to estimate is∫
Ω

f(U1 + U2) =
∫

Ω

(∆2w)(U1 + U2)

=
2∑

i=1

∫
Ω

(∆2w)
(
G(x, ξi)λ

(n−4)/2
i

∫
Rn

U
p
(y) dy

)
+ o(λ(n−4)/2

i )

=
2∑

i=1

w(ξi)λ
(n−4)/2
i

∫
Rn

U
p
(y) dy + o(λ(n−4)/2

i ).

The conclusion follows. �

3. Reduction process

From now on let Ωε = ε−2/(n−4)Ω. We will consider points ξ′i ∈ Ωε and
numbers Λi > 0, for i = 1, 2, such that |ξ′1 − ξ′2| > δε−2/(n−4), d(ξ′i, ∂Ωε) >
δε−2/(n−4) and δ < Λi < δ−1. Here we will adopt the same notations as
in [14], that is Vi(x) = Uξ′i,Λ

∗
i

for Λ∗i = (cnΛ2
i )

1/(n−4); the related projections on
H2(Ωε) ∩H1

0 (Ωε) will be denoted by Vi. Consider the functions

Zij =
∂Vi

∂ξij
, i = 1, . . . , n and Zin+1 =

∂Vi

∂Λ∗i

and their projections Zij = PZij . Let V = V1 + V2 and V = V1 + V2.
For a given smooth function h, we want to solve the following linear problem:

(3.1)


∆2ϕ− pV p−1ϕ = h+

∑
i,j

cijV
p−1
i Zij on Ωε,

ϕ = ∆ϕ = 0 on ∂Ωε,

〈V p−1
i Zij , ϕ〉 :=

∫
Ωε

V p−1
i Zijϕ = 0 for i = 1, 2, j = 1, . . . , n+ 1.

We define the following weighted L∞ norms : for a function u defined on Ωε

‖u‖∗ = ‖(w1 + w2)−βu‖L∞ + ‖(w1 + w2)−β−1/(n−4)∇u‖L∞

where wi = (1/(1 + |x− ξ′i|2))(n−4)/2, β = 4/(n− 4), and

‖u‖∗∗ = ‖(w1 + w2)−γu‖L∞
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where γ = 8/(n− 4). We define also the set

O′δ(Ωε) = {(ξ1, ξ2) ∈ Ωε × Ωε; |ξ1 − ξ2| > δε−2/(n−4), d(ξi, ∂Ω) > δε−2/(n−4)}.

We refer to [22] for the proof of the following:

Proposition 3.1. There exist ε0 > 0 and C > 0 such that for all 0 < ε < ε0
and all h ∈ Cα(Ωε), the problem (3.1) admits a unique solution ϕ = Lε(h).
Moreover, we have

‖Lε(h)‖∗ ≤ C‖h‖∗∗, |cij | ≤ C‖h‖∗∗,

and
‖∇(ξ′,Λ)Lε(h)‖∗ ≤ C‖h‖∗∗.

To split the difficulties, we start by finding a solution of

∆2(V + η)− (V + η)p
+ − εp+1f̃ =

∑
i,j

cijV
p−1
i Zij on Ωε,

η = ∆η = 0 on ∂Ωε,

〈V p−1
i Zij , η〉 = −〈V p−1

i Zij , ϕ〉 for i = 1, 2,

j = 1, . . . , n+ 1,

where ϕ is the solution of {
∆2ϕ = εp+1f̃ on Ωε,

ϕ = ∆ϕ = 0 on ∂Ωε.

If we take η = η + ϕ, then the equation on η reads as follows:

(3.2) ∆2η − pV p−1η = Nε(η)−Rε +
∑
i,j

cijV
p−1
i Zij

with Nε(η) = |V + η + ϕ|p−1(V + η + ϕ)+ − pV p−1(η + ϕ) − V p, and Rε =
V p − U

p

1 − U
p

2 − p|V |p−2ϕ. Therefore, taking ψ = −Lε(Rε) and η = ψ + v, we
get an equation on v of the following form:

∆2v − pV p−1v = Nε(η) +
∑
i,j

cijV
p−1
i Zij .

Lemma 3.2. There exists C > 0 such that for ε > 0 small enough and
‖v‖∗ ≤ 1/4, we have

‖Nε(ψ + v)‖∗∗ ≤

{
C(‖v‖2∗ + ε‖v‖∗ + εp+1) if n ≤ 12,

C(ε2β−1‖v‖2∗ + ε2β‖v‖∗ + ε3p) if n > 12.

Proof. First, we recall that ‖ψ‖∗ ≤ Cε2 and since |ϕ| ≤ Cεp+1, we have

|ϕ|V −β ≤ Cεp+1V −β ≤ Cε2
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hence ‖ϕ‖∗ ≤ Cε2 and we can choose ε small enough so that

‖η‖∗ ≤ ‖ψ‖∗ + ‖v‖∗ < 1.

Now, we have

Nε(η) =
p(p− 1)

2
(V + t(η + ϕ))p−2(η + ϕ)2,

for a certain t ∈ (0, 1) and hence if n ≤ 12 we have

|V −8/(n−4)Nε(η)| ≤ CV 2β−8/(n−4)V p−2‖η + ϕ‖2∗ ≤ C‖η + ϕ‖2∗

If n > 12 we have to distinguish two cases. First consider δ > 0 and take the
region d(y, ∂Ωε) > δε−(n+2)/(n−4), then one has the existence of Cδ > 0 such
that V > CδV and therefore we get

|Nε(η)V −8/(n−4)| ≤ CV 2β−8/(n−4)+p−2‖η + ϕ‖2∗ ≤ Cεp−2‖η + ϕ‖2∗.

If d(y, ∂Ωε) ≤ δε−(n+2)/(n−4) we have, by using Hopf lemma, that for δ suffi-
ciently small V (y) ∼ ∂V

∂ν d(y, ∂Ωε), (recall that |∇V | = |∇V |+o(1)) and |∇V | ≥
Cε(n−3)/(n−4), for ε small enough. Thus V (y) ≥ Cε2(n−3)/(n−4) d(y, ∂Ωε), there-
fore

|Nε(η)V −8/(n−4)| ≤CV −8/(n−4)(ε2(n−3)/(n−4)d(y, ∂Ωε))p−2(η + ϕ)2

≤CV −8/(n−4)(ε2(n−3)/(n−4)d(y, ∂Ωε))p−2(η + ϕ)2

≤C(ε2(n−3)/(n−4)−(n+2)/(n−4))p−2‖η + ϕ‖2∗
≤Cε2β−1‖η + ϕ‖2∗.

