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GLOBAL EXISTENCE OF SOLUTIONS
TO THE NONLINEAR THERMOVISCOELASTICITY SYSTEM
WITH SMALL DATA

JERZY A. GAWINECKI — WOJCIECH M. ZAJACZKOWSKI

ABSTRACT. We consider the nonlinear system of partial differential equa-
tions describing the thermoviscoelastic medium ocupied a bounded domain
Q C R3. We proved the global existence (in time) of solution for the non-
linear thermoviscoelasticity system for the initial-boundary value problem
with the Dirichlet boundary conditions for the displacement vector and the
heat flux at the boundary. In the proof we assume some growth conditions
on nonlinearity and some smallness conditions on data in some norms.

1. Introduction

We consider the following thermoviscoelasticity system

(1.1) uy =dive in QT =Q x (0,7),
0F,
(12) cvﬁt —%Aezey '5t+A€t'€t,

where u = u(x,t) = (uy(x,t),u2(z,t),us3(z,t)) € R? is the displacement vector,
x = (v1,22,73) the Cartesian system of coordinates in R3, t € Ry U {0}, and
A ={Aijri}ijri=123 is the fourth order tensor such that
e — Ae = vtrel 4+ 2pe = {vtred;j + 2ueijtij=1,2,3
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and v, u are the constant Lame coefficients with values within the elasticity
range 4 > 0, 3v 4+ 2 > 0. Then

Agy - ey = 3u(tres)® + 2ueq - &,

where tre = ¢; ; with the summation convention. Next o = {aij}i,j:m,g is the
stress tensor of the form

o oF, O0Fy
(1.3) Oij 661‘3’ + Aeyjt 3€ij + 85ij + Acijt
1 OFy, OF,
€ij = 5(%,1]- + Uja,); B &t = @Eij,m €t & =€yt - g, k=12,

where the summation convention over the repeated indices is assumed.

€ = ¢(u) is the linearized strain tensor, function Fj, = Fy(¢), k = 1,2, will be
specified later.

Using (1.3) in (1.1) we obtain the equation

(14) Ut — div (Aé't) = div (eFl,E + F27€)
which can be written in the more explicit form
(1.5) uy — (Auy + vVdivuy) = VOF, ¢ + 0F) .. Ve + F» .. Ve,

where
(veFl,a)i = ewj Fl,aijv (FS755V8)Z‘ = F375ij5klvj5kl7
for s = 1,2 and we add the initial conditions to the system (1.1), (1.2)

(1.6) ult=0 = ug, Utls=0 = u1, Oli=0 = 0o,
and the boundary conditions
(1.7) uls =0, m-Vl|s=0,

where S = 99, Q is bounded domain in R3.

Before starting the proof we recall the related results in the literature: C.M.
Dafermos (cf. [6]), C.M. Dafermos and L. Hsiao (cf. [7]) and S. Jang (cf. [14])
proved the global existence of a classical solution to the system (1.1), (1.2) in
the one dimensional case with a stress free boundary conditions at least at one
end of the rod. The asymptotic behaviour of smooth solutions as time tends to
infinity has been investigated in T. Luo’s thesis (cf. [16]) for a special class of
solidlike materials in which e = ¢, 0, where e is the internal energy, and F; = 0.
R. Racke and S. Zheng (cf. [21]) investigated the global existence, uniqueness and
asymptotic behaviour of weak solutions for the model in shape memory alloys
also with a stress-free boundary condition at least at one end of the rod. In all
of these papers, a variant of Andrew’s technique used by C.M. Dafermos (cf. [6])
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and R.L. Pego (cf. [20]) was crucial to obtain an uniform a priori estimate on
L norm of u.

However, this technique does not apply to the case where both ends of the
rod are damped. Thus the problem of global existence and uniqueness of classical
solutions for the case in which both ends of the rod are changed remained open
for about 10 years until the paper by Z. Chen and K.H. Hoffman (cf. [5]). We
should mention that in the paper the estimates for solutions depend crucially on
at least H'-norm of the initial data of u.

As a result their techniques is not applicable to the problem with ug € L.
So, Z. Chen and K.H. Hoffman (cf. [5]) applied new techniques and more delicate
estimates to obtain the global existence and uniqueness of the solution of (1.1)-
(1.2) in the one-dimensional space with boundary conditions 8, = 0 for x = 0,1
and v = 0 for z = 0,1 and initial conditions wu|i=g = wg, v|t=0 = vo, O|t=0 = 6o
with assumptions ug € Lo, ug € HY, 6y € H', with 6 > 0 for x € [0,1].

