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PLANAR NONAUTONOMOUS POLYNOMIAL EQUATIONS III.
ZEROS OF THE VECTOR FIELD

Pawe�lWilczyński

Abstract. We give a few sufficient conditions for the existence of periodic
solutions of the equation ż =

�n
j=0 aj(t)zj . We prove the existence of one

up to n periodic solutions and heteroclinic ones.

1. Introduction

The presented paper is a continuation of [27]–[29]. We study a planar nonau-
tonomous differential equations of the form

(1.1) ż = v(t, z) = vt(z) =
n∑
j=0

aj(t)zj ,

where n ≥ 2 and aj ∈ C(R,C) are T -periodic. Our main tool is the topological
method of isolating segments.
An extensive study of the set of periodic solutions of the equation (1.1) was

initiated in [21] and continued in many papers e.g. [1]–[3], [8]–[14], [16], [19],
[20], [22]. In those papers the coefficients aj are real. One of the most important
problem is to examin the structure of the set of periodic solutions. The second
one is the investigation of a centre which is motivated by the Poincaré centre–
focus problem. The third one is connected with the XVIth Hilbert problem for
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degree two equations in the plane which can be reduced to the problem of finding
the maximal number of closed solutions of the equation (1.1) with n = 3 and
special coefficients aj . This leads to investigations of the maximal number of
periodic solutions of (1.1). It is proved in [15] that in the general case there is
no upper bound for this number provided that n ≥ 3.
The complex coefficients are considered in [4], [5] and a few sufficient condi-

tions for the existence of periodic solutions are presented. The upper bound of
the number of periodic solutions and structure of the centre variety is considered
in [7]. The problem of nonexistence of periodic solutions is investigated in [31]
where it is proved that there exist coefficients aj such that the equation (1.1)
has no periodic solutions.

In the presented paper we develop the ideas from [27]–[29] and give a few
sufficient conditions for the existence of one up to n periodic solutions. We seek
periodic solutions close to the branches of the vector field v. We try to construct
tubes containing the branches. Then we examine behaviour of the vector field
(1, v) on the boundary of the tubes. If in every point of the sides the vector field
(1, v) points outward (inward) the tube, then there exists a periodic solution
inside it. These tubes are simple examples of isolating segments (see [24]–[26]
for the notion of isolating segments). By the special properties of holomorphic
functions we can use the Denjoy–Wolff fixed point theorem (cf. [6], [23]) instead
of the Brouwer one. It allows us to obtain asymptotic unstability or asymptotic
stability of detected periodic solutions. Moreover, they are attracting or repelling
in the whole tube, which leads to the heteroclinic solutions connecting periodic
ones.

Dealing with polynomial equations leads (as in [17]) to analytic case i.e.
presented method is valid also in holomorphic case. That is why we formulate
and prove main theorems of the paper (Theorems 3.1, 4.2, 4.5) in the case of
holomorphic vector field.

The paper is organised as follows. In Section 2 we give definitions and in-
troduce notion. The next section is devoted to (1.1) with branches of zeros of v
of multiplicity one. We deal also with the special equation of polynomial type.
In Section 4 we focus on the branches of multiplicity greater then one. We also
treat polynomial equation of a special type more carefully.

2. Definitions

2.1. Processes. Let X be a topological space and Ω ⊂ R × X × R be an
open set.

By a local process on X we mean a continuous map ϕ: Ω → X , such that
three conditions are satisfied:
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(a) I(σ,x) = {t ∈ R : (σ, x, t) ∈ Ω} is an open interval containing 0, for every
σ ∈ R and x ∈ X ,

(b) ϕ(σ, · , 0) = idX , for every σ ∈ R,
(c) ϕ(σ, x, s+t) = ϕ(σ+s, ϕ(σ, x, s), t), for every x ∈ X , σ ∈ R and s, t ∈ R

such that s ∈ I(σ,x) and t ∈ I(σ+s,ϕ(σ,x,s)).
For abbreviation, we write ϕ(σ,t)(x) instead of ϕ(σ, x, t).

Let M be a smooth manifold and let v:R×M → TM be a time-dependent
vector field. We assume that v is so regular that for every (t0, x0) ∈ R×M the
Cauchy problem

ẋ = v(t, x),(2.1)

x(t0) = x0(2.2)

has unique solution. Then the equation (2.1) generates a local process ϕ on X
by ϕ(t0,t)(x0) = x(t0, x0, t+ t0), where x(t0, x0, · ) is the solution of the Cauchy
problem (2.1), (2.2).

Let T be a positive number. In the sequel T denotes the period. We assume
that v is T -periodic in t. It follows that the local process ϕ is T -periodic, i.e.

ϕ(σ+T,t) = ϕ(σ,t) for all σ, t ∈ R,

hence there is a one-to-one correspondence between T -periodic solutions of (2.1)
and fixed points of the Poincaré map ϕ(0,T ).

2.2. Periodic isolating segments. Let X be a topological space. We
assume that ϕ is a T -periodic local process on X .

For any set Z ⊂ R×X and t ∈ R we put Zt = {x ∈ X : (t, x) ∈ Z}.
Let π1:R×X → R be the projection on the time variable.

We call a compact set W ⊂ [a, b] ×X an isolating segment over [a, b] for ϕ
if the exit and entrance sets W−, W+ of W are also compact and there exist
compact subsets W−−,W++ ⊂ W (called, respectively, the proper exit set and
the proper entrance set) such that

(1) ∂W =W− ∪W+,
(2) W− =W−− ∪ ({b} ×Wb),
(3) W+ =W++ ∪ ({a} ×Wa), W++a = cl(∂(Wa) \W−−a ),
(4) there exists homeomorphism h: [a, b]×Wa → W such that π1 ◦ h = π1
and h([a, b]×W−−a ) =W−−, h([a, b]×W++a ) =W++.

An isolating segment W over [a, b] is said to be (b − a)-periodic (or simply
periodic) if Wa =Wb, W−−a =W−−b and W++a =W++b .

The definition of periodic isolated segment from [25] does not contain the
second equality from the point (3). Presented definition is more general then
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the ones from [24], [26]. All segments which appear in the paper satisfy also
definitions introduced in [24]–[26].
The simplest isolating segments are of the form W = [0, T ] × B, where

W−− = [0, T ]× ∂B, W++ = ∅ or W−− = ∅, W++ = [0, T ]× ∂B and B is some
arbitrary compact subset of X . All segments in the sequel are of one of this form
with B such that intB is holomorphic equivalent to the unit disc.
Let a local process ϕ be given by the equation (2.1). To prove that a set

W ⊂ R×M is an isolating segment for ϕ it is enough to check the behaviour of
the vector field (1, v) on the boundary ofW . Then, by an appropriate fixed point
theorem, there exists a periodic solution inside the segment. The Lefschetz fixed
point theorem is used in the general case but, by the simplicity of our segments,
we need only the Brouwer one. In fact, we use the Denjoy–Wolff fixed point
theorem because the Poincaré map ϕ(0,T ) is holomorphic.

2.3. Basic notions. Let g:M →M and n ∈ N. We denote by gn the n-th
iterate of f , and by g−n the n-th iterate of g−1 (if exists).
We say that the point z0 is attracting (repelling) for g in the set W ⊂ M if

the equality limn→∞ gn(w) = z0 (limn→∞ g−n(w) = z0) holds for every w ∈ W .
We call a T -periodic solution of (2.1) attracting (repelling) in the set W ⊂

M if the corresponding fixed point of the Poincaré map ϕ(0,T ) is attracting
(repelling) in the set W .
Let −∞ ≤ α < ω ≤ ∞ and s: (α, ω)→ C be a full solution of (1.1). We call

s forward blowing up (shortly f.b.) or backward blowing up (b.b.) if ω < ∞ or
α > −∞, respectively.
We call the set {z ∈ C : Im(z) = 0, Re(z) ≤ 0} the critical line. We say that

the function f :R→ C fulfils the critical line condition if and only if the formula

(2.3) f(R) ∩ {z ∈ C : Im(z) = 0,Re(z) ≤ 0} = ∅
holds. This condition was introduced in the context of discriminant of the right
hand side of Riccati equation (cf. [28]).
We define the sector S(α, β) = {z ∈ C : α < Arg(z) < β}, where −π ≤ α <

β ≤ π. Moreover, for 0 < α ≤ π we define S(α) = S(−α, α) and Ŝ(α) to be a set
symmetric with respect to the origin to sector S(α). Obviously, 0 �∈ S(α, β).
Let I ⊂ R. We denote the angular width of function f : I → C by

�(f) = inf{β − α : there exists θ ∈ R such that eiθf(I) ⊂ S(α, β) ∪ {0}}.
It is easy to see that for f, g, h:R → C with f(t) = ei sin(t) we have �(f) = 2,
for g(t) = 1 + eit it is �(g) = π and for h(t) = eit the angular width �(h) is not
defined.
Let us recall that the inner product of two vectors a, b ∈ C is given by the

formula 〈a, b〉 = Re(ab) = Re(ab).
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We write R+ = [0,+∞). By #K we denote the cardinality of the set K. By
B(a, r) we denote the closed ball centered at a with radius r.

Let f ∈ C(R,C \ {0}). We let Γf ∈ C(R,R) denote the function such that

(2.4) Γf (t) ∈ arg(f(t)) and Γf (0) = Arg(f(0)).

We also write

(2.5) βT (f) =
Γf (T )− Γf (0)

2π
.

Let f :R → C satisfy the local Lipschitz condition and U be an open subset
of R. We denote the Lipschitz constant of f in U by L(U, f) (if it does not exist,
we set L(U, f) =∞). Write

Lf(t) = inf{L(U, f) : U is a neighbourhood of t}.

It is easy to see that Lf : R → [0,∞) is upper semi-continuous and for f ∈
C1(R,C) we get Lf ≡ |f ′|.
The family {Aι} is called a decomposition of the set X when
(1) ∅ �= Aι ⊂ X ,
(2)
⋃{Aι} = X ,

(3) Aι ∩Aκ = ∅
holds for all ι, κ, ι �= κ.
Let v ∈ C(R × Ω,C). We say that v is T -periodic with respect to the first

variable if and only if v(t, z) = v(t + T, z) for every t ∈ R. We say that v is
holomorphic with respect to the second variable if and only if v(t, ·) : Ω → C is
holomorphic for every t ∈ R.