Finally

‖Nε(ψ + v)‖∗∗ ≤

{
C(‖ψ + v + ϕ‖2∗) if n ≤ 12,

C(ε2β−1‖ψ + v + ϕ‖2∗) if n > 12,
which finishes the proof. �

Now we want to find a solution to (3.2). The problem can be seen as a fixed
point problem if we write it in the following way

(3.3) v = −Lε(Nε(ψ + v)) = Aε(v).

We have the following:

Proposition 3.3. There exists C > 0 such that for ε > 0 small enough,
the problem (3.3) has a unique solution v, with ‖v‖∗ < Cε2. Moreover, the map
(ξ′,Λ) → v is C1 with respect to the norm ‖ · ‖∗, and ‖∇(ξ′,Λ)v‖∗ ≤ Cε2.

Proof. Let F = {u ∈ H2(Ω) ∩ H1
0 (Ω), ‖u‖∗ < ε2}, and then consider

Aε:F → H2(Ω) ∩H1
0 (Ω). By using the previous lemma and Proposition 3.1 we
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get

‖Aε(u)‖∗ ≤ C‖Nε(u+ ψ)‖∗∗ ≤

{
C(‖u‖2∗ + ε‖u‖∗ + εp+1) if n ≤ 12,

C(ε2β−1‖u‖2∗ + ε2β‖u‖∗ + ε3p) if n > 12,

≤

{
Cε3 if n ≤ 12,

Cε2β+3 if n > 12,

so for ε > 0 small enough, we have that Aε maps F into itself. Now we estimate
‖Aε(a)−Aε(b)‖∗ for a, b ∈ F . Since

‖Aε(a)−Aε(b)‖∗ ≤ C‖Nε(a+ ψ)−Nε(b+ ψ)‖∗∗,

it suffices to show that Nε is a contraction to finish the proof of the proposition.
Note that by construction we have

DuNε(u+ ψ) = p|V + u+ ψ + ϕ|p−2(V + u+ ψ + ϕ)− pV p−1.

Then arguing as in [22], we obtain that Nε is a contraction. Hence the existence
and uniqueness of v follows. Next we prove that the map is C1. We will apply
the implicit function theorem to the map K defined by

K(ξ′,Λ, v) = v −Aε(v).

We recall that

Dξ′Nε(u) = p[|V + u+ ϕ|p−2(V + u+ ϕ)− (p− 1)V p−2(u+ ϕ)− V p−1]Dξ′V

same goes for DΛNε(u). Also,

DuK(ξ′,Λ, u)h = h+ Lε(DuNε(u+ ψ)h) = h+M(h).

Now

‖M(h)‖∗ ≤ ‖DuNε(u+ ψ)h‖∗∗ ≤ C‖V −8/(n−4)+βDuNε(u+ ψ)‖∞‖h‖∗

and since
|V −8/(n−4)+βDuNε(u+ ψ)| ≤ CV 2β−1‖u+ ψ‖∗,

we get

‖V −8/(n−4)+βDuNε(u+ ψ)‖∞ ≤ C

{
ε2 if n ≤ 12,

ε2β+1 if n > 12,
hence

‖M(h)‖∗ ≤ Cεmin(2,2β+1)‖h‖∗.
Therefore by using the implicit function theorem, we have that ϕ depends con-
tinuously on the parameter (ξ′,Λ). On the other hand if we differentiate with
respect to ξ′ we get

Dξ′K(ξ′,Λ, u) = Dξ′u+Dξ′Lε(Nε(u+ ψ))
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From Proposition 3.1 we get that

‖Dξ′Lε(h)‖∗ ≤ C‖h‖∗∗.

Thus we need to compute

Dξ′ψ = (Dξ′Lε)(Rε) + Lε(Dξ′Rε),

but

Dξ′1
Rε = pV p−1Dξ′1

V − pU
p−1

1 Dξ′1
U1 − p(p− 2)|V |p−3Dξ′1

V ϕ

which depends continuously on the parameters, and this is enough to prove that
v is C1 with respect to the parameters (ξ′,Λ). Moreover, we have

Dξ′v = −(DvK(ξ′,Λ, v))−1[(Dξ′Lε)(Nε(v + ψ))

+ Lε(Dξ′(Nε(v + ψ))) + Lε(Dv(Nε)(v + ψ)Dξ′ψ)],

hence

‖Dξ′v‖∗ ≤ C(‖Nε(v + ψ)‖∗∗ + ‖Dξ′(Nε(v + ψ))‖∗∗ + ‖Dv(Nε)(v + ψ)Dξ′ψ‖∗∗).

Now, from Lemma 3.2, we know that

‖Nε(v + ψ)‖∗∗ ≤

{
Cε3 if n ≤ 12,

Cε2β+3 if n > 12,

and also

|Dξ′(Nε(u))| = p[|V + u+ ϕ|p−2(V + u+ ϕ)

− (p− 1)V p−2(u+ ϕ)− V p−1]Dξ′V

≤CV p−2|Dξ′V ||u| ≤ CV p−2+(n−3)/(n−4)+β |u|∗.

We get

V −8/(n−4)|Dξ′(Nε(u))| ≤ CV (n−3)/(n−4)+β−1|u|∗,

therefore

|Dξ′(Nε(v + ψ))|∗∗ ≤ Cε2.

A similar estimate gives

|Dv(Nε)(v + ψ)Dξ′ψ|∗∗ ≤ Cε2.

Since there is no difference in the case of the differentiation with respect to Λ,
we omit it. �
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4. Reduction of the functional

Here we want to go back to our original set Ω, therefore we will denote
ξ′i = ε−2/(n−4)ξi where ξi ∈ Ω and we remark that if we take ξi and Λ so
that cij = 0, then we obtain a solution of our original problem. Let Iε be the
functional defined by

Iε(u) =
1
2

∫
Ω

|∆u|2 − 1
p+ 1

∫
Ω

|u|p+1 − ε

∫
Ω

fu

so that u = V +v+ϕ+ψ is a solution for our problem if and only if it is a critical
point for this functional. Let us consider the functions defined on Ω by

v̂(ξ,Λ)(x) = ε−1v(ε−2/(n−4)ξ,Λ)(ε−2/(n−4)x),

ψ̂(x) = ε−1ψ(ε−2/(n−4)x),

ϕ̂(x) = ε−1ϕ(ε−2/(n−4)x),

Ûi(x) = ε−1Vi(ε−2/(n−4)x).