Concerning the model in shape memory alloys, we refer to M. Niezgddka
and J. Sprekels [18] for the local existence of solutions in the weak sense. After
that paper uniqueness and global existence where proved by K.H. Hoffman and
S. Zheng (cf. [12]) and by M. Niezgédka at al. (cf. [19]). We also refer to
M. Sprekels, S. Zheng and P. Zhu (cf. [25]), and K.H. Hoffmann and A. Zochowski
(cf. [13]) for the global existence results for the model with shape memory alloys
with the Helmholtz free energy density as the potential of Landau—Ginzburg
form. Sprekels et al. (cf. [25]) obtained results on asymptotic behaviour of
solutions for the Landau—Ginzburg model in shape memory alloys.

We should also mention G. Andrews (cf. [1]), G. Andrews and J.M. Ball
(cf. [2]) and R.L. Pego (cf. [20]) for the purely viscoelastic case.

It should be emphasized that in all those papers the considered system of
equations (1.1)—(1.2) is one-dimensional.

Among the paper devoted to nonlinear thermoviscoelasticity in the three-

dimensional space we mention some of them below.

The global in time existence of small solution of non-linear thermoviscoelastic
equation was proved by Y. Shibata (cf. [23]) under special assumptions about
nonlinearity. J.A. Gawinecki proved (cf. [10]) the global existence of solutions
for non-small data to non-linear spherically symmetric thermoviscoelasticity in
the three-dimensional space. In the proof he used the method of Sobolev spaces,
method of successive approximations and new techniques implying approximate
estimates enough to deduce global existence.

The aim of our paper is to prove global existence of solution to the thermovis-
coelasticity system (1.1)-(1.2) with small data in the fixed domain Q C R3 by the
method of succesive approximations and the method of energy estimates which
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give us a possibility to extend the solution to the interval [0, +o00]. Since equa-
tions (1.2) and (1.4) are parabolic we use the theory of parabolic initial-boundary
value problems developed in the anisotropic Sobolev spaces with a mixed norm
(see [8], [15], [24]). The spaces with a mixed norm imply more possibilities in
deriving necessary estimates guaranteeing existence of solutions to the consid-
ered problem. The time traces of elements of such spaces belong to some Besov
spaces (see Lemma 1.3). Below, we describe more precisely our result.

We are interested to prove the existence of global solutions for small displace-
ments and variation of temperature. Therefore we introduce some equilibrium
temperature 6, = const. and examine the variations

(1.8) 0=0-0..

Then @ is a solution to the problem

(1.9) col; — N0 = OF1c-ct+ Ay - &4
and
(1.10) Ol—0 =6y, 7-Vl|g=0.

For solutions to the above problem we have the conservation of energy

d ~
(1.11) —/[uerc,,GJng(s)] dz = 0.
dt Jo

Integrating with respect to time yields
(1.12) / [uf + ol + Fg(s)} dx = / {u% + coby + Fa(eo)| dz = aq,
Q Q

where g9 = e(ug).
We assume the following growth conditions:

(1.13) c1lel” < Fa(e) < ealel?, Fi(e) < csle|?°,

where o > 1, 09 > 1, ¢;, t = 1,2, 3, are some positive constants.
Now we formulate the main results.

THEOREM A (local existence). Assume that ug,uy € Bﬁ;ﬁ/p‘)(ﬂ), 6=0-0,
in Bg;f/qo (Q), uo € W2(Q), where 0, is a constant which should correspond to

some equilibrium temperature and

Let

D = [uoll gz—2/v0 () + lusll g2—2/v0 () + 100l g2-2/00 ) + Iuollwz(e)-
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Then there exist a constant ¢; and T sufficiently small (see (2.3)) that there exists

a solution to problem (1.1)~(1.5) such that u,u; € W) (QT), 0 e W2 (QT) and

X(0.7) = lullwzs qry + luelwzs qr + [llyzs qr) < 20D = A

THEOREM B (global existence). Let the assumptions of Theorem A hold.
Let D be sufficiently small. Let |F;(e)| ~ [¢]>T%, § > 0. Let F .., i = 1,2, be
Lipschitz continuous. Then there exists T sufficiently large such that

[u(kT) lwz @) + lu(kT) | g2-2/v0
+ ”ut(kT)HBg;z/PO(Q) + He(kT”'Bg:][?)/QO(Q) <D

for any k € N where v(kT) = v|i—rr. Moreover, there exists a global solution to
problem (1.1)—(1.5) such that
uyu € W2L(Qx (kT (k+1)T)), 0 W2L(Qx (kT (k+1)T))

Pp,pPo 9,90

for any k € Ng = NU {0} and, for any k € Ny,

X(KT, (k+1)T) = HUng;;O(Qx(kT,(k+1)T))

Flluellwz et xwr ernymy T 10wz @xgrernmy) < A

s

In this paper we prove the existence of global regular solutions to problem
(1.1)—(1.3), (1.6), (1.7). We prove Theorem B under strong nonlinearity of the
stress tensor with respect to strain. We need that

(1.14) Fi(e) ~ [e]**?, §>0,i=1,2.