Let ξ ∈ C(R,C), and k ∈ N, k > 0. We say that ξ is a branch of zeros of
v of multiplicity k if and only if for every t ∈ R and 0 < j < k the formulas
djv
dzj (t, f(t)) = 0 and

dkv
dzk (t, f(t)) �= 0 hold. We say that ξ is a branch of simples

zeros of v if and only if it is a branch of zeros of multiplicity 1. We say that ξ is
a branch of multiply zeros of v if and only if ξ is a branch of zeros of multiplicity
greater than 1.

3. Simple zeros of the vector field

In the present section we investigate the existence of periodic solutions which
are close to the branch of simple zeros ξ of the vector field v. If for an arbitrary
time t the point ξ(t) is a repelling (or attracting) fixed point of vt then we try
to construct an isolating segment W containing the graph of ξ (cf. Figure 1).
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Figure 1. Schematic picture of the vector field (1, v) in a neighborhood
of the graph of ξ and an isolating segment W .

Thus we seek ξ, χ branches of simple zeros of the vector field v satisfying the
following inequalities

Re

[(
d

dz
v(t, z)

)∣∣∣∣
z=ξ(t)

]
>0,(3.1)

Re

[(
d

dz
v(t, z)

)∣∣∣∣
z=χ(t)

]
<0.(3.2)

To simplify notation we write

Re

[(
d

dz
v(t, ξ(t))

)]
> 0 and Re

[(
d

dz
v(t, χ(t))

)]
< 0

instead of (3.1) and (3.2) respectively.
It is possible to construct an isolating segment W if at every point of the

sides of W the dominating term of an inner product in R3 of the vector field
(1, v) and an outward normal vector is the space term (it comes from v).
The following theorems allows us to find periodic solutions close to these

branches even if some perturbation is introduced.

Theorem 3.1. Let T > 0, Ω be an open subset of a complex plain, v, f ∈
C(R×Ω,C) be T -periodic with respect to the first variable and holomorphic with
respect to the second one. Let the sets

J+ = {ξ ∈ C(R,Ω) : ξ is T -periodic branch of simple zeros of v
which for every t ∈ R satisfies (3.1)},

J− = {ξ ∈ C(R,Ω) : ξ is T -periodic branch of simple zeros of v
which for every t ∈ R satisfies (3.2)}
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be finite. Then the equation

(3.3) ż = Rv(t, z) + f(t, z),

has at least #J+ T -periodic asymptotically unstable solutions and at least #J−

T -periodic asymptotically stable ones, provided R ∈ R is big enough.

Proof. Write #J+ = l, #J− = m, l +m = n. Let η ∈ J+ ∪ J−. We write
the equation (3.3) in the form

ż = u(t, z) = R(z − η(t))dv
dz
(t, η(t)) +Rv̂(t, z) + f(t, z),

where v̂ is T -periodic with respect to the first variable, holomorphic with respect
to the second one and for every t ∈ R satisfies the equality

(3.4) lim
z→η(t)

v̂(t, z)
z − η(t) = 0.

(1) Let now η ∈ J+. Our goal is to prove the existence of one T -periodic
asymptotically unstable solution which graph is close to the graph of η.
(1a) We assume that η ∈ C1(R,C) and construct isolating segment W con-

taining the graph of η|[0,T ] and prove that there exists exactly one T -periodic
solution inside W . Moreover, it is asymptotically unstable.
Let M > 0. We define the segment W by

W = {(t, z) ∈ [0, T ]× C : |z − η(t)| ≤M}.
Our goal is to show that W−− = K, where

K = {(t, z) ∈ [0, T ]× C : |z − η(t)| =M}.
We parameterize K by

s: [0, T ]× (0, 2π] � (t, o) �→ (t, η(t) +Meio) ∈ [0, T ]× C.

It easy to see that an outward orthogonal vector to W at every point of K has
the form n(t, o) where

n: [0, T ]× (0, 2π] � (t, o) �→ [−Re[η′(t)e−io], eio]T ∈ R× C.

Thus the inner product of an outward normal vector n and the vector field (1, u)
is equal to

(3.5) 〈n,(1, u(s))〉 = −Re[η′ke
−io] +Re

[
e−ioRMeio

dv

dz
(t, η(t))

]
+Re[e−ioRv̂(t, η(t) +Meio)] +Re[e−iof(t, ηk(t) +Meio)]

≥− |η′k|+RMRe

[
dv

dz
(t, η(t))

]
−R|v̂(t, η(t) +Meio)| −N(M) = (�),

where N(M) = sup{|f(s(t, o))| : (t, o) ∈ [0, T ]× (0, 2π]}.
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By (3.1), T -periodicity of η and (3.4), there exists ε > 0 such that

MRe

[
dv

dz
(t, η(t))

]
− |v̂(t, η(t) +Meio)| > εM

holds for every t ∈ R provided M > 0 is small enough. Thus taking M small
enough and R big enough one can see that (�) > 0 so W−− = K and W is
an isolating segment. T -periodicity of W follows by T -periodicity of η. By the
Denjoy–Wollf fixed point theorem there exists exactly one T -periodic solution
inside W . It is asymptotically unstable.

(1b) Let now η be continuous. We define η̃ ∈ C1(R,C) which is T -periodic
and close enough in the supremum norm to the ηk. We construct the set W
for η̃ as at the point (1a). By the continuity of multiplication and the inner
product the set W is an isolating segment for the vector field u. The existence
of T -periodic solution inside W follows as in (1a).

(2) Let us fix η ∈ J−. Our goal is to prove the existence of one T -periodic
asymptotically stable solution which graph is close to the graph of η. The only
difference from the point (1) is that at every point of the sides of W the vector
field (1, u) points inwardW . Thus the existence of asymptotically stable periodic
solution follows.

By taking M small enough all isolating segments can be pairwise disjoint.
Thus detected periodic solutions are pairwise different. �

Example 3.2. The equation

ż = R(e−2itz3−6e−itz2+11z−6eit)+z4 = Re−2it(z−eit)(z−2eit)(z−3eit)+z4

has at least three 2π-periodic solutions provided that R is big enough. Two of
them which are close to eit and 3eit, respectively, are asymptotically unstable
and the third one which is close to 2eit is asymptotically stable.

The following corollaries show that the presented method works good for
branches of zeros Rη for big R and long periods of the equation.

Corollary 3.3. Let T > 0, n ≥ 3 and aj ∈ C(R,C) for j ∈ {1, . . . , n} be
T -periodic. Moreover, let g ∈ C(R× C,C) be T -periodic in the first variable i.e.
g(t, z) = g(t+ T, z) holds for all t ∈ R and z ∈ C and the following condition

(3.6) lim
|z|→∞

g(t, z)
|z|n−1 = 0

is satisfied uniformly with respect to t. We also assume that l,m ∈ N, l +m ≤
n and ξp, χq:R → C for p ∈ {1, . . . , l}, q ∈ {1, . . . ,m} are T -periodic and
continuous branches of simple zeros of the vector field v given by (1.1). If for
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every p ∈ {1, . . . , l} (q ∈ {1, . . . ,m}) the inequality (3.1), ((3.2)) holds for every
t ∈ R, then the equation

(3.7) ż =
n∑
j=0

Rn−jaj(t)zj + g(t, z)

has at least l (m) T -periodic asymptotically unstable (asymptotically stable) so-
lutions, provided R ∈ R is big enough.

Proof. We write the equation (3.7) in the form

ż = u(t, v) = an(t)
n∏
r=1

(z −Rηr(t)) + g(t, z),

where ηr:R→ C is the branch of zeros of the vector field v.

After the substitution z = Ru we get the equation

u̇ = a(t)
n∏
r=1

(u − ηr(t)) + g(t, Ru)

which is of the form (3.3). Now it is enough to apply Theorem 3.1. �

Example 3.4. The equation

ż = z3 − 6 cos(t)Rz2 + (9 + 2e2it)R2z − 6R3eit + z + 1
=(z −Reit)(z − 2Reit)(z − 3Re−it) + z + 1

has at least two 2π-periodic solutions provided that R is big enough. The one
which is close to Reit is asymptotically unstable and the other close to 2Reit is
asymptotically stable.

Corollary 3.5. Let T > 0, Ω be an open subset of a complex plain, v ∈
C(R×Ω,C) be 1-periodic with respect to the first variable and holomorphic with
respect to the second one. Let the sets

J+ = {ξ ∈ C(R,Ω) : ξ is 1− periodic branch of simple zeros of v
which for every t ∈ R satisfies (3.1)},

J− = {ξ ∈ C(R,Ω) : ξ is 1− periodic branch of simple zeros of v
which for every t ∈ R satisfies (3.2)}

be finite. Then the equation

(3.8) ż = v
(
t

T
, z

)
,
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has at least #J+ T -periodic asymptotically unstable solutions and at least #J−

T -periodic asymptotically stable ones, provided T ∈ R is big enough.

Proof. We make a change of variables given by w(t) = z(tT ). Then we get
equation ẇ(t) = T ż(tT ) = Tv(t, z(tT )) = Tv(t, w(t)) which, by Theorem 3.1,
has at last #J+ 1-periodic asymptotically unstable solutions and at least #J−

1-periodic asymptotically stable ones, provided T ∈ R is big enough. But these
1 periodic solutions in w-coordinate are T -periodic in z-coordinate. �

Example 3.6. The equation

ż = z4 − eiT tz3 − z(4 + eiT t)3 + eiT t(4 + eiT t)3 = [z3 − (4 + eiT t)3][z − eiT t]
has at least four 2π/T -periodic solutions provided that T > 0 is small enough.
Three of them which are close to e(2kπ/3)i(4 + eiT t) are asymptotically unstable
and the one close to eiT t is asymptotically stable.

Remark 3.7. Some versions of the above theorems in the case of n = 2 can
be found in [28].

Remark 3.8. The above theorems also allow to find p-harmonic solutions
for p > 1 (cf. Example 3.9 and 3.10).

Example 3.9. By Theorem 3.1, the 2π-periodic equation

ż = R(2e−itz3 + z2 − 2z − eit) + z10 = R(z2 − eit)(2e−itz + 1) + z10

has at least two 4π-periodic asymptotically unstable solutions provided that R
is big enough. The solutions are close to the branches ξ1 = eit/2 or ξ2 = −ξ1,
respectively.

Example 3.10. By Corollary 3.3, the equation

ż = e−itz4−Re−2itz3−8R3z+8R4e−it+ z2 = e−it(z3−8R3eit)(z−Re−it)+ z2

has at least three asymptotically unstable 6π-periodic solutions provided that R
is big enough.

Remark 3.11. It is possible to state Theorem 3.1 and Corollary 3.5 in more
general settings. It is enough to assume that there exists D an open subset of
R× C such that v ∈ C(D,C). In this case, every branch of zeros η must satisfy
(3.9) (t, η(t)) ∈ D for every t ∈ R.