Therefore if we set Û(x) = Û2(x) + Û1(x) and I(ξ,Λ) = Iε(Û + ψ̂+ v̂(ξ,Λ) + ϕ̂)
then

I(ξ,Λ) = Jε(V + ψ + v + ϕ).

Next we state the following result and we refer to [22] for the proof.

Lemma 4.1. u = Û + ψ̂ + v̂(ξ,Λ) + ϕ̂ is a solution of the problem (1.1) if
and only if (ξ,Λ) is a critical point of I.

Now we define

σf =
∫

Ω

fw,

and we obtain

Proposition 4.2. We have the following expansion:

I(ξ,Λ) = 2Cn + ε2(Ψ(ξ,Λ) + σf ) + o(ε2),

where o(ε2) −→ 0 as ε→ 0 in the C1 sense, uniformly in Oδ(Ω)× (δ, δ−1)2.

Proof. Let us show first that

I(ξ,Λ)− Iε(Û + ψ̂ + ϕ̂) = o(ε2),

and
∇(ξ,Λ)(I(ξ,Λ)− Iε(Û + ψ̂ + ϕ̂)) = o(ε2).

Indeed, using a Taylor expansion we have

Jε(Û + ψ̂ + v̂(ξ,Λ) + ϕ̂)− Jε(Û + ψ̂ + ϕ̂) =
∫ 1

0

tD2Jε(Û + ψ̂ + ϕ̂+ tv̂)[v̂, v̂] dt
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and this holds since DJε(Û + ψ̂ + ϕ̂+ v̂) = 0. Therefore, we have∫ 1

0

tD2Jε(Û+ψ̂+ϕ̂+tv̂)[ϕ̂, ϕ̂] dt =
∫ 1

0

t

[ ∫
Ωε

|∇v|2−p(V +ψ+ϕ+tv)p−1v2

]
dt

=
∫ 1

0

t

∫
Ωε

p[V p−1 − (V + ψ + ϕ+ tv)p−1]v2 +Nε(v + ψ)v dt.

We have |v|∗ + |ϕ|∗ + |ψ|∗ = O(ε2), and by using Lemma 3.2, we get∫
Ωε

Nε(v + ψ)v ≤
∫

Ωε

V p−1+β |Nε(v + ψ)|∗∗|v|∗ ≤ Cε3
∫

Ωε

V p−1+β ≤ Cε3.

Now, the remaining part can be estimated as follows∫
Ωε

[V p−1 − (V + ψ + ϕ+ tv)p−1]v2

≤ Cε4
∫

Ωε

V 2β [V p−1 − (V + ψ + tϕ)p−1] ≤ Cε4,

Same estimates hold if we differentiate with respect to ξ. In fact we have

Dξ(Jε(Û + ψ̂ + v̂(ξ,Λ) + ϕ̂)− Jε(Û + ψ̂ + ϕ̂))

= ε−2/(n−4)

∫ 1

0

t

∫
Ωε

pDξ′([V p−1−(V +ψ+ϕ+tv)p−1]v2)+Dξ′(Nε(v+ψ)v) dt,

and the conclusion follows again from Lemma 3.2. Next step is to prove that

Iε(Û + ψ̂ + ϕ̂)− Iε(Û + ϕ̂) = o(ε2)

and

Dξ(Iε(Û + ψ̂ + ϕ̂)− Iε(Û + ϕ̂)) = o(ε2),

so we start by writing

Iε(Û + ψ̂ + ϕ̂) − Iε(Û + ϕ̂) = Iε(U + ψ + ϕ)− Iε(U + ϕ)

=
∫ 1

0

(1− t)([p
∫

Ωε

(V + ϕ+ tψ)p−1ψ2 −
∫

Ωε

|∆ψ|2]

−
∫

Ωε

(|V |p − |V + ϕ|p + p|V |p−1ϕ)ψ +
∫

Ωε

Rεψ).

Also

Dξ(Iε(Û + ψ̂ + ϕ̂)− Iε(Û + ϕ̂))

= ε−2/(n−4)

[ ∫ 1

0

(1− t)
(
Dξ′

[
p

∫
Ωε

(V + ϕ+ tψ)p−1ψ2 −
∫

Ωε

|∆ψ|2
]
dt

−Dξ′

∫
Ωε

(|V |p − |V + ϕ|p + p|V |p−1ϕ)ψ +Dξ′

∫
Ωε

Rεψ

)]
.
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Again, by using the fact that |ψ|∗ + |Rε|∗∗ + |∇(ξ,Λ)ψ|∗ + |∇(ξ,Λ)R
ε|∗∗ ≤ Cε2,

with |ϕ|∗ ≤ Cεp if n ≤ 12 and |ϕ|∗ ≤ Cε2 if n > 12, we get the desired result.
The final steps, namely showing

Iε(Û + ϕ̂)− Iε(Û) = ε2σf + o(ε2),

and
Dξ(Iε(Û + ϕ̂)− Iε(Û)) = o(ε2),

are also obtained by using the same kind of estimates. �

5. Analysis of the exterior domain

Let us consider here Ω = D − B(0, µ) for µ > 0 small enough. Also for
E = Rn −B(0, 1) define the set

V = {(x, y) ∈ Rn × Rn; GE(x, y)−H
1/2
E (x, x)H1/2

E (y, y) < 0} ∩ (µ−1Ω),

where GE and HE are the Green’s function and its regular part on the set E.
Let us take f = 1 and Fa = {x ∈ Rn; 1 < |x| < a, a > 1}, then the solution

of {
∆2wa = f on Fa,

wa = ∆wa = 0 on ∂Fa,

is given by

wa(x) = − 1
8n(n+ 2)

(
a4 − 1
a4−n − 1

|x|4−n − |x|4 + a4−n (1− an)
a4−n − 1

)
.

It is easy to see that it has a maximum for

|xa| =
(

4(1− a4−n)
(n− 4)(a4 − 1)

)−1/n

,

and |xa| → ∞ as a→∞. Now we consider the function ϕFa
defined, on the set

Fa by

ϕFa(x, y) =
1
2
HFa(x, x)wa(y)2 +HFa(y, y)wa(x)2 + 2GFa(x, y)wa(y)wa(x)

−HFa(x, x)HFa(y, y) +G2
Fa

(x, y)
,

we will extend it to the full exterior domain E = {x ∈ Rn; 1 < |x|}, for that we
just extend wa by zero for |x| > a. Hence knowing that

HE(x, y) =
an

||y|(x− y)|n−4

where y = y/|y|2, and since wa is radially symmetric, we get that ϕE has a critical
point (x, y) if and only if sin(θ) = 0 where θ is the angle between x and y. Now
we set x = se and y = −te, where e is a unit vector and s and t are real number
greater than 1. We write

ϕ̃E(s, t) = ϕE(se,−te).
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Explicitly:

2anϕ̃E(s, t) =
(

w̃a(t)2

(s2 − 1)n−4
+

w̃a(s)2

(t2 − 1)n−4

+ 2w̃a(t)w̃a(s)
(

1
(s+ t)n−4

− 1
(st+ 1)n−4

))
((

1
(s+ t)n−4

− 1
(st+ 1)n−4

)2

−
(

1
(t2 − 1)n−4(t2 − 1)n−4

))−1

.