Then we show the existence of solutions with small displacement and small vari-
ation of temperature near some given constant equilibrium temperature. The
proof is divided into two steps. First we prove the existence of local solutions
by the method of successive approximations. In the second step we assume that
D (see Theorem A) is sufficiently small. Then by D small we can choose that
T (the time of local existence) is sufficiently large (see (3.2)). For D small, T
large and thanks to (1.14) we are able to prolong the local solution step by step
in time up to infinity (see Theorem B).

The proof of global existence of solutions in the case |Fy(¢)| < clg]?, 0 < 2
must be performed in a different way because some decay type estimates must be
proved. This will be a topic of the next paper. Moreover, the case of nonvanishing
stress tensor with vanishing strain needs also another approach.

Finally, we introduce some notation and recall some auxiliary problems.
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DEFINITION 1.1 (see [3]). By W2kk(QT), k € NU{0}, p,po € [1,00], we

denote a closure of C*°(Q7) functions in the norm

T po/p  71/po
lullyzsrory = D [/O (/Q|Dgagu|pdx> dt] :

|a|+2a<2k

DEFINITION 1.2 (see [3]). By Besov space B,

we denote a set of functions with the finite norm

||Am L(Q) 1/po
lallzy (@ = Iz, (Z / K an)

where m > A —1 > 0,1 < [\, m,l € NU {0}, A¥(h)u(x) is a finite difference
of the function u = u(x) of the order k with respect to z;:

( )7 A € R-l—a PsDo € [1300]7

Aj(R)u = Aj(B)u = w(@y, ...,z + b, Tig1, ... 2n) — w21, ..., Tn),
AF(h)yu = Ay(R)A Y (h)u, keEN,

and x + h € Q.

The norms of Besov space B}, () are equivalent for all m,l € N U {0}
satisfying m > A —1> 0.
We need

LEMMA 1.3 (see [4], [17], [24]). Let u € Wi/ x Ry), p,po € (1,00).
Then u(z,to) = u(z,t)|i=0 € B;,f,;f/po(Q) and
(115) ”u( ’ ’tO)HBg;g/pO(Q) < CHUHW;%‘O/Z(QXR_*_)a

where ¢ does not depend on w. Moreover, for a given v € B,]f,;(?/po (Q) there exists
a function v € W;ﬁ,m(Q x Ry) such that v(x,t)|t=t, = v(z) and
(1.16) 19l 22 0cmy) S eVl gisaron oy

where ¢ does not depend on v.

Let us consider the problem
—Qu=/f inQ7,
(1.17) u=0 onST,
ulg=o =up in Q,

where S = 9Q and Q = pAu + vVdivu where g > 0, and 2u + 3v > 0 are

numbers.
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LEMMA 1.4 (see [8], [15]). Assume that S € C?%, f € Ly, (Q7), ug €
Bg;?]/po (), p,po € (1,00). Then there exists a solution to problem (1.17) such

1 (T
that w € W2, (Q7) and

(1.18) g ry < (1A, po@m + ol g2z g ):
where ¢ does not depend on u, f,ug.

The constant ¢ in (1.18) does not depend on T'. For T large we use the results
of V.A. Solonnikov [24] and N.V. Krylov [15] and obtain estimate (1.18) with
a constant ¢ = ¢(T') increasing with 7. But for solutions to problem (1.17) we
have the energy type estimate

t
0o+ [ 1oy @ < (111 ary + ol o)

where ¢t < T and with the constant ¢ independent of 7. Then applying the
W. von Wahl [26, Chapter 3, Theorem 3.1.1] technique we show that ¢ in (1.15)
is independent of T" for T" > 1.

For T' = T, small we extend f by zero for ¢ > Ty up to t < T,. Then we
obtain (1.15) for T' = T,. Restricting (1.18) to interval (0,7p) we obtain (1.18)
with ¢ independent of T

Now we recall necessary for us theorems of imbedding for anisotropic Sobolev
with a mixed norm and Besov spaces.