Example 3.12. By Theorem 3.1 and Remark 3.11, the equation

ż = v(t, z) = Re−2itz3
z − ieit
z − eit

has at least one 2π-periodic asymptotically stable solution which is close to ξ
provided that R is big enough. Here ξ(t) = ieit and ddz v(t, ξ(t)) = R

i−1
2 .
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Write Ω = {z ∈ C : |z| �= 1} and consider v:R × Ω → C. But the branch
of simple zeros ξ(t) = ieit does not fulfill the crucial condition ξ(R) ⊂ Ω, so
Theorem 3.1 is useless in this situation.

Now write D = {(t, z) ∈ R × C : z �= eit}, so (3.9) holds. Thus Remark 3.1
can be applied.

Remark 3.13. The proof of Theorem 3.1 is not valid in the case of infinite
sets J+ or J− as shown in the Example 3.14.

Example 3.14. Let us consider the equation

ż = v(t, z) = Re−3it
ee
itz − 1
z2

,

where R > 0. It has infinitely many branches of simple zeros ηk(t) = e−it2kiπ
for k ∈ Z \ {0}. But dvdz (t, ηk(t)) = −R

4k2π2 , J
− = {ηk : k ∈ Z \ {0}},

lim
k→±∞

−R
4k2π2

= 0, lim
k→±∞

|η′k(t)| =∞,

so for a particular value of R only in case of finite number of ηk’s the crucial
inequality (3.5) may be satisfied. So the bigger R, the more periodic solutions,
but for every R only finite number may be produced by Theorem 3.1.

It is possible to use the method presented in the current subsection to detect
the existence of asymptotically stable (asymptotically unstable) periodic solution
when neither (3.1) nor (3.2) is satisfied for all t ∈ R. This is possible if for every
time t such that (3.1) (or (3.2)) holds the dominating term of the inner product
in R3 of the vector field (1, vt) and an outward normal vector of the segment
W is the space term. But when (3.1) (or (3.2)) is close to zero the dominating
term is the time one (it comes from 1). It is possible when the isolating segment
broadens or narrows rapidly. The presented procedure can be used only when
the branch of simple zeros is close to the one fulfilling (3.1) (or (3.2)) for all
t ∈ R.

3.1. Special case. In the present subsection we deal with the special case
of the equation (1.1) which is given by

(3.10) ż = v(t, z) = a(t)zn + b(t),

where a, b ∈ C(R,C \ {0}) are T -periodic and n ≥ 2. By the simplicity of the
vector field, it is possible to present estimates for a and b which guarantee the
existence of one up to n periodic solutions.
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Let us start with a few more pieces of notation: we write

In =

{ {0, 1, . . . , 2n− 3} when n is odd,
{0, 1, . . . , n− 2} when n is even,

γn =


π

2(n− 1) when n is odd,
π

n− 1 when n is even.

For a set J ⊂ In we write

mJ =

{
n−#J when n is odd,

n− 2#J when n is even.
We set τa = Γa, τb = Γ−b/a, where Γ is given by (2.4) and define αJ ∈ C(R,R)

by

αJ (t) =


min
k∈In\J

{∣∣∣∣τb(t)− (2k + 1)γn + τa(t) nn− 1
∣∣∣∣ mod 2π} if 4 � n,

min
k∈In\J

{∣∣∣∣τb(t)− 2kγn + τa(t) nn− 1
∣∣∣∣ mod 2π} if 4 | n.

Moreover, we write

gt(z) =
dv

dz
(t, z) = na(t)zn−1, h(z) = zn

and

C(t) = g−1t (iR) =
2n−3⋃
k=0

ei
(

π
2(n−1)− τa(t)n−1 +

kπ
n−1
)
R+,

DJ(t) =


⋃

k∈In\J
ei
[
(2k+1)γn− n

n−1 τa(t)
]
R+ if 4 � n,

⋃
k∈In\J

ei
[
2kγn− n

n−1 τa(t)
]
R+ if 4 | n.

Figure 2. The set D∅(t) = C(t) for the equation (3.10) with n = 3 and
τa(t) = 0.
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Figure 3. The set C(t) for the equation (3.10) with n = 4 and τa(t) = 0.

Figure 4. The set D∅(t) for the equation (3.1) with n = 4 and τa(t) = 0.

It is easy to see that D∅(t) = h(C(t)) holds. Every set of the form DJ(R) is
an analogue of the critical line for the Riccati equation (cf. [28]).
In the case a ≡ 1 the above sets are less complicate, namely τa ≡ 0 and so

C(t) = C(0), DJ(t) = DJ(0) for every t ∈ R and J ⊂ In.
We now state the main theorem of the present subsection (the definition of

βT is given by (2.5)).

Theorem 3.15. Let T > 0, n ≥ 2 and T -periodic functions a, b:R→ C\{0}
satisfy the local Lipschitz condition. If there exist J ⊂ In, l ∈ R and E > 0 such
that the conditions:

mJ >0,(3.11)

βT (a) =− (n− 1)βT (b),(3.12)

|a(t)| sin
(
(n− 1)αJ(t)

n

)
(3.13)

>
1
n2
Lb/a(t)

[
|l|
∣∣∣∣ b(t)a(t)
∣∣∣∣(1−2n)/n + 1E

∣∣∣∣ b(t)a(t)
∣∣∣∣(2−l−2n)/n]

+ E
n− 1
2
|a(t)|
∣∣∣∣ b(t)a(t)
∣∣∣∣(l−1)/n(1 + E∣∣∣∣ b(t)a(t)

∣∣∣∣(l−1)/n)n−2
are satisfied for every t ∈ R, then the equation (3.10) has at least mJ T -periodic
solutions which are asymptotically stable or asymptotically unstable.



84 P. Wilczyński

Proof. Our goal is to constructmJ T -periodic isolating segments such that
the vector field (1, v) points inwards or outwards in the whole side. Then we
apply the Denjoy–Wolff fixed point theorem.
Let ψ ∈ C(R,C) be a branch of simple zeros of v i.e. v(t, ψ(t)) = 0 holds for

every t ∈ R. Then ψn(t) = −b(t)/a(t) is satisfied. We write ψm = ei2πm/nψ for
m ∈ {0, . . . , n− 1}. We seek ψm such that the equality

(3.14) sgn(Re[gt(ψm)]) = const.

is satisfied.
The number αJ(t) is the angle between −b(t)/a(t) and the nearest half-line

which is the part of DJ (t). By (3.11), we get 0 ≤ αJ ≤ πn/(2(n− 1)), and by
(3.13), it must be αJ > 0.
Let J = ∅ and τa ≡ 0 hold. Then (−b/a)(R) ∩ DJ(R) = ∅ and (3.14) is

satisfied for every ψm. Let us notice that �(gt(ψ)) = n−1n �
(− ba) holds.

Figure 5. The set D∅(t) = C(t) for the equation (3.10) with n = 5 and
τa(t) = 0.

We now allow (−b/a)(t0) ∈ DJ(t0) to hold for exactly one t0 ∈ (0, T ]. If n is
odd then there exists exactly one ψm such that the inclusion gt0(ψm(t0)) ∈ iR is
satisfied. The uniqueness of ψm comes from the fact that at most one number of
the form ei(2π/n)jgt0(ψ(t0)) where j ∈ {0, . . . , n− 1} can be a purely imaginary
one. It follows that the number of functions ψm such that the equality (3.14)
holds is equal to n− 1. By the same argument, it can be proved that if the set
(−b/a)(R) has nonempty intersections with exactly k half-lines which are parts
of D∅(R) then exactly k functions of the form ψm does not longer satisfy the
condition (3.14).
If n is odd then either both ψm and −ψm satisfy the condition gt0(ψk(t0)) ∈

iR or both do not satisfy it. It is for this reason that the nonempty intersection of
(−b/a)(R) with one of the half-lines which are parts of D∅(R) makes the number
of ψm satisfying (3.14) smaller by two.
Finally, for an arbitrary J ⊂ In the number of the function of the type

ψm which satisfy (3.14) equals at least max{mJ , 0}. Moreover, for every such
function ψm, the angle between gt(ψm(t)) and the imaginary axis is at least
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Figure 6. The set C(t) for the equation (3.10) with n = 6 and τa(t) = 0.

(n− 1)αJ (t)/n, so

(3.15) |Re[gt(ψm(t))]| ≥ n|a(t)||ψm(t)|n−1 sin
(
(n− 1)αJ(t)

n

)
holds.

The above considerations are valid also in the case τa �≡ 0. It is worth noting
that (3.12) implies βT (a) ∈ (n− 1)Z and DJ(0) = DJ(T ).
The function |ψ| is T -periodic. Indeed, by (3.12) we get

(3.16) βT (ψn) = βT (b)− βT (a) = nβT (b) ∈ nZ,

so ψ must be T -periodic.

Figure 7. The set D∅(t) for the equation (3.10) with n = 6 and τa(t) = 0.

Let us assume that b/a ∈ C1(R,C). We define T -periodic segment Wm ⊂
[0, T ]× C by

Wmt = {z ∈ C : |z − ψm(t)| ≤M(t)},
where the mapping M ∈ C1(R, (0,∞)) is T -periodic. We parameterize its side
by function sm: [0, T ]× (0, 2π]→ R× C given by

sm(t, o) = (t, ψm(t) + eioM(t)).
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An outward orthogonal vector has the form nm = [−M ′−Re[ψ′me
−io], eio]T . We

do a substitution

v(sm) = a(ψm +Meio)n + b = a
n∑
k=0

(
n

k

)
Mkeiokψn−km + b

= anMeioψn−1m + a
n∑
k=2

(
n

k

)
Mkeiokψn−km .

By (3.15), we estimate the modulus of inner product of the vector field (1, v)
and an outward orthogonal vector at every point of the side of Wm by

|〈nm,(1, v(sm))〉|

≥
∣∣∣∣−M ′ −Re[ψ′me

−io] +Re

[
naMψn−1m + a

n∑
k=2

(
n

k

)
Mkeio(k−1)ψn−km

]∣∣∣∣
≥n|a|M |ψm|n−1 sin

(
(n− 1)αJ
n

)
− |M ′| − |ψ′m|

− |a|M2
n∑
k=2

(
n− 2
k − 2

)
Mk−2|ψm|n−2−(k−2)

(
n
k

)(
n−2
k−2
)

≥n|a|M |ψm|n−1 sin
(
(n− 1)αJ
n

)
− |M ′| − |ψ′m| − |a|M2

n(n− 1)
2
(M + |ψm|)n−2,

where the last inequality follows by

max
{ (n

k

)(
n−2
k−2
) : k ∈ {2, . . . , n}} = n(n− 1)

2
.