We recall now (see [22] ) that the function defined by

ρ̃(s, t) = an

(
− 1

(t2 − 1)(n−4)/2(s2 − 1)(n−4)/2
− 1

(1 + st)n−4
+

1
(s+ t)n−4

)
,

has a unique maximum point of the form (K,K), for s, t > 1 and a unique k
satisfying ρ̃(k, k) = 0. we can choose a0 > 0, big enough, such that for a > a0,

we have k < K < |xa|. Hence we can get the following:

Lemma 5.1. The function ϕ̃E admits a unique minimum, of the form (τa, τa).
Moreover, τa ∈ (k,K).

Next we will work on the domain Ω = D−B(0, µ). We set m, (resp. M) the
radius of the largest (resp. smallest) ball contained (resp. containing) D, and set
α = minΩ f and β = maxΩ f . Thus, by using the maximum principle, we have
zm ≤ w ≤ zM for µ < |x| < m, with w as defined in (2.1),

zm(x) = αµ4wa1(µ
−1x) and zM (x) = βµ4wa2(µ

−1x),

here a1 = µ−1m and a1 = µ−1M . We obtain the following

Lemma 5.2. For µ > 0 small enough the function ϕE has a relative mini-
mum in a point (x̃µ, ỹµ), with |x̃µ| and |ỹµ| belonging to (k, k̃), and k̃ independent
of µ.

The proof of this lemma follows if we show that there exist k̃ ≥ K satisfying

ϕ̃Fa1
(k̃, k̃)

ϕ̃Fa2
(K,K)

≥ 1,

the conclusion will follow from the fact that ϕFa1
≤ ϕE ≤ ϕFa2

and ϕFa
has

a unique minimum point for a big enough.
Let us Define the set

X = {(x, y) ∈ V, such that k < |x|, |y| < k̃},

and call cµ = ϕE(x̃µ, ỹµ). Now we choose δµ > cµ in such way that the set
{(x, y) ∈ X , ϕE = δµ} is a closed curve on which ∇ϕE 6= 0. Observe then that
if we call

J = {(x, y) ∈ X , such that ϕE ≤ δµ},
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two situations might happen on ∂J : either there exists a tangential direction
τ such that ∇ϕE · τ 6= 0, or x and y point in two different directions and
∇ϕE(x, y) 6= 0 points in the normal direction to ∂J .

Now if we look at Eµ = Rn − B(0, µ), then we can easily see that GEµ
and

HEµ , are defined by

GEµ(x, y) = µ4−nGE(µ−1x, µ−1y) and HEµ(x, y) = µ4−nHE(µ−1x, µ−1y).

Note that Sµ = µJ , corresponds exactly to the set {ϕE(µ−1x, µ−1y) ≤ δµ}.
Also

G(x, y) = GEµ
(x, y) +O(1)

on the set µX . Therefore, it follows that:

ϕΩ(x, y) = µn+4ϕE(µ−1x, µ−1y) + o(1)

where

ϕΩ(x, y) =
1
2
HΩ(x, x)w(y)2 +HΩ(y, y)w(x)2 + 2GΩ(x, y)w(y)w(x)

G2
Ω(x, y)−HΩ(x, x)HΩ(y, y)

and o(1) → 0 as µ→ 0 in the C1 sense.

6. Proof of Theorem 1.1

Since the function Ψ defined in Section 2 is singular on the diagonal of Ω×Ω,
we replace the terms G(ξ1, ξ2) by GM (ξ1, ξ2) = min(G(ξ1, ξ2),M) for a constant
M > 0 to be fixed later. Hence Ψ is well defined on Sµ × R2

+.
We remark that in that set, we have

ρ(x, y) = H(x, x)1/2H(y, y)1/2 −G(x, y) < 0,

therefore the principal part of Ψ which is a quadratic form, has a negative di-
rection. We will set e(ξ1, ξ2) the vector defining the negative direction:

We have

e(ξ1, ξ2) =
(

H(ξ1, ξ1)1/2

H(ξ2, ξ2)1/2ρ(ξ1, ξ2)
,

H(ξ2, ξ2)1/2

H(ξ1, ξ1)1/2ρ(ξ1, ξ2)

)
,

Now we are going to consider the vector ẽ such that, for each (ξ1, ξ2), ẽ(ξ1, ξ2)
is the critical point of Ψ((ξ1, ξ2), · ). This vector can be written explicitly in the
following form

ẽ(ξ1, ξ2) =
(
H(ξ2, ξ2)w(ξ1) +G(ξ1, ξ2))w(ξ2))w(ξ1))

G2(ξ1, ξ2)−H(ξ2, ξ2)H(ξ1ξ2=1)
,

H(ξ1, ξ1)w(ξ2) +G(ξ1, ξ2))w(ξ2))w(ξ1))
G2(ξ1, ξ2)−H(ξ2, ξ2)H(ξ1ξ2=1)

)
.

Therefore we can check that Ψ((ξ1, ξ2), ẽ(ξ1, ξ2)) = ϕΩ(ξ1, ξ2).
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Now we can set the min-max scheme, in a similar way as in [1], [14] and [22].
Let us define

Kµ = {(x, y) ∈ X , (|x|, |y|) = µ(|x̃µ|, |ỹµ|)},
We consider the family of curves R, satisfying the following properties, γ:K2

µ ×
[s, s−1]× [0, 1] → Aµ × R2

+ such that:
(i) for (ξ1, ξ2) ∈ K2

µ, t ∈ [0, 1] it holds

γ(ξ1, ξ2, s, t) = (ξ1, ξ2, sẽ(ξ1, ξ2)),

and
γ(ξ1, ξ2, s−1, t) = (ξ1, ξ2, s−1ẽ(ξ1, ξ2)).

(ii) γ(ξ1, ξ2, t, 0) = (ξ1, ξ2, tẽ(ξ1, ξ2)), for all (ξ1, ξ2, t) ∈ K2
µ × t[s, s−1].