LEMMA 1.5 (see [3, Chapter 3, Section 10]). Assume that u € W2 (QT),

Q C R? satisfies the cone condition, p,po,q,qo € [1,00],
3 2 3 2\ 1

x = <a|++)§1

P o 4 4o/ 2

and for x =1 either l <p=qg < oo orl < pyg=qy < oo, and either 1 < p <
q< oo orl<py<qy< oo, and either 1 =p < qg=o00 or1l =py < qgg = .
Then D%u € Ly 4,(Q7) and there exist numbers ho and c such that

(L19) [|Dgulz, , @r) < b~ ([02ullL, ,, @r) + [Octl, ,, 0r))
+ ch™ " ullp, , @7),

where h € (0,ho) and Dy = 031092052, o = (1, v, v3) is a multiindex, a; €

Nu{0},i=1,2,3, |a| = a1 + az + as.

LEMMA 1.6 (see [3, Chapter 4, Section 18]). Letu € By (), 0 € Ry, p,0 €
[1,00], QCR3. Let3/p—3/q+|a| <o and let either § =1, 1 <p < q< oo
or1<60<gq,1<p<qg<oo. Then Dfu € L,() and there exists a constant c
independent of u such that

(1.20) 1D%ul 0 < cllullpz -
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The constant ¢ in the first part of Lemma 1.3 might depend on T if u €
W21 (QT). In this case (1.15) takes the form

P;pPo

(1.21) b Ol gz 20 ) < elllhz, o)

Passing with 7" — 0 in (1.21) we see that the constant ¢ should blow up.
To omit the difficulty we assume that u is a solution to the problem
u —Au=f inQ7,
(1.22) uls =0 on ST,
u|t=0 = Up in Q.
Problem (1.22) is a model problem so it could replace any parabolic initial-
boundary value problem appearing in this paper.
LEMMA 1.7. Assume that f € L, ,,(Q7), uo € 32;3/”0(9), p,po € (1,00).
Then for solutions to problem (1.22) the following inequality holds:

(128 s [l oy < Iz @)+l sz e

where the constant ¢ does not depend on T.

Proor. Extending f by zero for ¢ > T we can consider problem (1.22) in
Q x R4. Applying Lemma 1.4 to problem (1.22) we get

(124) Hu||W2,1

sty @iy < (I g0 + ol sy )
< (1512 pp 0 + 0l =200 g )

where ¢ do not depend on T'.
In view of the first part of Lemma 1.3 we have

(125)  u(®)lge 2y < elullz, @)
< C(”f”Lp,pO(QT) + ||u0||B§;i/DO(Q)>7
where ¢ € (0,T] and ¢ do not depend on T'. Continuing, (1.25) yields

(1.26) teS(%I,DT] Il gz-20r0 ) < C(||f||Lp,pO(QT) + ||U0||Bg52/po(9)),

where ¢ does not depend on T'.
From (1.22); we have
(1.27) £y 0m) < Nl o
Hence (1.26) and (1.27) yield (1.23) and proves the lemma. O

By ¢ we denote the generic constant which changes its value from formula
to formula. By ¢ we denote the generic function which is always positive and
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increasing function of its arguments which might change its form from formula
to formula.

2. Local existence

To prove the existence of local solutions we use the method of successive
approximations described by the following system of problems:

uz—i—l - QU?J’_I = vanFLe" + (enFl,E"E" + F2,£”5")V5na

n+1 o
U |t:0 = Uop,

(2.1) up im0 =,
u"g =0,
u’ =wug, " =¢e"), Q= pA+vVdivv
and
ol — AP = 0"y el 4+ AT - €T,
(2.2) 0"+~ = bo,

mn- V§n+1|s =0,
0° = 6.
First we obtain an uniform estimate for the sequence {u", 5”}

LEMMA 2.1. Let us assume that

up € B22/70(Q),  wy € B2 YP(Q), 6y € BZY0(Q), u € W2(9),

and that u®, uf, 60 are extensions of ug, uy, 50 such that (see Lemma 1.8)
”uO”Wi’;D(QT) < CHUOHBi;i/PO(Q)’
lebllwzs, o) < cllunll gz 2im gy

16% 2.1

21, @r) < cllboll gz-2/u0 -

Let us assume additionally that 3/q +2/q0 < 2, 3/p+ 2/po < 1 and 0,00 in
(1.13) are not less than 2+ 3, 6 > 0. Then there exists a constant A such that

ez, @r) + leallwzg, r) + 16wz o) < 4,
e1(Do + D1) =1 (o] a-2/00 gy + 1t =700
o W0l =00 gy + olwzcen ) < 4,

where ¢y is some constant, Dy = |luolwz(q), Do is defined from the above identity
and the time T is such that

(23) (p(TaA, Do)TaA + (p(TaA, Do)Ta(DO + Dl) + C1 (DO + Dl) S A,
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where a > 0 and ¢ is a generic function which is an increasing positive function.
Then, for any n € N,

(2.4) 1™ lwzg, @) + 1t lwz g or) + 10"z o) = A

We have to mention that D = Dg + D, is introduced in Theorem A.