Finally, to get |〈nm, (1, v(sm))〉| > 0 it is enough the inequality

(3.17) n|a|M |ψm|n−1 sin
(
(n− 1)αJ
n

)
>
n(n− 1)
2
|a|M2(M + |ψm|)n−2 + |M ′|+ |ψ′m|

holds.

WriteM(t) = E|ψm(t)|l. ThenM ′ = El|ψm|l−2Re[ψ′mψm]. Moreover, ψ
n
m =

−b/a holds, so ψ′m = −(b/a)′ψ1−nm /n and |ψm| = |b/a|1/n are satisfied. Thus the
formulas

|ψ′m| =
1
n

∣∣∣∣( ba
)′∣∣∣∣∣∣∣∣ ba

∣∣∣∣(1−n)/n and |M ′| ≤ E|l|n
∣∣∣∣( ba
)′∣∣∣∣∣∣∣∣ ba

∣∣∣∣(l−n)/n
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are satisfied. The inequality (3.17) is fulfilled provided that

nE|a|
∣∣∣∣ ba
∣∣∣∣(n+l−1)/n sin( (n− 1)αJn

)
>
n(n− 1)
2
|a|E2|ψm|n−2+2l(1 + E|ψm|l−1)n−2

+
E|l|
n

∣∣∣∣( ba
)′∣∣∣∣∣∣∣∣ ba

∣∣∣∣(l−n)/n + 1n
∣∣∣∣( ba
)′∣∣∣∣∣∣∣∣ ba

∣∣∣∣(1−n)/n
holds. But the last formula is equivalent to (3.13).
Finally, every set of the form Wm is an isolating segment and the Poincaré

mapping satisfies PT (Wm0 ) ⊂ intWm0 or P−T (Wm0 ) ⊂ intWm0 when the vector
field on the side ofWm points respectively inward or outward the setWm. By the
Denjoy–Wollf fixed point theorem, there exists exactly one T -periodic solution
inside every Wm. It is asymptotically stable or asymptotically unstable.
What is left is to show that all obtained periodic solutions are distinct. It

suffices to prove that the segments are pairwise disjoint. Let us fix t ∈ [0, T ). We
show that the distance between centresAk, Ak+1 of two consecutive ballsW kt and
W k+1t is greater than 2M(t) = 2E|ψ(t)|l. The triangle with vertices 0, Ak, Ak+1
is isosceles and the 0 vertex angle is equal to 2π/n. Since |Ak| = |Ak+1| = |ψ(t)|,
it is enough to show that sin(π/n)|ψ| > E|ψ|l holds. But the last inequality is
equivalent to

(3.18)
∣∣∣∣ ba
∣∣∣∣(1−l)/n > E

sin(π/n)
.

By (3.13), after dropping some terms, we get

sin
(
(n− 1)αJ
n

)
> E
n− 1
2

∣∣∣∣ ba
∣∣∣∣(l−1)/n(1 + (n− 2)∣∣∣∣ ba

∣∣∣∣(l−1)/n).
We multiply it by |b/a|2(1−l)/n and get the inequality

(3.19) sin
(
(n− 1)αJ
n

)∣∣∣∣ ba
∣∣∣∣2(1−l)/n−En− 12

∣∣∣∣ ba
∣∣∣∣(1−l)/n− (n− 1)(n− 2)2

E > 0,

which solution fulfills∣∣∣∣ ba
∣∣∣∣(1−l)/n > n−12 E +

√(
n−1
2 E
)2
+ 2E(n− 1)(n− 2) sin ( (n−1)αJn

)
2 sin
( (n−1)αJ

n

)
>

n− 1
2 sin
( (n−1)αJ

n

)E ≥ n− 1
2
E.

Thus (3.18) is satisfied for n ≥ 4, by sin (π/n) ≥ 2√2/n. Let now n = 3. If
mJ = 1, then there is nothing to prove. If mJ ≥ 2, then #J ≤ 1, so there is at
most one half-line removed from the set D∅(t). Thus the maximal angle between
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an arbitrary vector from the complex plane and the closest half-line from the
set DJ(t) equals π/2, so αJ(t) ≤ π/2 holds and the solution of (3.19) fulfills
(3.18). If n = 2 then one periodic solution is asymptotically stable and the other
is asymptotically unstable (cf. [28]) so they are distinct.
If b/a ∈ C1(R,C) is not longer satisfied, then we modify the above arguments

as at the point (1b) of the proof of Theorem 3.1. �
Remark 3.16. If the number Re[gt(ψm)] is positive or negative then the

associated periodic solution is asymptotically unstable or asymptotically stable
respectively.

The following examples are the straightforward application of Threorem 3.15
and Remark 3.16.

Example 3.17. The equation

(3.20) ż = z4 −Rei sin(t)π/2

has at least two 2π-periodic solutions provided that R > R0, where numeric
calculation gives R0 < 8.8. One of the them is asymptotically stable and the
other is asymptotically unstable. Here J = {0}, αJ ≥ π/6 and l = −0.2, E = 0.2.
It is worth noting that, by �(−Rei sin(t)π/2) = π/2, [29, Theorem 4] cannot be
here applied. Moreover, Corollary 3.3 can be applied to the equation (3.20) but
it gives no estimation of R.

Figure 8. Sets DJ(0) and −� b
a

�
(R) for the equation (3.20).

Example 3.18. The equation

(3.21) ż = e2itz3 −Re−it + 1
has at least three 2π-periodic solutions provided that R > R0, where numeric
calculation gives R0 < 22.5. Two of them are asymptotically stable and the
other is asymptotically unstable. Here J = ∅, α∅ ≥ π/4−arcsin(1/R) and l = 0,
E = 0.5.
Moreover, if R > R1, where numeric calculation gives R1 < 3.4, then the

equation has at one 2π-periodic asymptotically unstable solution. Here J =
{0, 3}, α{0,3} ≥ (3/4)π − arcsin(1/R) and l = 0, E = 0.5.



Zeros of the Vector Field 89

Figure 9. The sets D{0,3}(0) and −� b
a

�
(0) for the equation (3.21) and

D{0,3}(0), D{0,3}(π) and −� b
a

�
(0), −� b

a

�
(π) for the equation (3.22).

Setting neither J = {0} nor J = {3} gives anything new because αJ ≥
π/4− arcsin(1/R) which is similar to α∅.

Example 3.19. The equation

(3.22) ż = ei sin(t)π/2z3 −Re−i sin(t)π/2

has at least one 2π-periodic asymptotically unstable solution provided that R >
R0, where numeric calculation gives R0 < 4. Here J = {0, 3}, α{0,3} ≥ π/2 and
l = 0, E = 0.45.

Figure 10. The sets D{0,3}
�

π
2

�
and −� b

a

��
π
2

�
for the equation (3.22).

Figure 11. The sets D{0,3}
�

3
2
π
�

and −� b
a

��
3
2
π
�

for the equation (3.22).

Remark 3.20. In the case of equation (3.10) the condition

(3.23)
(
− b
a

)
(t) �∈ DJ(t) for every t ∈ R,

plays an analogous role to the critical line condition for the Riccati equation
(cf. [28]).
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Corollary 3.21. Let T > 0, n ≥ 2 and T -periodic functions a, b:R →
C \ {0} satisfy the local Lipschitz condition. If there exists J ⊂ In such that
(3.11), (3.12) and (3.23) are satisfied, then every equation

ż =Ra(t)zn + b(t),(3.24)

ż =Ra(t)zn +Rb(t),(3.25)

ż = a(t)zn +Rb(t)(3.26)

has at least mJ T -periodic solutions provided that R is big enough. Every such
solution is either asymptotically stable or asymptotically unstable.

Proof. It suffices to fix such an l and E that the inequality (3.13) holds.
By (3.24), the left-hand side of the inequality (3.13) is positive. In the case of
(3.24) and (3.23) it is linear with respect to R. Write l = 1. We fix E > 0 so
small that the inequality

(3.27) E
n− 1
2
(1 + E)n−2 <

1
2
min
{
sin
(
(n− 1)αJ (t/T )

n

)
: t ∈ R

}
holds.
In the case of (3.24) the formula

1
n2
Lb/a

[
|l|
∣∣∣∣ ba
∣∣∣∣(1−2n)/n + 1E

∣∣∣∣ ba
∣∣∣∣(2−l−2n)/n]

is linear with respect to R(n−1)/n, and for (3.25) it does not depend on R.
For (3.26) the left-hand side of (3.13) does not depend on R. Let us fix

l = 1/2 and E = 1. Then every term of the right-hand side is linear with respect
to some Rp where p < 0.
Finally, the inequality (3.13) holds provided R is big enough. �
Remark 3.22. (a) The conclusion of the above corollary for the equations

(3.25) and (3.26) follows also by Theorem 3.1 and Corollary 3.3, respectively.
(b) By any of Corollary 3.5 and Theorem 3.15, it is possible to state corollary

for the equation (3.10) in the case of long periods.
Presented method fails in the case of small coefficients and short periods (cf.

[28, Subsection 3.2]) as can be seen in the following examples.

Example 3.23. The equation

(3.28) ż = z3 +Rei sin
2(t)π/6

has at least three π-periodic solutions provided that R > R0, where numeric
calculation gives R0 < 25. Two of them are asymptotically stable and the other
is asymptotically unstable. Here J = ∅, α∅ ≥ π/12 and l = 0, E = 0.22.
Moreover, if R > R1, where numeric calculation gives R1 < 1.2, the equation

has at least two π-periodic solutions. One of them is asymptotically stable and
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Figure 12. The sets D{2}(0) and −� b
a

�
(R) for the equation(3.28).

the other is asymptotically unstable. Here J = {2}, α{2} ≥ π/4 and l = 0,
E = 0.2.
What is more, by setting J = {1, 2}, we prove the existence of at least one π-

periodic asymptotically unstable solution provided that R > R2, where R2 > 0.
But, by [29, Theorem 4], such a solution exists for every R > 0.