Now arguing as in [22], the min-max value defined by

C(Ω) = inf
γ∈R

sup
(ξ1,ξ2,t)∈K2

µ×[s,s−1]

Ψ(γ(ξ1, ξ2, t, 1)),

is a critical value of Ψ.
Then the proof of Theorem 1.1 follows as in [15].

7. Vanishing solutions

In this section we will prove a multiplicity result concerning problem (Pf ).
Let us start by introducing a slightly different notation from the previous part.
We set

U(z,a) = cn

(
a

1 + a2|x− z|2

)(n−4)/2

,

for every z ∈ Ω (it corresponds to a = 1/λ in the first part of the paper). Also,
we set:

Z(z,a),i =
∂

∂zi
U(z,a),

for i = 1, . . . , n, and

Z(z,a),n+1 =
∂

∂a
U(z,a).

Now we consider the functional I defined on H2(Ω) ∩H1
0 (Ω) by

I(u) =
1
2

∫
Ω

|∆u|2 − 1
p+ 1

∫
Ω

|u+|p+1.

We know that critical points of this functional are positive solutions to the prob-
lem {

∆2u = up on Ω,

u = ∆u = 0 on ∂Ω,
and, if Ω = Rn then the solutions for{

∆2u = up on Rn,

u > 0 and u in D2,2(Rn),



290 A. Maalaoui — V. Martino

are of the form U(z,a). We define the set

S =
{
u ∈ H2(Ω) ∩H1

0 (Ω)− {0};
∫

Ω

|∆u|2 =
∫

Ω

|u+|p+1

}
.

It is easy to show that for every u ∈ S, we have I(u) > Cn/n. Now we take
0 < d0 < 1 small enough so that, if d(x, ∂Ω) < d0, then there exists a unique
y ∈ ∂Ω such that |x− y| = d(x, ∂Ω). We put d(x) = min(d0, d(x, ∂Ω)), for every
x in Ω. Next we set

O(r) = {(x, a) ∈ Ω× (1,∞); d(x)a = r},
O(r) = {(x, a) ∈ Ω× (1,∞); d(x)a ≥ r}.

If we consider the eigenvalue problem

∆2v = γ pUp
(z,a)v on D2(Rn),

then obviously U(z,a) is an eigenfunction corresponding to γ1 = 1/p. We take

T(z,a) = span{Z(z,a),i, i = 1, . . . , n+ 1},

and by using the classification in [21], we have that T(z,a) is exactly the eigenspa-
ce corresponding to the eigenvalue 1. We set T0 the eigenspace corresponding to
the eigenvalue γ1 and

T+
(z,a) = (T0 ⊕ T(z,a))⊥,

where orthogonality here is with respect to the scalar product (u, v) =
∫
Ω

∆u∆v,
for every u, v ∈ D2(Ω). Now by means of the stereographic projection from Rn

to the sphere, we obtain a linear eigenvalue problem on a compact manifold, with
operator (Paneitz) having compact resolvent. Therefore we have the following:

Lemma 7.1. There exists γ > 0 such that for every (z, a) ∈ Ω × (1,∞),
v ∈ T+

(z,a), we have

〈v,∆2v − pU p
(z,a) v〉 ≥ γ

∫
Ω

pU p
(z,a) v

2.

We are going to find a particular solution to the problem (Pf ):

Lemma 7.2. There exist ε0 > 0 and C0 > 0 such that if |f |C(Ω) < ε0, the
problem (Pf ) has a unique solution u0 ∈ H2(Ω) ∩H1

0 (Ω), satisfying

|u0|C1 ≤ C0|f |C(Ω).

Moreover:
1
2

∫
Ω

(∆u0)2 −
1

p+ 1

∫
Ω

up+1
0 −

∫
Ω

u0f <
Cn

2n
.
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Proof. Let λ1 be the first eigenvalue of the operator ∆2. For a fixed 0 <
λ < λ1, consider the function

h(t) =

{
|t+|p if t < t0,

λ|t| if t ≥ t0,

where t0 is chosen such that h is continuous. Hence, since h has a linear growth
at infinity and it is non-resonant, we can always find a solution to the problem{

∆2u = h(u) + f on Ω,

u = ∆u = 0 on ∂Ω.

Moreover, using Schauder estimates we get that |u0|C1 ≤ C0|f |C(Ω). Thus by
taking ε0 > 0 small enough, we have the desired result. �

Let us consider f ≥ 0 in C(Ω) with f 6= 0. We get, by using Hopf’s lemma,
that there exists c1 > 0 such that

c1
2
< −∂u0

∂ν
< c1, for all x ∈ ∂Ω.

Therefore, there exists c2 > 0 such that

u0(x) ≥ c2d(x), for all x ∈ ∂Ω.

Next we want to find solutions of the form u0 + v. We define on H2(Ω)∩H1
0 (Ω)

the functional

J(u) =
1
2

∫
Ω

(∆u)2 − 1
p+ 1

∫
Ω

((u0 + u)+)p+1 − (p+ 1)up
0v − up+1

0 .

We note that v is a critical point of J if and only if u0 + v is a positive solution
to (Pf ).

Lemma 7.3. There exists ε1 > 0 such that for |f |C(Ω) < ε1, and v ∈ H2(Ω)∩
H1

0 (Ω), v+ 6= 0, there exists a unique tv > t1 > 0 such that J(tv) is increasing
on (t1, tv], decreasing on (tv,∞), and J(tvv) = max

t>0
J(tv).

Proof. We give a sketch of the proof: since we can pick ε1 small enough,
it suffices to prove the result for u0 = 0 and then argue by continuity. The
functional J is now equal to I. Let us consider then

I(tv) = t2a1 − tp+1a2

where a1 = 1
2

∫
Ω
(∆v)2 and a2 = (1/(p+ 1))

∫
Ω
(v+)p+1. This is just a polynomial

equation to study. The result follows. �

Now we define the Nehari manifold

S = {tvv; v ∈ H2(Ω) ∩H1
0 (Ω)− {0}}.
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We have that for v in S, J(v) > 0, and 〈∇J(v), v〉 = 0 if and only if v ∈ S ∪{0}.
Therefore the critical points of J are in S.

Lemma 7.4. The functional J satisfies the Palais–Smale condition on
(
0,Cn

n

)
.

Proof. Let {uj} be a (PS) sequence at the level 0 < d < Cn/n. Then
we know by using the concentration compactness lemma, that there exists u,
z1, . . . , zk ∈ Ω, a1, . . . , ak ∈ R∗+ such that

uj = u+
k∑

i=1

U(zi,ai) + o(1)

in the weak sense. After localization of the blow-up points, namely by test-
ing against a function with support around the zi, we get that the energy
J(uj) ≥ kCn/n. This happens if and only if k = 0 since d < Cn/n, there-
fore the convergence holds. �

We will need the following estimates.