PROOF. Applying Lemma 1.4 to problem (2.1) yields
25) i lyzs or) < (102 en ., 0m)
/(0" Fr v + Brenen)VE" I, o c0m + il =270 )
and to problem (2.2) we get
(2.6) 1 iz, ory < (10" Frene? e, ,, 0
1718, g )+ 100 22700 g )

In view of the growth conditions (1.13) inequalities (2.5) and (2.6) assume the

form
@7) iz, @) < (102117 g, 0r)
n|, n|oco—2 n|o— 2

O i, gy il g2y )
and
28) 10wz ) < c(10 17 i, 0

1211, ) + 10l =200 g )

Estimating the r.h.s. of (2.7) we get
(2.9) Hut+I||W21

P,pQ

-2
(16" | ziom W21y + 1S 20 ) e 2, 0m)

@) < 7 182, o

+ CH’U,l ||32;i/130 Q)
and estimating (2.8) yields
0 1
(2.10) ||0”+1||Wq2quo(QT) <0l Iz 172 orylluzell L, o0 )
2
+ c||u:t||L2q12q0 (Q7) + c||00||33:43/q0 Q-

From the definition of 6" we have

0" =" 16,
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which, by Lemma 1.6 for 3/¢ < 2 —2/qp and Lemma 1.7 applied to problem
(2.2) for n, implies

(2.11) 16" ]2 0my < SUP 107 22700 ) + [0l
§C<||‘9n||wg;;o(m) + ”90”3353/“0(9)) + 10l

where ¢ does not depend on T and

3 2
(2.12) -+ — <2
q 4o

Moreover, we need

t
21 o qom) < swp oy < wp | [+ 0,00
0

Loo(9)

t
< sup / el e 2+ ol
t<T Jo

t
< n ! _ =
_C<fgg/0 [uflw2(a) dt’ + ||U0||Bg,p3/po(9)> I

where we used the imbedding D¢W?2(€) C Loo(£2), |a| = 1, and Lemma 1.6 with

3 2
(2.14) -<1l—-—<1
p Do

By the Holder inequality we have

I< c(TH/”OII"uZ‘IIWg;;0 @) + ||“0||B§;3“’°<Q>)'

By Lemma 1.5 and the Hoélder inequality we obtain

(2.15) luzellz, o0 @1) < c||u?||W§;, @7y < cTY/Po—1/po Hu?‘|W5’;0(QT)7
o
where
3 2 3 2
(2.16) —+——-——=<1, p,<po
P Do q q0
and
217) Nty g < el or) < TVl o,
o

where Lemma 1.5 was employed with the restriction

3 2 3 2
(2.18) S+ -

<.
PPy 20 2qo
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In view of the above estimates and since T is assumed to be considered small we
choose a as a smallnest exponent of 7" and obtain from (2.9) the inequality

(2.19) 110" Iz q@r)
< @(T“HG"HW%O(QTV T“||U?ng;;o(m)’ DO)TEL”u?”Wi’io(Q)

+ CHQOHBg;g/QO Q)

where ¢ is an increasing positive function of its arguments which is a generic

function and

(2:20) Do = |luoll g2-2/v0 (g + lunll 22700 ) + ||§0||B§;1§/qo(9)-
Introducing the quantity

(2.21) AnlT) = [z + 2 s ey + 10l

we express (2.19) in the form

(222) 16" w2, ey < @(T* A, Do)T™ Ay + eDo,

where o(X,Y) ~ a1(X +Y)° "2 4+ a3(X + Y)?°"2 and a;, i = 1,2, are positive

constants.
Using (2.11), (2.13) and (2.22) in (2.9) yields

(2:23) Jlug ™z o) S@(T“AmD0>Ta(||“?||w5:;0(w> + ”50”33,;3”0(9))
+ (T An, Do)l[ugelle,, @) + clluall gz—2/m0 g
where a > 0 and ¢ is the generic function. Moreover, we have
(2.24) [lu™ oz ey ST s o) + 77 fugllwz o)
<(T"Ap, Do)T*+* (Hu?HWg:;O(QT) + H(%HB%/% (Q))

+Tp(T* Ay, Do) |lu"|| 2.