Example 3.24. Let us consider the equation

(3.29) ż = zn +Rb(t)

where n ≥ 3 and b ∈ C(R,C \ {0}) is T -periodic and satisfies the local Lip-
schitz condition. By [29, Theorem 4], it has at least one T -periodic asymp-
totically unstable solution p rovided that (−b)(R) ⊂ S(π/(n− 1)) and R > 0.
But Theorem 3.15 gives the existence of the solution provided that (−b)(R) ⊂
S((n/(2(n− 1))π) and R is big enough. To see this it is enough to set

J =



{
0, . . . ,

n− 3
2

}
∪
{
3n− 3
2
, . . . , 2n− 4, 2n− 3

}
for 2 � n,{

0, . . . ,
n− 6
4

}
∪
{
3n− 2
4
, . . . , n− 3, n− 2

}
for 2 | n and 4 � n,{

0, . . . ,
n− 4
4

}
∪
{
3n
4
, . . . , n− 3, n− 2

}
for 4 | n.

Remark 3.25. By (3.16), Theorem 3.15 does not allow to detect p-harmonic
solutions for p > 1.

Remark 3.26. Theorem 3.15 can be applied to the Riccati equation (n = 2)
instead of [28, Theorem 11]. The inequality [28, (14)] can be more restrictive
than (3.13). It is due to the difference in definition of the radius of the segment.
In the inequality [28, (14)] the radius depends onRe[ψm] and in (3.13) it depends
on |ψm|.

Example 3.27. Let f be such as in Example 41 from [28] i.e.

f(t) =


eit for t ∈

[
− 3
4
π,
3
4
π

]
,

ei((3/2)π−t) for t ∈
[
3
4
π,
9
4
π

]
.
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By [28, Theorem 11], the equation ż = z2+Rf(t) has two 3π-periodic solutions
provided that R > (3 + 2

√
2)(7 + 4

√
3)/2 ≈ 40.59. But, by Theorem 3.15, it

has the solutions provided that R > (1/4) sin−4(π/8) ≈ 11.66. Here J = ∅,
DJ(0) = −R+, αJ ≥ π/4, l = 0 and E = (1/2) sin(π/8).

4. Multiple zeros of the vector field

In the present section we seek periodic solutions which are close to multiple
zeros of the vector field v. If for an arbitrary time t the point f(t) is a multiple
zero of vt, then we try to construct isolating segment W which sides contain
the graph of f . If the multiplicity of zeros is an even number, then we try to
construct another isolating segment Z (cf. Figure 13).

Figure 13. Schematic picture of the vector field (1, v) in a neighborhood
of the graph of f if f is a branch of zeros of even multiplicity. The segments
W and Z are not periodic in the picture because the dimension of the z-
space is only one.

To do that we need to estimate the inner product in R3 of the vector field
(1, v) and an outward normal vector at every point of the sides of W (and Z).
Let us observe that there exist holomorphic vector fields v(t, z) with branches

of multiply zeros such that the equation ż = v(t, z) has no periodic solutions.

Example 4.1. The equation

ż =
1
2z
(z2 − ireit)2

has no periodic solutions for some values of r. To see this, we make the change
of variables w = z2− ireit and get ẇ = w2− reit which has no periodic solutions
for infinitely many values of r (cf. [18], [30]).

We try to obtain the existence of periodic solutions by making some assump-
tions on the derivatives along the branch of zeros.
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We start with the following equation

(4.1) ż = v(t, z) = Ru(t, z).

Let f :R→ C. We denote by uf :R→ C the function given by uf (t) = u(t, f(t))
and write

∂kuf
∂zk
(t) =

∂ku

∂zk
(t, f(t)).

Theorem 4.2. Let k ≥ 3, T > 0, Ω be an open subset of a complex plain,
f ∈ C2(R,Ω) be T -periodic, u ∈ C1(R × Ω,C) be T -periodic with respect to the
first variable and holomorphic with respect to the second one. Let for every t ∈ R

the point f(t) be a zero of u(t, · ) of multiplicity k.
If the function [f ′]k−1 ∂

kuf
∂zk fulfills the critical line condition (2.3), then the

equation (4.1) has at least one T -periodic asymptotically unstable solution ξ pro-
vided that R is big enough.
Moreover, if k is even, then the equation (4.1) has at least one T -periodic

asymptotically stable solution χ and infinitely many solutions which are hetero-
clinic from ξ to χ.
If k is odd, R is big enough, and the function −[f ′]k−1 ∂kuf∂zk fulfills the critical

line condition (2.3), then the equation (4.1) has at least one T -periodic asymp-

totically stable solution χ. If, additionally, [f ′]k−1 ∂
kuf
∂zk fulfills the critical line

condition (2.3), then there are infinitely many solutions which are heteroclinic
from ξ to χ.

Proof. Our goal is to construct T -periodic isolating segment W such that
W−− consists of the sides of W . Then the existence of ξ is a consequence of the
Denjoy–Wolff fixed point theorem.
Let us write the equation (4.1) in the following form

(4.2) ż = v(t, z) = Rh(t, z) [z − f(t)]k .
Obviously,

h(t, z) =
1
k!
∂ku

∂zk
(t, z)

and h ∈ C1(R × Ω,C) is T -periodic with respect to the first variable and holo-
morphic with respect to the second one. We set hf (t) = h(t, f(t)).
We make the change of variables given by

(4.3) w = hs(t, z)(z − f(t)),
where s = 1/(k − 1). Here, a neighbourhood of f(t) in z-coordinates is trans-
formed into a neighbourhood of zero in w-coordinates. By hs we denote the
branch of (k − 1)-th root such that

(4.4) (f ′hsf )(R) ⊂ S
(
π

k − 1
)
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holds. We denote by z = Ξ(t, w) the inverse transformation to (4.3).

To show that there exists a branch of hs such that (4.4) holds and (4.3)
preserves the T -periodicity of solutions, we rewrite (4.3) in the form

w = hs(t, [z − f(t)] + f(t))(z − f(t)).

Let us observe that the right hand side is T -periodic with respect to the variable t.

It comes from the fact that, since [f ′]k−1 ∂
kuf
∂zk
is T -periodic and fulfils the critical

line condition (2.3), we have

βT

(
[f ′]k−1

∂kuf
∂zk

)
= 0.

Therefore

βT

(
∂kuf
∂zk

)
= −(k − 1)βT (f ′)

and
(
∂kuf
∂zk

)s
is T -periodic. Thus the change of coordinates (4.3) preserves T -

periodicity of solutions. Moreover, since
(
[f ′]k−1 ∂

kuf
∂zk

)
(R) ⊂ S(π), (4.4) holds

for some branch of hs.

Now we apply (4.3) to (4.2) and get

ẇ(t) =Rwk − hs(t,Ξ(t, w))f ′(t) + wsh−1(t,Ξ(t, w))∂h
∂t
(t,Ξ(t, w))(4.5)

+Rwk+1sh−ks(t,Ξ(t, w))
∂h

∂z
(t,Ξ(t, w)) = Ω(t, w)

where ∂h∂z denotes the (complex) derivative of h with respect to the second vari-
able and h−1 stands for 1/h (not for the inverse function).
Let us fix

(4.6) 0 < α <
π

k − 1 ≤
π

2

such that

(4.7) ([f ′]k−1hf )(R) ⊂ S((k − 1)α)

holds. It is possible because (f ′hsf )(R) is compact and (4.4) holds.
We defineW to be equal to [0, T ]×B(p), where p > 0 andB(p)⊂S(π/(k − 1))

∪{0} is a figure which is bouded by line segments connecting points 0, peiα and
0, pe−iα and the arc between peiα, pe−iα parameterized by

r:
[
− k − 1
2
α,
k − 1
2
α

]
� o �→ p

[
cos
(
k − 1
2
α

)
(1 + i tan(o))

]2/(1−k)
∈ C
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Figure 14. The set B(1) for k = 4, α = π/5.

(cf. Figure 14), where r is such that r(−(k−1)/2α) = peiα and r((k − 1)/2α) =
pe−iα hold.
We parameterize one side of W by function s1: [0, T ]× [0, 1]→ R× C given

by

s1(t, o) = (t, opeiα).

An outer normal vector is equal to n1: [0, T ]× [0, 1] � (t, o) �→ (0, ieiα) ∈ R× C.

We fix p0 > 0 so small that Ξ(s1(t, o)) is defined for every (p, t, o) ∈ [0, p0]×
[0, T ]× [0, 1]. We set p ∈ (0, p0].
The inner product of n1 and the vector field (1,Ω(t, w)) in every point of the

side of W is equal to

〈n1(t, o),(1,Ω(s1(t, o)))〉
=Re

[
Rokpkekiα(−i)e−iα − hs(t,Ξ(s1(t, o)))f ′(t)(−i)e−iα

+ opeiαs
[
h−1
∂h

∂t

]
(t,Ξ(s1(t, o)))(−i)e−iα

− iR(op)k+1ekiαs
[
h−ks
∂h

∂z

]
(t,Ξ(s1(t, o)))

]
≥R(op)k sin[(k − 1)α] +D − opE −R(op)k+1F = (�)

where, by (4.7)

D = inf{Re[ihs(t,Ξ(s1(t, o)))f ′(t)e−iα] : (p, t, o) ∈ (0, p1]× [0, T ]× [0, 1]} > 0

holds for 0 < p1 ≤ p0 small enough,

E = max
{∣∣∣∣s[h−1 ∂h∂t

]
(t,Ξ(s1(t, o)))

∣∣∣∣ : (p, t, o) ∈ [0, p0]× [0, T ]× [0, 1]}
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and

F = max
{∣∣∣∣s[h−ks ∂h∂z

]
(t,Ξ(s1(t, o)))

∣∣∣∣ : (p, t, o) ∈ [0, p0]× [0, T ]× [0, 1]}.
We fix 0 < p1 ≤ p0 such that D > 0. It is easy to see, that (�) > 0 for every
0 < p < min{p1, D/E, sin[(k − 1)α]/F}, so the vector field points outward the
segment W .
Now we parameterize second side of W by function s2: [0, T ]× [0, 1]→ R×C

given by
s2(t, o) = (t, ope−iα).