Lemma 7.5. There exists r0 > 2 such that, for every (z, a) ∈ O(r0),∫
Ω

u0U
p
(z,a) ≥ O(d(z)a−(n−4)/2),

|U(z,a)|Ln/(n−4) ≤ O(a−n/2| ln(a)|),∫
Ω

u
n/(n−4)
0 U

n/(n−4)
(z,a) ≤ O(d(z)n/(n−4)a−n/2| ln(a)|).

Proof. We have (see Appendix):∫
Ω

u0U
p
(z,a) ≥ c

∫
Ω

d(x)(U p
(z,a) − p θ(z,a)U

p−1
(z,a)),

and∫
Ω

d(x)U p
(z,a) ≥

d(z)
2

∫
2d(z)>d(x)>d(z)/2

U p
(z,a)

≥ d(z)
2

∫ d(z)

0

rn−1

(
a

1 + a2r2

)(n+4)/2

dr ≥ C
d(z)
2

a(n−4)/2.

Moreover: ∫
Ω

θ(z,a)U
p−1
(z,a) = o(a−(n−4)/2).

Then the first inequality is proved. For the second one, we get:

|U(z,a)|
n/(n−4)

Ln/(n−4) ≤ |U(z,a)|
n/(n−4)

Ln/(n−4) ≤ |U(0,a)|
n/(n−4)

Ln/(n−4)(B(0,C)
≤ Ca−n/2| ln(a)|,

Finally, for the last inequality we have:∫
Ω

u
n/(n−4)
0 U

n/(n−4)
(z,a) ≤

∫
Ω

u
n/(n−4)
0 U

n/(n−4)
(z,a) ,
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and by using the fact that there exists c > 0 such that u0(x) ≤ cd(z) whenever
|x− z| ≤ d(z), we get the desired result. �

Now we define the following sets :

M = {U(z,a); (z, a) ∈ Ω× (1,∞)},
N = {λU(z,a); (z, a) ∈ Ω× (1,∞), λ ∈ (1/2, 2)}

and we call T (z,a) the tangent space to N at U(z,a). We also set F−(z,a) = {λU(z,a);

λ ∈ R} and F+
(z,a) = T

⊥
(z,a). Finally, let F(z,a) = F+

(z,a) ⊕ F−(z,a) and K be the
linear operator defined by

Ku = u1 − u2,

for any u = u1 + u2, with u1 ∈ F+
(z,a) and u2 ∈ F−(z,a). We have the following

Lemma 7.6. There exist positive constants ε2, r1, δ and C1 such that for
f ∈ C(Ω) with |f |C(Ω) < ε2, (z, a) ∈ O(r1) and w ∈ Bδ(U(z,a)), it holds:

(7.1) 〈∆2v − p(w + u0)
p
+v,Kv〉 ≥ C1

∫
Ω

(∆v)2,

for every v ∈ F(z,a).

Proof. Again it is enough to show this inequality for u0 = 0 and then argue
by continuity. So let us take u0 = 0 and by contradiction, let us assume that
the inequality does not hold. Then there exists a sequence (zk, ak) ∈ O(r0),
vk ∈ F(zk,ak) with |vk| = 1, d(zk)ak = rk → ∞, and wk ∈ H2(Ω) ∩H1

0 (Ω) such
that |wk − U(zk,ak)| → 0 as k →∞, verifying

lim sup〈∆2vk − p(wk)p
+vk,Kvk〉 ≤ 0.

We can always write vk = vk,1 + vk,2 according to the splitting of F(zk,ak). Since
rk →∞, we have |U (zk,ak) − U(zk,ak)| → 0. Therefore it is easy to see that

dist(F(zk,ak), span{T(zk,ak), U(zk,ak)}) → 0.

Thus,
lim

k→∞
dist(vk,1, F

+
(zk,ak)) = 0

and, by using Lemma 7.1, we have for k big enough

〈vk,1,∆2vk,1 − p(w+
k )p−1vk,1〉 ≥

γ

2

∫
Ω

p(w+
k )p−1v2

k,1.

Now let us assume for instance that |vk,1| > c, for k big enough. Then there
exists c̃ > 0, such that 〈vk,1,∆2vk,1 − p(w+

k )p−1vk,1〉 > c̃, and hence

lim sup
〈
vk,1,∆2vk,1 − p(w+

k )p−1vk,1

〉
> c̃.

By definition of vk,2 we have

〈vk,2,∆2vk,2 − p(w+
k )p−1vk,2〉 ≤ |vk,2|(1− p).
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Therefore, knowing also that

lim
k→∞

dist(vk,2, F
−
(zk,ak)) = 0

we get that either |vk,1| = |vk,2| = 0, that is |vk| = 0, or

lim sup〈∆2vk − p(wk)p
+vk,Kvk〉 > 0

which is a contradiction. Then the lemma holds. �

Proposition 7.7. There exist r2 > 0 and C2 > 0 satisfying: for every f ∈
C(Ω), |f |C(Ω̄) < ε2 and each (z, a) ∈ O(r2), there exists w(a,z) ∈ S∩Bδ/2(U(z,a))
such that

(7.2) |w(a,z) − U(z,a)| ≤ C2|∇J(U(z,a))|

and

J(w(a,z)) = min
u∈F+

(z,a)∩Bδ/2(0)
max

v∈F−(z,a)∩Bδ/2(0)
J(U(z,a) + u+ v),

that is

J(w(a,z) + v) ≤ J(w(a,z)) ≤ J(w(a,z) + u),

for every u ∈ F+
(z,a) ∩Bδ(0) and v ∈ F−(z,a) ∩Bδ(0).

Proof. The existence of w(a,z) follows from the fact that |∇J(U(z,a))| → 0
as d(z)a → ∞ and (7.1): by Taylor expansion we see that the functional is
convex in the direction of F+

(z,a) and concave in the direction of F−(z,a). We have
a saddle point, therefore w(a, z) exists as in [2] and it is in F(z,a). Now we want
to prove that

|w(a,z) − U(z,a)| ≤ C2|∇J(U(z,a))|.

We note first that since w(a,z) is a saddle point, we have 〈∇J(w(a, z)), w(a, z)〉 =
0, then w(a, z) ∈ S. Using again a Taylor expansion we have

〈∇J(w(z,a)),K(w(z,a) − U(z,a))〉
= 〈∇J(U(z,a)) + J ′′(U(z,a))(w(z,a) − U(z,a)),K(w(z,a) − U(z,a))〉

+ o(|w(a,z) − U(z,a)|2).