270 (27)

+ Do + TP |lug|lwz (@)

Now, we examine the second term on the r.h.s. of (2.23). We have

T 1/170
L P O A B
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But u™(t) = fot ulkdt’ 4+ ug, so ull,(t) = fot ul o dt' + uggy. Then

T Po 1/po
(2'25) ”uZzHLp-,Po(QT) - </0 )dt>

Lp(9

T t 1/po
= Uo (/0 et 17 @) dt'*“m”ﬁ(m) dt}

< T/ (”uth’ Iz, ., @) + ||Uo||Wg(Q))'

t
n !
/ Unpppr AL+ Uz
0

Using (2.25) in (2.23) yields
(226) 4 yyap ory <@(TAn, DT (s s @) + Do)
+ (T An, Do)TV™ (I 2. oy + D1 )
where a > 0 and
(2.27) D1 = [luollwz(e)-
From (2.24) and (2.26) we have
228) 0™ 2y @) + 6 2 on

< (T A, DO)T* (a2, @iry + I w2, or)
+ (p(TaAn, Do)Ta(DQ + Dl) + C(D() + Dl).

Using notation (2.21) in (2.28) yields

275

(229) An+1 S (p(T’az4n7 Do)TaAn + (p(T’az4n7 Do)(DO + Dl)Ta +c (DO + Dl)

By the zero approximation we denote extensions of initial data such as (see

Lemma 1.3 part 2)

u®llyy 2.

P,p0 (QT) < CH’U’OHBZ;%“DO @)’

0

(2.30) [[ui ng;go(m) < C”“lHBﬁ;i/””(ﬂ)’
||00||W(12,’¢110(QT) < CHQ()”BE;IE/QO Q"

Then

(2.31) Ag = [|u°[| 2.

0 50
21 ar) HU1||W§;;0(QT) + 1|6 \|W§;;O(QT)~

Let A be a constant such that
(232) Ag < A, Cl(DO + Dl) < A.
Let

(2.33) A, <A



276 J.A. GAWINECKI — W.M. ZAJACZKOWSKI

Then there exists T sufficiently small such that
(2.34) O(T*A, Do)T*A+ p(T*A, Do)T*(Do + Dy) + c1(D + Dy) < A.
Hence, (2.34) implies
(2.35) Apt1 < A
This concludes the proof. O

To show convergence of the sequence {u", 5”} we introduce the differences
(2.36) U™ =u"—u""t 9" = gr— gt =g — g, Er =gt et
which are solutions to the problems:

U™ = QU =00 Fion — 07 Fy cna

+ (enFLEnEn + FQ’EnEn)VSn

(2.37)
— (0" Fy cnron1 4+ Fy pne1on1)VE" L
Utlmo =0, U0 =0, U""'|s=0,
and
oW — A9 ="y nel — 0" ) nae) !
(2.38) + (Ael el — Aept g7 hy,

19"+1|t:0 =0, n- V§"+1|5 =0.

LEMMA 2.2. Let the assumptions of Lemma 2.1 be satisfied. Let 3/p+2/po <
1,3/¢+2/q0 <1, qo > po. Let F; ., i = 1,2, be Lipschitz continuous. Then
(239) Yn+1 < (p(A, Do,Dl)TaYn, a >0,
where

Yo = 10U w2 @ry 10wz ory + 19" w2 ory-

PROOF. To prove the lemma we express the r.h.s. of (2.37); and (2.38); in
terms of differences U™, ™. Then problem (2.37) takes the form
UMY — QU =97 Fy cn 4+ 077 F) cnen £ + 0" Fy gnone?

(240) + en_l(Fl’EnEn — FLEn—lEn—l)EZ + en_lFLEn—len—lgg
+ (FQ,E"E” — F27€n—18n—1)61; + FQ)EW,—lgn—lg;l,
Un+1|t:0 = Oa Utn+1|t:0 = 07 Un+1|5' - Oa
where F; .., i = 1,2, are Lipschitz continuous. Similarly,

clﬁfﬂ — AP =0"F) on - €f + 9”_1F1’6n5n5[b

(2.41) F OV 1 E 4 (AEPER + Al TIED),
"o =0, m-VI"Tg =0,
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where 1317EE (), € € (e"1,e") is calculated by the mean value theorem.

In view of Lemma 1.4 solutions to problem (2.40) satisfy the inequality

(242) U wza ry < @A) 193, @) + U], ,, 1)

+ [ 9™ [ug | ||Lp,p0(QT) + [ Uz | |, | ||Lp,p0(QT) + ||Ug?x||L,,,pO(QT)],

where we used that
3 2
-+ —<1
q Qo
To estimate the r.h.s. of (2.42) we need the following imbeddings (see Lemma 1.5)

3 2 3 2
n < a||.qn et - _ =
19212y po0m) < TN lwig @ry 5+ 0 =5 50 <1
3 2 3 2
a| 7N A
H p HLp 2o (27) <cI ||U ||Wp2:;0(QT), ;74‘ }70 — 5 - ]TE) <1, py > po-

The third integral on the r.h.s. of (2.42) we treat in the following way

t
V9 ez, 0y < Hm ( [ e+ u0m|)

Hw / | dt 19 fagwal 1z, e
Ly, py (2T)

Po 1/po
< ([ 11| [ Wt sy
T 1/po
(17 el o
T t 1/po
< ([ 1 [ o )
T 1/po
+||u0mLp(Q)(/ ||19n||p0 Q) >

< (T 2

p,PO

Lip,po (2T)

@ry T ||Uo||Wg(Q)) 19" 2, (0.7 Low (22))

STl/PO*l/qo(Tl 1/pOA+Dl)H"gnHqu(O,T;Wq?(Q))a

where we assumed that go > po, 3/¢ < 2 because the imbedding ||9" ||z _ (o) <
19" [lwz(q) is used.