An outer normal vector is equal to n2: [0, T ]×[0, 1] � (t, o) �→ (0,−ie−iα) ∈ R×C.
The inner product of n2 and the vector field (1,Ω(t, w)) in every point of this
side of W is positive for p small enough. The estimations are similar to the ones
in the case of the side parameterized by s1.
Finally, we parameterize the last side of W by

s3: [0, T ]×
[
− k − 1
2
α,
k − 1
2
α

]
→ R× C

given by s3(t, o) = (t, r(o)).
An outer orthogonal vector is equal to

n3: [0, T ]×
[
− k − 1
2
α,
k − 1
2
α

]
� (t, o) �→ (0, (1 + i tan(o))(k+1)/(1−k)) ∈ R× C

where n3(t, 0) = (0, 1).
We fix p3 > 0 so small that Ξ(s3(t, o)) is defined for every (p, t, o) ∈ [0, p3]×

[0, T ]× [−(k − 1)α/2, (k − 1)α/2]. We set p ∈ (0, p3].
The inner product of n3 and the vector field (1,Ω(t, w)) in every point of this

side of W is equal to

〈n3(t, o), (1,Ω(s3(t, o)))〉

=Re

{
Rpk
[
cos
(
k − 1
2
α

)
(1 + i tan(o))

]2k/(1−k)
(1− i tan(o))(k+1)/(1−k)

− hs(t,Ξ(s3(t, o)))f ′(t)(1− i tan(o))(k+1)/(1−k)

+ ps
[
cos
(
k − 1
2
α

)
(1 + i tan(o))

]2/(1−k)
·
[
h−1
∂h

∂t

]
(t,Ξ(s3(t, o)))(1 − i tan(o))(k+1)/(1−k)

+Rspk+1
[
cos
(
k − 1
2
α

)
(1 + i tan(o))

](2k+2)/(1−k)
·
[
h−ks
∂h

∂z

]
(t,Ξ(s3(t, o)))(1 − i tan(o))(k+1)/(1−k)

}
≥RpkQ−G− pH −Rpk+1J = (��)
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where

Q = min
{

Re

([
cos
(
k−1
2
α

)
(1+i tan(o))

]2k/(1−k)
· (1−i tan(o))(k+1)/(1−k)

)
:

o ∈
[
− k − 1
2
α,
k − 1
2
α

]}
=
[
cos
(
k − 1
2
α

)]2k/(k−1)
> 0,

G = sup
{
|hs(t,Ξ(s3(t, o)))f ′(t)(1 − i tan(o))(k+1)/(1−k) | :

(p, t, o) ∈ (0, p3]× [0, T ]×
[
− k − 1
2
α,
k − 1
2
α

]}
,

H = sup
{∣∣∣∣s[ cos(k − 12 α

)
(1 + i tan(o))

]2/(1−k)
·
[
h−1
∂h

∂t

]
(t,Ξ(s3(t, o))) · (1− i tan(o))(k+1)/(1−k)

∣∣∣∣ :
(p, t, o) ∈ (0, p3]× [0, T ]×

[
− k − 1
2
α,
k − 1
2
α

]}
and

J = sup
{∣∣∣∣s[ cos(k − 12 α

)
(1 + i tan(o))

](2k+2)/(1−k)
·
[
h−ks
∂h

∂z

]
(t,Ξ(s3(t, o))) · (1 − i tan(o))(k+1)/(1−k)

∣∣∣∣ :
(p, t, o) ∈ (0, p3]× [0, T ]×

[
− k − 1
2
α,
k − 1
2
α

]}
.

It is easy to see, that (��) > 0 for every fixed 0 < p < min{p3, J/Q}, provided
that R is big enough, so the vector field points outward the segment W .
Finally, in every point of the sides of W the vector field (1, v) points out-

ward W . Thus W is an isolating segment and, by the Denjoy–Wollf fixed point
theorem, there exists exactly one T -periodic solution ξ inside W . It is asymp-
totically unstable.
If k is even, then it is possible to construct another isolating segment Z such

that in every point of its sides the vector field (1,Ω) points inward Z. We define
Z to be [0, T ]×(−B(p)). We omit calculations since they are quite similar to the
above ones. Hence we get a T -periodic asymptotically stable solution χ inside Z.
Let η be a solution of (4.5) such that η(t) = 0 for some t ∈ (0, T ). Thus

η(τ) ∈ B(p) for every τ ∈ [0, t] and η(τ) ∈ −B(p) for every τ ∈ [t, T ] hold.
Finally, η is heteroclinic from ξ to χ.

If k is odd and the function −[f ′]k−1 ∂kuf
∂zk
fulfils the critical line condition

(2.3), then we make the change of variables (4.3), where s = 1/(k − 1). By hs
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we denote the branch of (k − 1)-th root such that

(4.8) (f ′hsf )(R) ⊂ S
(
− 2π
k − 1 , 0

)
holds. Let us define Z to be the set [0, T ]× ei(k−2)/(k−1)πB(p) where B(p) is as
above. Now (−f ′hsf )(R)⊂S(((k − 3)/(k − 1))π, π/(k − 1))⊃ei(k−2)/(k−1)πB(p).
By calculations similar to the above ones (cf. [29, Section 4]), one can prove that
in every point of the sides of Z the vector field (1,Ω) points inward Z. Thus we
get a T -periodic asymptotically stable solution χ inside Z.

If, additionally, [f ′]k−1 ∂
kuf
∂zk
fulfils the critical line condition (2.3), then we

make the change of variables (4.3), where s = 1/(k − 1). Since [f ′]k−1 ∂kuf∂zk (R)
is a subset of S(0, π) or S(−π, 0), there exists hs the branch of (k − 1)-th root
such that both (4.4) and (4.8) hold. Thus there exist two isolating segments W
and Z, both of them containing exactly one periodic solution. Every solution
η of (4.5) such that η(t) = 0 for some t ∈ (0, T ) is heteroclinic between the
periodic ones. �

Remark 4.3. The above proof is not valid for k = 2. If k = 2, then the
crucial estimation α < π/2 in (4.6) does not hold.

Example 4.4. By Theorem 4.2, the equation

ż = Ru(t, z) = Rie−4it(z − eit)3z2

has at least two 2π-periodic solutions provided that R is big enough. One of
them is asymptotically stable and the other one is asymptotically unstable.
Here f(t) = eit and [f ′]2 ∂

3uf
∂z3 = −6i fulfils the critical line condition (2.3) and

−[f ′]2 ∂3uf∂z3 = 6i also fulfils the critical line condition (2.3).

Now we state the version of Theorem 4.2 for k = 2.

Theorem 4.5. Let T > 0, Ω be an open subset of complex plain, f ∈
C2(R,Ω) be T -periodic, u ∈ C1(R × Ω,C) be T -periodic with respect to the first
variable and holomorphic with respect to the second one. Let for every t ∈ R the
point f(t) be a zero of u(t, · ) of multiplicity 2.
If there exists the decomposition {A, l,−A} of the complex plane such that l is

a line passing through the origin, A is a semi-plane and the following conditions

1 ∈ A,(4.9) [
f ′
∂2uf
∂z2

]
(R) ⊂ A(4.10)
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hold, then the equation (4.1) has at least one T -periodic asymptotically unstable
solution ξ and at least one T -periodic asymptotically stable solution χ and in-
finitely many solutions which are heteroclinic from ξ to χ provided that R is big
enough.

Proof. Our goal is to construct T -periodic isolating segments W and Z
such that W−− consists of the sides of W and Z++ = ∅. Then the existence of
ξ and χ is a consequence of the Denjoy–Wolff fixed point theorem.

Firstly we change coordinates. We do it in exactly the same way as in the
proof of Theorem 4.2 i.e. by (4.3), keeping in mind that k = 2 (because the
multiplicity of the f is now equal to 2) and so s = 1. We write

h(t, z) =
1
2
∂2u

∂z2
(t, z)

where h ∈ C1(R × Ω,C) is T -periodic with respect to the first variable and
holomorphic with respect to the second one. We set hf (t) = h(t, f(t)). By (4.3),
a neighbourhood of f(t) in z-coordinates is transformed into a neighbourhood of
zero in w-coordinates. We denote by z = Ξ(t, w) the inverse transformation to
(4.3). Since the conditions (4.9) and (4.10) are more restrictive then the critical
line condition, (4.3) preserves the T -periodicity of solutions. We fix p0 > 0
so small that Ξ(t, w) is defined for every (t, w) ∈ [0, T ] × B(0, 3p0). We set
p ∈ (0, p0].
Now we apply (4.3) to (4.2) and get

ẇ(t) =Rw2 − h(t,Ξ(t, w))f ′(t) + wh−1(t,Ξ(t, w))∂h
∂t
(t,Ξ(t, w))(4.11)

+Rw3h−2(t,Ξ(t, w))
∂h

∂z
(t,Ξ(t, w)) = Ω(t, w)

where ∂h∂z denotes the (complex) derivative of h with respect to the second vari-
able and h−1 stands for 1/h (not for the inverse function).
Let α ∈ (0, π) be such that l = eiαR. Thus, by (4.10),

(4.12)
〈
ieiα,

[
f ′
∂2uf
∂z2

]
(t)
〉
< 0

holds for every t ∈ R. Moreover, by periodicity of v,
[
f ′ ∂

2uf
∂z2

]
(R) is compact.

We define W = [0, T ]×B(−pieiα, p). Parameterization of its side is given by

s1: [0, T ]× [0, 2π) � (t, o) �→ (t, pieiα(1− eio)) ∈ R× C.

An outward normal vector is given by

n1: [0, T ]× [0, 2π) � (t, o) �→ (0, ieiαeio) ∈ R× C.
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The inner product of n1 and the vector field (1,Ω(t, w)) in every point of this
side of W is equal to

〈n1(t, o), (1,Ω(s1(t, o)))〉
=Re

{
Rp2i2e2iα(1− eio)2(−i)e−iαe−io − h(t,Ξ(s1(t, o)))f ′(t)(−i)e−iαe−io

+ pieiα(1− eio)
[
h−1
∂h

∂t

]
(t,Ξ(s1(t, o)))(−i)e−iαe−io

+Rp3i3e3iα(1− eio)3
[
h−2
∂h

∂z

]
(t,Ξ(s1(t, o))) · (−i)e−iαe−io

}
=Re

{
(−2)Rp2ieiα[1− cos(o)]− h(t,Ξ(s1(t, o)))f ′(t)(−i)e−iαe−io

+ p(e−io − 1)
[
h−1
∂h

∂t

]
(t,Ξ(s1(t, o)))

−Rp3e2iαe−io(1− eio)3
[
h−2
∂h

∂z

]
(t,Ξ(s1(t, o)))

}
= (�)

Let

l(t, p, o) = 〈f ′(t)h(t,Ξ(s1(t, o))), ieiα〉 = Re[h(t,Ξ(s1(t, o)))f ′(t)(−i)e−iα].
Since, by (4.12), l|[0,T ]×{0}×[0,2π) < 0, we get l(t, p, o) < 0 for every (t, p, o) ∈
[0, T ]× [0, p1]× [0, 2π) where 0 < p1 < p0 is small enough. Let us fix such a p1.
Since l([0, T ]× [0, p1]× [0, 2π)) is compact, there exist 0 < δ < π and B > 0 such
that for every o ∈ [0, δ] ∪ [2π − δ, 2π) and (t, p) ∈ [0, T ]× [0, p1] one get

〈f ′(t)h(t,Ξ(s1(t, o)))e−io, ieiα〉 < −B < 0.
Let

K = max
(t,p,o)∈[0,T ]×[0,p1]×[0,2π)

{| − h(t,Ξ(s1(t, o)))f ′(t)(−i)e−iαe−io|},

G = max
(t,p,o)∈[0,T ]×[0,p1]×[0,2π)

{∣∣∣∣(e−io − 1)[h−1 ∂h∂t
]
(t,Ξ(s1(t, o)))

∣∣∣∣},
H = max

(t,p,o)∈[0,T ]×[0,p1]×[0,2π)

{∣∣∣∣e2iαe−io(1− eio)3[h−2 ∂h∂z
]
(t,Ξ(s1(t, o)))

∣∣∣∣},
J = max

o∈[δ,2π−δ]
{Re
[
(−2)ieiα[1− cos(o)]]} = 2 sin(α)[1 − cos(δ)].