By noticing that J ′′(U(z,a))h = ∆2h− p|U(z,a)|p−1h and by using (7.1), we get

〈∇J(w(z,a)),K(w(z,a) − U(z,a))〉 ≥ 〈∇J(U(z,a)),K(w(z,a) − U(z,a))〉
+ C1|w(a,z) − U(z,a)|2 + o(|w(a,z) − U(z,a)|2).

But 〈∇J(w(z,a)),K(w(z,a) − U(z,a))〉 = 0 by construction of w(z,a), therefore we
obtain the desired result by a simple application of Cauchy–Schwartz inequa-
lity. �
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Lemma 7.8. Let f = 0. There exists r2 > 0 such that for every r > r2, there
exists cr > Cn/n verifying

J(w(z,a)) > cr, for every (z, a) ∈ O(r).

Proof. By using the expansion of |U(z,a)|2 (see Appendix), we have the
existence of m > 0, such that |U(z,a)| > m for (z, a) ∈ O(r2). Let now r ≥ r2.
Since f = 0 and w(z,a) ∈ S, then J(w(z,a)) > Cn

n for all (z, a) ∈ O(r). So let us
assume by contradiction that

inf
(z,a)∈O(r)

J(w(z,a)) =
Cn

n
.

Then there exists a sequence (zk, ak) ∈ O(r), such that

|w(zk,ak) − U (z′k,a′k)| → 0

where (z′k, a
′
k) ∈ Ω× (1,∞) is such that d(z′k)a′k →∞. Thus

|w(zk,ak) − U(z′k,a′k)| → 0.

Using (7.2), we have|w(zk,ak)−U(zk,ak)| < m/4, since (zk, ak) ∈ O(r2). This leads
to |U(zk,ak)−U(z′k,a′k)| ≤ m/4. But we know that d(z′k)a′k →∞ and d(zk)ak = r,
therefore

lim
k→∞

|U(zk,ak) − U(z′k,a′k)| ≥ 2m

which is a contradiction. �

Lemma 7.9. Let f ∈ C(Ω), such that |f |C(Ω) < ε2, then there exist r3 > 0,
C3, C4 > 0 such that

J(w(z,a)) ≤
Cn

n
+ C3(d(z)a)−(n−4) − C4d(z)a(n−4)/2

for every (z, a) ∈ O(r3).

Proof. For (z, a) ∈ O(r2), we take Ũ(z,a) = tU(z,a)U(z,a) as in [19]. So we
have J(Ũ(z,a)) = maxt≥0(tU(z,a)). Hence by construction of w(z,a), we have

J(w(z,a)) ≤ J(Ũ(z,a)).

We see that in fact, t1 < tU(z,a) < t2 for every (z, a) ∈ O(r2) with t1 and t2 two
fixed real numbers. Now

J(Ũ(z,a)) ≤ max
t≥0

{
1
2

∫
Ω

t2(∆U(z,a))2 −
1

p+ 1

∫
Ω

tp+1Up+1
(z,a)

}
− min

t1≤t≤t2

{
1

p+ 1

∫
Ω

((u0+tU(z,a))+)p+1−tp+1Up+1
(z,a)−(p+1)tup

0U(z,a)−up+1
0

}
,

after studying the polynomial equation

1
2

∫
Ω

t2(∆U(z,a))2 −
1

p+ 1

∫
Ω

tp+1Up+1
(z,a),
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and using the estimate in the Appendix, one can see that

max
t≥0

{
1
2

∫
Ω

t2(∆U(z,a))2 −
1

p+ 1

∫
Ω

tp+1Up+1
(z,a)

}
=
Cn

n
+O(a−(n−4)) ≤ c+O((ad(z))−(n−4)).

By using a Taylor expansion near zero and at infinity, we find that

1
p+ 1

∫
Ω

((u0 + tU(z,a))+)p+1 − tp+1Up+1
(z,a) − (p+ 1)tup

0U(z,a) − up+1
0

≥
∫

Ω

u0t
pUp

(z,a) − C

∫
Ω

tn/(n−4)u
n/(n−4)
0 U

n/(n−4)
(z,a) .

Therefore

− min
t1≤t≤t2

{
1

p+ 1

∫
Ω

((u0 +tU(z,a))+)p+1−tp+1Up+1
(z,a)−(p+1)tup

0U(z,a)−up+1
0

}
≤ C

∫
Ω

t
n/(n−4)
2 u

n/(n−4)
0 U

n/(n−4)
(z,a) −

∫
Ω

u0t
p
1U

p
(z,a).

By using the estimates in Lemma 7.5, we get

C

∫
Ω

t
n/(n−4)
2 u

n/(n−4)
0 U

n/(n−4)
(z,a) −

∫
Ω

u0t
p
1U

p
(z,a)

≤ O(d(z)n/(n−4)a−n/2| ln(a)|)−O(d(z)a−(n−4)/2),

therefore

J(Ũ(z,a)) ≤
Cn

n
+O((ad(z))−(n−4))

+O(d(z)n/(n−4)a−n/2| ln(a)|)−O(d(z)a−(n−4)/2)

≤ Cn

n
+O(ad(z))−(n−4) +Ad(z)n/(n−4)a−n/2| ln(a)| −Bd(z)a−(n−4)/2

for A and B two positive constants. The conclusion follows. �

Now we define the set:

R = {(z, a) ∈ O(r3); C3(d(z)a)−(n−4) < C4d(z)a(n−4)/2}.

In this set we have J(w(z,a)) < Cn/n and thus Palais–Smale holds.

Proof of Theorem 1.3. Now the proof of the theorem follows straightfor-
ward. In fact, using a minmax argument on the homology classes of R, we obtain
critical points of (z, a) 7→ J(w(z,a)), namely for each [α] ∈ H∗(R) ∼= H∗(Ω), we
have that the values cα defined by

cα = min
α∈[α]

max
(z,a)∈α

J(w(z,a))

are critical values of the function defined before. Moreover, these critical val-
ues corresponds to critical points belonging to the inside of the set O(r3), by
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Lemma 7.8. Now we use a transversality theorem (see Appendix) on the map
defined by

Ψ(u, f) = ∆2u− |u|p−1u− f,

to show that these critical points are non-degenerate. This ends the proof. �

8. Appendix

Here we will give a list of estimates that we used in some of the proofs. Here
the O is for di/λi →∞ and ε12 → 0. Let

U (ξ,λ)(x) =
(

λ

1 + λ2|x− ξ|2

)(n−4)/2

,

and for i = 1, 2, we will set U i = U (ξi,λi). By using the same notation as in
Section 1, we set

Ui = PU i, ε12 =
1

λ2/λ1 + λ1/λ2 + λ1λ2|ξ1 − ξ2|2
and di = dist(ξi, ∂Ω).