The fourth integral on the r.h.s. of (2.42) we estimate as follows

t
VU] ] 1z, ry < H|U:|( [ el ar + |u0m|)

T ) t 1/po
< ||Un||L Q) tpo_ [ ||1£0 Q) dt’
O P

Lip,po (27)
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1/po

T
+ ||u0mLp(Q)(/0 IUZIE o dt)

T 1/p0
< (T g o + oz ) ([ 1021 )
N 0 oo

1/po
SC(A + Dl

~—

T
(08I 0 + /I, ) ]

t Po 1/po
/ Uy dt’ ) dt}
0 Lp(Q)

T t
| (wnit e + v [0z o i ) @l
< (A4 Dy)(e + elL/T YT s )
< C(A + Dl)Ta”UnHW}?;;O(QT)y

f;C(14 %—1)1

~—

T
L (eI o + e

1/po
f;(i14 +—l)1

~—

where a > 0, 3/p < 1 because we used the interpolation
[uallpw @) < ellullwz) +c(1/e)|ullz, @

and ¢(1/g) ~ e~ b > 0.
Finally, we examine the last norm on the r.h.s. of (2.42),

t
02y o, = | [ U2t < TPy

Lp,po (27)

Finally, from (2.42) we obtain
(2.43) U w2 @ry Scp(A,D1)T“[||19"||quy,qlo(97)
F I sy + 107 gz am ]

where we assumed 3/q +2/q0 < 1, p > 3, go > po, ¢ > 3/2.
For solutions to problem (2.41) we get

(244) [0 Iz @ry < @(A, D, D) 119" [uy] Iz, @)
T2 g0 + 1 U 1y g 0 -
We estimate the first norm under the square bracket by

[ 19" Juge] |2,y o 0y S N9 M2, 4 27 s1t1p el Lo ()

t
/ 9 dt’
0 Lg.q0(Q7)

<p(4, Do,Dl)Tqu?n”qu:qlo(QT), a>0,

< o _
= S%p ||ut ||B§,pz/l”0 (Q)

where we used that ||u.|/1_ () < c||u||3272/p0(9) which holds for 3/p+2/pg < 1.
P,PO
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The second norm under the square bracket in (2.44) we estimate by

Uz gy @) < TP PR 21 s

where 3/p+2/pj —3/q —2/q0 < 1, p, < po.
Finally the last norm under the square bracket on the r.h.s. of (2.44) we
estimate by

e 105 gy ) < 80P [ e @ Ui 00)
< (A, Do, D1)TV/P =20 | U™ [ 2 ),

where Lemma 1.6 for the first factor and Lemma 1.5 for the second factor were
used.

Using the above estimates in (2.44) yields

(2.45) HﬁnJrlHWqQ;qlo(QT) < (A, Dy, D1)Ta<||19n‘|qu;;0(QT) + ||Un||W§;§0(QT))~

Finally,

po\ 1/po
) < TNV w2 @ry:

T ¢
210) 10"z ary < ([ ] [ 10211000
From (2.43), (2.45) and (2.46) we obtain (2.39). O

From Lemmas 2.1 and 2.2 we have

LEMMA 2.3. Let the assumptions of Lemmas 2.1, 2.2 hold. Then there exists
a solution to problem (1.1)—(1.5) such that

we W2 T, e W2 (@QT), 6wl

P;Po P;Po 4,90

and
(2.47) X<A

where X = lim A,, and A,, is defined by (2.21).

n—oo

3. Global existence

First we prove a long time existence of solutions to problem (1.1)—(1.5). For
this purpose we have to obtain the estimate in Lemma 2.3 for large existence
time T'. Let us consider inequality (2.3). Let T" be fixed.

Setting A = 2¢1(Do + D1) and using that p(X,Y) > |X| + |Y]| we see that
(2.3) is satisfied if

(3.1) T?*(Do + D1)** < (Do + Dy)
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Hence

[ 1
. LRy .
(3.2) T < N a>0

For Dy + D; small the existence time T can be chosen large.
We have

LEMMA 3.1. Let the assumptions of Lemmas 2.1 and 2.2 hold. Then there
exists a solution to problem (1.1)—(1.5) such that

3:3) X(0,T) = |lullwzy @y + llullwza @ry + 10wz @)
S Cl(Do + Dl) = ClD,
where T is described by (3.2).