Now

(�) ≥
{
B − pG−Rp3H for o ∈ [0, δ] ∪ [2π − δ, 2π),
Rp2J −K − pG−Rp3H for o ∈ [δ, 2π − δ]

and every (t, p) ∈ [0, T ]× [0, p1]. Let

p2 = min
{
1
2

BJ

GJ +H(K +B)
, p1

}
, R0 = 2

K +B
Jp22

.
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So, to (�) > 0 hold for every R ≥ R0, it is enough to find for every such R
a 0 < p ≤ p2 such that the inequalities

B − pG−Rp3H >0,(4.13)

Rp2J −K − pG−Rp3H >0.(4.14)

hold. Given R ≥ R0 we fix 0 < p ≤ p2 such that the formula

R = 2
K +B
Jp2

is satisfied. We claim that (4.13) and (4.14) are satisfied. Let us start with
(4.13). It is easy to see that

B − pG−Rp3H =B − pG− 2 K +B
Jp2

p3H

=B − p GJ + 2(K +B)H
J

≥B − 1
2

BJ

GJ +H(K +B)
GJ + 2(K +B)H

J
> 0

holds. In the case of (4.14) we get

Rp2J −K − pG−Rp3H =2 K +B
Jp2

p2J −K − pG− 2 K +B
Jp2

p3H

=K + 2B − p GJ + 2(K +B)H
J

≥K + 2B − 1
2

BJ

GJ+H(K+B)
GJ+2(K+B)H

J
> 0.

Finally, in every point of the sides ofW the vector field (1, v) points outwardW .
Thus W is an isolating segment and, by the Denjoy–Wollf fixed point theorem,
there exists exactly one T -periodic solution ξ inside W . It is asymptotically
unstable.
By the symmetry of the main part of equation (4.11), i.e. symmetry of Rw2−

h(t,Ξ(t, w))f ′(t), the set Z = [0, T ]×B(pieiα, p) is an isolating segment such that
in every point of the sides of Z the vector field (1, v) points inward Z (calculations
are similar to the above). Thus, by the Denjoy–Wollf fixed point theorem, there
exists exactly one T -periodic solution χ inside Z. It is asymptotically stable.
Every solution which passes through the origin is heteroclinic from ξ to χ.�
Remark 4.6. As in the case of simple zeros (cf. Remark 3.11) it is possible

to state Theorems 4.2 and 4.5 in more general settings. It is enough to assume
that there exists D an open subset of R×C such that v ∈ C(D,C). In this case,
every branch of zeros f must satisfy (t, f(t)) ∈ D for every t ∈ R.

Remark 4.7. If there are more than one branches of zeros satisfying as-
sumptions of TheoremS 3.1, 4.2 or 4.5 we can select a finite number of them
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and then seek for an R big enough to guarantee for every selected branch the
existence of one or two periodic solutions which are close to it. It may not be
possible to use this theorem to detect infinite number of periodic solutions (cf.
Remark 3.13 and Example 3.14).

Example 4.8. Let T > 0. By Theorem 4.2, using the change of variables
from the proof of Corollary 3.5 the equation

ż = u
(
t

T
, z

)
= e−5it/T (z − eit/T )4z2

has at least two 2πT -periodic solutions provided that T is big enough. One of
them is asymptotically stable and the other one is asymptotically unstable. Here
f(t) = eit and [f ′]3 ∂

4uf
∂z4 = −24i fulfils the critical line condition (2.3).

4.1. Special case. In the present subsection we deal with the equation

(4.15) ż = u(t, z) = [a(t)f ′
k−1
(t) + b(t)][z − f(t)]k + c(t)

where n ≥ 3 (the case n = 2 is investigated in [28, Theorem 20]). Here b and c
are treated as perturbations. If they are zero, then the vector u field has a branch
of zeros of multiplicity k.
We state the main theorem in the subsection.

Theorem 4.9. Let T > 0, k ∈ N, k ≥ 3 and a ∈ C1(R,C \ {0}), b, c ∈
C(R,C), f ∈ C2(R,C) be T -periodic. If there exist p > 0 and

(4.16) 0 < α <
π

k − 1
such that the following conditions:

(4.17) a(t) ∈ S((k − 1)α),

(4.18) |f ′(t)|2 sin
[
α− Arg(a(t))

k − 1
]

> p|a(t)|1/(1−k)
∣∣∣∣ 1k − 1 a′(t)a(t) + f ′′(t)f ′(t)

∣∣∣∣+ |f ′(t)||c(t)|,
(4.20) |b(t)| ≤ sin[(k − 1)α]|a(t)||f ′(t)|k−1,

(4.21) pk
[
1−
∣∣∣∣ b(t)

cos((k − 1)α/2)a(t)[f ′]k−1
∣∣∣∣]

> p cos(2+2k)/(1−k)
(
k − 1
2
α

)∣∣∣∣ 1k − 1 a′(t)a(t) + f ′′(t)f ′(t)

∣∣∣∣
+ cos2k/(1−k)

(
k − 1
2
α

)
|f ′(t)||a(t)|1/(k−1)(|c(t)|+ |f ′(t)|)
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hold for every t ∈ R, then the equation (4.15) has at least one T -periodic asymp-
totically unstable solution ξ. Moreover, if k is even, then the equation (4.15) has
additionally at least one T -periodic asymptotically stable solution χ and infinitely
many solutions which are heteroclinic from ξ to χ.
If k is odd and the conditions (4.20), (4.21) and

(4.22) a(t) ∈ Ŝ((k − 1)α),

(4.23) |f ′(t)|2 sin
[
α− Arg(−a(t))

k − 1
]

> p|a(t)|1/(1−k)
∣∣∣∣ 1k − 1 a′(t)a(t) + f ′′(t)f ′(t)

∣∣∣∣+ |f ′(t)||c(t)|
hold for every t ∈ R, then the equation (4.15) has at least one T -periodic asymp-
totically stable solution χ. If, additionally, the conditions (4.17) and (4.18) are
satisfied, then there are infinitely many solutions which are heteroclinic from ξ
to χ.

Proof. The proof follows the line of the proof of Theorem 4.2. First of all
we make the change of variables given by

(4.24) w(t) = a1/(k−1)(t)f ′(t)[z(t)− f(t)]

where a1/(k−1):R→ C\{0} is a continuous branch of (k−1)-th root of a(t) such
that a1/(k−1)(t) ∈ S(π/(k − 1)) holds for every t ∈ R.

The equation (4.15) in the new coordinates has the form

ẇ = u(t, w) =
[
1 +

b(t)

a(t)[f ′]k−1(t)

]
wk − a1/(k−1)(t)|f ′(t)|2(4.25)

+
[
1
k − 1

a′(t)
a(t)
+
f ′′(t)
f ′(t)

]
w + a1/(k−1)(t)f ′(t)c(t).

The change of variables (4.24) preserves the T -periodicity of solutions (see the
proof of Theorem 4.2).

By (4.17), one gets

(4.26) a1/(k−1)(t) ∈ S(α) for every t ∈ R.

Our goal is to construct an isolating segment W such that in every point
of its sides the vector field (1, u) points outwards. The theorem follows by the
Denjoy–Wollf fixed point theorem.

We define a set W , parameterizations s1, s2, s3 of its sides and outward
normal vectors n1, n2, n3 like in the proof of Theorem 4.2.
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The inner product of n1 and the vector field (1, u(t, w)) in every point of the
side of W is equal to

〈n1(t, o), (1, u(s1(t, o)))〉
=Re

[
− ie−iα

[
1 +

b(t)

a(t)[f ′]k−1(t)

]
pkokeikα

]
−Re[−ie−iαa1/(k−1)(t)|f ′(t)|2]

+Re

[
− ie−iα

[
1
k − 1

a′(t)
a(t)
+
f ′′(t)
f ′(t)

]
poeiα

]
+Re[−ie−iαa1/(k−1)(t)f ′(t)c(t)]

≥ pkokRe

[
− ie(k−1)iα

[
1 +

b(t)

a(t)[f ′]k−1(t)

]]
+ |f ′(t)|2|a(t)|1/(k−1) sin

[
α− Arg(a(t))

k − 1
]

− p
∣∣∣∣ 1k − 1 a′(t)a(t) + f ′′(t)f ′(t)

∣∣∣∣− |f ′(t)||a(t)|1/(k−1)|c(t)| = (�).
To see that

Re

[
− ie(k−1)iα

[
1 +

b(t)

a(t)[f ′]k−1(t)

]]
≥ 0

holds it is enough to obtain

Arg
[
1 +

b(t)

a(t)[f ′]k−1(t)

]
≤ min{π − (k − 1)α, (k − 1)α}.