Lemma 8.1. Let θ1 = U1 − U1, then:

(a) 0 ≤ θ1 ≤ U1,
(b) θ1(x) = H(ξ1, x)λ

(n−4)/2
1 + f1(x),

(c) f1(x) = O

(
λ

n/2
1

dn−2
1

)
,
∂

∂λ1
f1(x) = O

(
λ

n/2+1
1

dn−2
1

)
,

(d)
∂

∂ξ1
f1(x) = O

(
λ

n/2
1

dn−1
1

)
.

Lemma 8.2. It holds

(a) |U1|2 = 〈U1, U1〉 = Cn − c1H(ξ1, ξ1)λn−4
1 +O

(
λn−2

1

dn−2
1

)
,

(b) 〈U2, U1〉 = c1(ε12 −H(ξ1, ξ2)λ
(n−4)/2
1 λ

(n−4)/2
2 )

+O
(
ε
(n−2)/(n−4)
12 +

λn−2
1

dn−2
1

+
λn−2

2

dn−2
2

)
,

(c)
∫

ΩU
2n/(n−4)
1

= Cn −
2n
n− 4

H(ξ1, ξ1)λn−4
1 +O

(
λn−2

1

dn−2
1

)
,

(d)
∫

Ω

U
(n+4)/(n−4)
1 U2 = 〈U2, U1〉

+


O

(
ε

n/(n−4)
12 ln(ε−1

12 ) +
λn

1

dn
1

ln
(
d1

λ1

))
if n ≥ 8,

O

(
ε12 ln(ε−1

12 )(n−4)/nλ
n−4
1

dn−4
1

)
if n ≤ 7.
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Lemma 8.3. We have the following estimates on ∂
∂λU1:

(a)
〈
U1,

1
λ1

∂

∂λ
U1

〉
=
n− 4

2
c1H(ξ1, ξ1)λn−4

1 +O

(
λn−2

1

dn−2
1

)
,

(b)
∫

Ω

U
(n+4)/(n−4)
1

1
λ1

∂

∂λ
U1 = 2

〈
U1,

1
λ1

∂

∂λ
U1

〉
+O

(
λn−2

1

dn−2
1

)
,

(c)
〈
U2,

1
λ1

∂

∂λ
U1

〉
= c1

(
1
λ1

∂

∂λ1
ε12 +

n− 4
2

H(ξ1, ξ2)λ
(n−4)/2
1 λ

(n−4)/2
2

)
+O

(
ε
(n−2)/(n−4)
12 +

λn−2
1

dn−2
1

+
λn−2

2

dn−2
2

)
,

(d)
∫

Ω

U
(n+4)/(n−4)
2

1
λ1

∂

∂λ
U1 =

〈
U2,

1
λ1

∂

∂λ
U1

〉

+


O

(
ε

n/(n−4)
12 ln(ε−1

12 ) +
λn

1

dn
1

ln
(
d1

λ1

))
if n ≥ 8,

O

(
ε12 ln(ε−1

12 )(n−4)/nλ
n−4
1

dn−4
1

)
if n ≤ 7,

(e)
∫

Ω

U2
1
λ1

(
∂

∂λ
U1

)(n+4)/(n−4)

=
〈
U2,

1
λ1

∂

∂λ
U1

〉

+


O

(
ε

n/(n−4)
12 ln(ε−1

12 ) +
λn

1

dn
1

ln
(
d1

λ1

))
if n ≥ 8,

O

(
ε12 ln(ε−1

12 )(n−4)/nλ
n−4
1

dn−4
1

)
if n ≤ 7.

Lemma 8.4. We have the following estimates on ∂
∂ξU1:

(a)
〈
U1,

1
λ1

∂

∂ξ1
U1

〉
= −1

2
c1H(ξ1, ξ1)λn−3

1 +O

(
λn−2

1

dn−2
1

)
,

(b)
∫

Ω

U
(n+4)/(n−4)
1

1
λ1

∂

∂ξ1
U1 = 2

〈
U1,

1
λ1

∂

∂ξ1
U1

〉
+O

(
λn−2

1

dn−2
1

)
,

(c)
〈
U2,

1
λ1

∂

∂ξ1
U1

〉
= c1

(
1
λ1

∂

∂ξ1
ε12 −

∂

∂ξ1
H(ξ1, ξ2)λ

(n−4)/2
1 λ

(n−4)/2
2

)
+O

(
ε
(n−1)/(n−4)
12

|ξ1 − ξ2|
λ2

+
λn−2

1

dn−2
1

+
λn−2

2

dn−2
2

)
,

(d)
∫

Ω

U
(n+4)/(n−4)
2

1
λ1

∂

∂ξ1
U1 =

〈
U2,

1
λ1

∂

∂ξ1
U1

〉

+


O

(
ε

n/(n−4)
12 ln(ε−1

12 ) +
λn

1

dn
1

ln
(
d1

λ1

))
if n ≥ 8,

O

(
ε12 ln(ε−1

12 )(n−4)/n λn−4
1

dn−4
1

)
if n ≤ 7,
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(e)
∫

Ω

U2
1
λ1

(
∂

∂ξ1
U1

)(n+4)/(n−4)

=
〈
U2,

1
λ1

∂

∂ξ1
U1

〉

+


O

(
ε

n/(n−4)
12 ln(ε−1

12 ) +
λn

1

dn
1

ln
(
d1

λ1

))
if n ≥ 8,

O

(
ε12 ln(ε−1

12 )(n−4)/nλ
n−4
1

dn−4
1

)
if n ≤ 7.

The proof of these estimates are similar to the ones in [3]. For more details
we refer also to [7], [8] and [17].

Next we state a Transversality Theorem: see [19] for the proof.

Theorem 8.5. Let X, Y and Z be three Banach spaces, and Ψ:X×Y −→ Z

be a C1 map satisfying the following conditions for given z ∈ Z:

(a) for every (x, y) ∈ Ψ−1(z), the map DxΨ(x, y):X → Z is a Fredholm
operator of index 0,

(b) for every (x, y) ∈ Ψ−1(z), the map DΨ(x, y):X×Y −→ Z is surjective.

Then the set of y ∈ Y , satisfying that z is a regular value of Ψ( · , y), is a residual
set in Y .
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