But this is implied by the inequality

arcsin
(∣∣∣∣ b(t)

a(t)[f ′]k−1(t)

∣∣∣∣) ≤ min{π − (k − 1)α, (k − 1)α}
which is equivalent to |b(t)| ≤ sin((k − 1)α)|a(t)||f ′(t)|k−1. The last inequality
follows by (4.20). Thus (�) > 0 provided that (4.18) holds.
Similar calculations show that the vector field (1, u) points outwards W in

every point of the side of W parameterized by s2, so they are left to the reader.
Now we deal with the side parameterized by s3. The inner product of n3 and

the vector field (1, u(t, w)) in every point of this side of W can be estimated by

〈n3(t, o),(1, u(s3(t, o)))〉

=Re

[
(1− i tan(o))(k+1)/(1−k)

[
1 +

b(t)

a(t)[f ′]k−1(t)

]
pk

[
cos
(
k − 1
2
α

)
(1 + i tan(o))

]2k/(1−k)]
−Re[(1− i tan(o))(k+1)/(1−k)a1/(k−1)(t)|f ′(t)|2]

+Re

[
(1− i tan(o))(k+1)/(1−k)

[
1
k − 1

a′(t)
a(t)
+
f ′′(t)
f ′(t)

]
p
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·
[
cos
(
k − 1
2
α

)
(1 + i tan(o))

]2/(1−k)]
+Re[(1− i tan(o))(k+1)/(1−k)a1/(k−1)(t)f ′(t)c(t)]

≥ pk cos2k/(1−k)
(
k − 1
2
α

)
cos4k/(k−1)(o)

·Re

[[
1 +

b(t)

a(t)[f ′]k−1(t)

]
(1 − i tan(o))

]
− |f ′(t)|a1/(k−1)(t)[|f ′(t)|+ |c(t)|] cos(k+1)/(k−1)(o)
+Re

[
cos(2k+2)/(k−1)(o)(1 + i tan(o))p

· cos2/(1−k)
(
k − 1
2
α

)[
1
k − 1

a′(t)
a(t)
+
f ′′(t)
f ′(t)

]]
≥ pk cos2k/(k−1)

(
k − 1
2
α

)[
1−
∣∣∣∣ b(t)

cos((k − 1)/2α)a(t)[f ′]k−1
∣∣∣∣]

− |f ′(t)|a1/(k−1)(t)[|f ′(t)|+ |c(t)|]

− p cos2/(1−k)
(
k − 1
2
α

)[
1
k − 1

a′(t)
a(t)
+
f ′′(t)
f ′(t)

]
> 0,

provided that (4.21) holds.

Finally, W is an isolating segment and in every point of its sides the vector
field (1, u) points outwards. So, by the Denjoy–Wollf fixed point theorem there
exists one T -periodic solution ξ inside W . It is asymptotically unstable.

If k is even, then we prove the existence of a T -periodic asymptotically stable
solution χ and heteroclinic solutions just as in the proof of Theorem 4.2.

If k is odd, then we make the change of variables given by (4.24) and get
(4.25). But this time, by (4.22), a1/(k−1):R→ C \ {0} is a continuous branch of
(k − 1)-th root of a(t) such that

a1/(k−1)(t) ∈ S
( −2π
k − 1 , 0

)
holds for every t ∈ R.

Now we define the set Z ⊂ R × C like in the proof of Theorem 4.2 i.e.
Z = {(t, z) ∈ R × C : z ∈ ei((k−2)/(k−1))ππ2(W )} where π2:R× C → C is given
by π2(t, z) = z. We parameterize sides of Z by s4, s5 and s6, where

sj+3(t, o) =
(
t, ei((k−2)/(k−1))ππ2(sj(t, o))

)
,

nj+3(t, o) =
(
0, ei((k−2)/(k−1))ππ2(nj(t, o))

)
holds for j = 1, 2, 3.
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Our goal is to show that the vector field (1, u) points inward in every point
of the sides of Z. We estimate

〈n4(t, o), (1, u(s4(t, o)))〉
=Re

[
− ie−iαe−i((k−2)/(k−1))π

[
1 +

b(t)

a(t)[f ′]k−1(t)

]
pkokeikαei((k−2)/(k−1))kπ

]
−Re[−ie−iαe−i((k−2)/(k−1))πa1/(k−1)(t)|f ′(t)|2]

+Re

[
− ie−iαe−i((k−2)/(k−1))π

[
1
k − 1

a′(t)
a(t)
+
f ′′(t)
f ′(t)

]
poeiαei((k−2)/(k−1))π

]
+Re[−ie−iαe−i((k−2)/(k−1))πa1/(k−1)(t)f ′(t)c(t)]

≤ pkokRe

[
ie(k−1)iα

[
1 +

b(t)

a(t)[f ′]k−1(t)

]]
− |f ′(t)|2|a(t)|1/(k−1) sin

[
α− Arg(−a(t))

k − 1
]

+ p
∣∣∣∣ 1k − 1 a′(t)a(t) + f ′′(t)f ′(t)

∣∣∣∣+ |f ′(t)||a(t)|1/(k−1)|c(t)| = (��).
To see that

Re

[
ie(k−1)iα

[
1 +

b(t)

a(t)[f ′]k−1(t)

]]
≤ 0

holds it is enough to obtain

Arg
[
1 +

b(t)

a(t)[f ′]k−1(t)

]
≤ min{π − (k − 1)α, (k − 1)α}.

But, as previously, this follows by (4.20). Thus (��) < 0 provided that (4.23)
holds.

Estimations for s5 are similar to the above, so we omit them.

Estimations for s6 are quite similar to those for s3, so also omit them.

Finally, we have shown that in every point of the sides of Z the vector field
(1, u) points inward Z. Thus, by the Denjoy–Wollf fixed point theorem, there
exists exactly one T -periodic solution χ inside Z. It is asymptotically stable.
Every solution which passes through the origin is heteroclinic from ξ to χ. �

Remark 4.10. Combining (4.20) and (4.21) we get

|b(t)| ≤ min
{
cos
(
k − 1
2
α

)
, sin[(k − 1)α]

}
|a(t)||f ′(t)|k−1

instead of (4.20).

Example 4.11. By Theorem 4.9, the equation

ż = −Re2it(z −Re−it)3 + 1
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has at least one 2π-periodic asymptotically unstable solution provided that R
is big enough. Numerical estimations show that it is true for R ≥ 1.65. Here
f = Re−it, a ≡ 1/R, b ≡ 0, c ≡ 1 and we fix α = 0.8, p = √R(R3 sin(α)− 1.01).
Since Arg(a) ≡ 0, the condition (4.22) does not hold, so Theorem 4.9 says

nothing about asymptotically stable solutions of the equation.

Example 4.12. By Theorem 4.9, the equation

ż = (−2e−3it + 1)(z −Reit)4

has at least one 2π-periodic asymptotically unstable solution, one 2π-periodic
asymptotically stable solution and infinitely many ones which are heteroclinic
between them provided that R is big enough. Numerical estimations show that
it is true for R ≥ 8.3. Here f = Reit, a ≡ 2i/R3, b ≡ 1, c ≡ 0 and we fix
α = 0.65, p = 3

√
R5( 3
√
2 sin(α− π/6)− 0.01).

Corollary 4.13. Let T > 0, k ∈ N, k ≥ 3 and a ∈ C1(R,C \ {0}), b, c ∈
C(R,C), f ∈ C2(R,C) be T -periodic. If a fulfills the critical line condition (2.3),
then every of the following equations:

ż = u1(t, z) = [Ra(t)f ′
k−1
(t) + b(t)][z − f(t)]k,(4.27)

ż = u2(t, z) =Rsa(t)f ′
k−1
(t)[z −Rf(t)]k + c(t),(4.28)

ż = u3(t, z) = [Rqa(t)f ′
k−1
(t) + b(t)][z −Rf(t)]k + c(t)(4.29)

has at least one T -periodic asymptotically unstable solution ξ provided that R is
big enough and

(4.30) s > 1− k, q > 0

hold. Moreover, if k is even, then the equations (4.27)–(4.29) has additionally at
least one T -periodic asymptotically stable solution χ and infinitely many solutions
which are heteroclinic from ξ to χ.
If k is odd and −a fulfills the critical line condition (2.3), then every of the

equations (4.27)–(4.29) has at least one T -periodic asymptotically stable solution
χ provided that R is big enough and (4.30) hold. If, additionally, a fulfills the
critical line condition (2.3), then there are infinitely many solutions which are
heteroclinic from ξ to χ.

Proof. By the periodicity of a, the set a(R) ⊂ C is compact, so there exists
α satisfying (4.16) such that (4.17) holds. So it is enough to prove that (4.18),
(4.20) and (4.21) hold.
Let us start with the equation (4.27). We write it in the form

(4.31) ż =
[
ã(t)f̃ ′

k−1
(t) + b̃(t)

]
[z − f̃(t)]k + c̃(t),
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where ã = Ra, b̃ = b, c̃ ≡ 0 and f̃ = f . We fix p = R1/(2(k−1)). It is easy
to see that the left-hand side of (4.18) is positive and constant with respect to
R while the right-hand one is proportional to R−1/(2(k−1)). Left-hand side of
(4.20) is constant with respect to R while the right-hand one is proportional
to R. Left-hand side of (4.21) is positive and proportional to Rk/(2(k−1)) while
the right-hand one bounded above by term proportional to R1/(k−1).

Let us now focus on (4.28). We write it in the form (4.31) where ã =
Rs−(k−1)a, b̃ ≡ 0, c̃ = c and f̃ = Rf . Since

⋃
m>0

((m− 1)(k − 1), (mk − 1)(k − 1)) = (1 − k,∞)

holds, for a fixed s > 1− k we set m > 0 such that

(4.32) s ∈ ((m− 1)(k − 1), (mk − 1)(k − 1)).

We fix p = Rm.

The left-hand side of (4.18) is positive and proportional to R2 while the
right-hand one is bounded above by term proportional to Rmax{m+1−s/(k−1),1}.
Let us notice, that m + 1 − s/(k − 1) ∈ (−m(k − 1) + 2, 2). (4.20) is satisfied
since its left-hand side is zero. Left-hand side of (4.21) is positive and propor-
tional to Rmk while the right-hand one bounded above by term proportional to
Rmax{m,1+s/(k−1)}. Let us notice, that 1 + s/(k − 1) ∈ (m,mk).
Now we deal with (4.29). We write it in the form (4.31) where ã = Rq−(k−1)a,

b̃ = b, c̃ = c and f̃ = Rf . We fix p = Rq/(k−1)+1/2.

The left-hand side of (4.18) is positive and proportional to R2 while the right-
hand one is bounded above by term proportional to R3/2. Left-hand side of (4.20)
is constant with respect to R while the right-hand one is proportional to Rq. Left-
hand side of (4.21) is positive and proportional to Rqk/(k−1)+k/2 while the right-
hand one bounded above by term proportional to Rmax{q/(k−1)+1/2,1+q/(k−1)}.

If k is odd, then the verification of (4.23) is similar to (4.18). �

Example 4.14. By Corollary 4.13, the equation

ż = [R4e4it + 120](z −Re−it)5 + 1

has at least one 2π-periodic asymptotically unstable solution provided that R is
big enough.

By Theorem 4.9, numerical estimations show that it is true for R ≥ 11. Here
f = Re−it, a = c ≡ 1, b ≡ 120 and we fix α = 0.4, p = R(R sin(α)− 1.1).
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