To prove global existence we obtain estimate (3.3) for X (kT, (k+1)T), k € N,
where

(34)  X(KT, (k+1)T) = llullwz1 @xwr,(b+1)1))

+ ||“t||W§;;O(Qx(kT,(k+1)T)) + H9||W§;;O(Qx(kT,(kH)T))'

LEMMA 3.2. Let the assumptions of Lemmas 2.1 and 2.2 hold. Assume that
D s sufficiently small and T is sufficiently large (see (3.2)). Then

X(kT,(k+1)T)<ec1D  for any k € NU{0}.

PROOF. For this purpose we introduce the cut-off smooth function such that

1 fort > 2t0,
() =
0 fort <tp.

Introducing the functions
(3.5) a=ul, 0=0¢ a=(u(),,
we see that they are solutions to the problems

Ty — Qy = 0, F1 o + (0F1 oo + Fo .)Ve(@) + 2uiCy + ul o — Qués,

(3.6)

Uli=0 =0, TUtl=0 =0, uls=0
and
(3 7) Cogt — %Agz (GFLE . €7t =+ Aft . Et)c =+ Cvgctv

i =0, 7-VO|s=0.
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Now, we obtain estimates for solutions to problems (3.6) and (3.7). For solutions
of (3.6) we have

(3-8) Hﬂt”Wiﬁo(QXRto,‘o‘to) < C”oxFl,e”Lp,po(QxRtO,mo)
+ cl(0F1 e + Fee) Uzl L, 0 xRy 500) T CNWtCellL, by (xR 500)
+ clluGellL, o (xRey 500) T NQUGI L, o xRy 510)5

where Ry, 1, = {t e R: t; <t <o},
The first term on the r.h.s. of (3.8) is estimated by

-1 3 -1 7
clluz ||ZOOO(QX]Rt0,3t0) ||996||Lp,p0 (2XReg 3t0) = CH“”;S;,;O(QxRtOmO) ||9||W2’1110(Q><Rtoygt0)’

q,

where to use Lemma 1.5 we assumed that

3 2 3 2
(3.9) -+ —<1 —-+—x<1
P Po q 9o

The second term by

-2 -2 _
(102 (xR o 00 1y ey 015 Ry ) ) 1T 1,y (¢ Reg )

0’072 o—2
< (H9||W§;E}O(Q><Rt013to)||UHW§:;0(QxRtoy3to) + [Jul Wgr,;o(ﬂxRtomo))
) IIE\IW,;;;O(WR%W,

where Lemma 1.5 with restrictions (3.9) was again used.
Finally, the last three norms on the r.h.s. of (3.8) we estimate by

C C
o (el 1y 0521 ) 100 e w92 ) < o Ml 21

where we assumed that to > 1.

Summarizing, we obtain from (3.8) the inequality
(310) 1Tl (i ) < P10, @xmeg )
= o &
(1812, 0B 000 + W2 s )) F 3 T2y )

where ¢ is a generic function such that ¢(Z) < ¢|Z|°, where § > 0.
For solutions to problem (3.7) we obtain

(3.11) H9||W§;q10(9x]1§t0,3,,0)
1 —
S CHG”Loo(QXRtO,Sto) ||’U,H;25:;0 (QXRtO,gtO) ||€t||Lq'qO (QXRtO"Bto)

_ C 7
+ CHst||L2q,2q0(QXRtO,3tO)||€t||L24,2qO(QXRt0,3tO) + %HGHL%QD(QXRtO,ztO)

0’071
= C(HGHW;;O(QXRM«MO) ”uHWz?fp}o(QXRtoﬁto)

_ C 7
+ HutHWE,‘EO(QXRtD,mOD ||u75||W2’1 (2xReg,3t0) + %HHHLq,qo(QXRto,?to)'

P,Po
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From (3.10) and (3.11) we have

B12) [uellwz @xRigae) T 10wz @xrug arg)
S QP(HUHWS;O (SﬁlX]Rtoﬁfo)7 ”ut”WI?:;;o (QXRf«oﬁto))

(1822 @k g + T2 xRag ey 1Tl 2, (xRag ) )
C

+ (Ilullwg;;o(m,,o,zto) + HHIIW;:;O(MtO’mDO

where ¢ is the generic function such that
(3.13) ©(Z1,Z) < (| Z1] +|Z2|)°,  where § > 0.

Finally, we prove the global existence. Let T' = 3tg. Let (3.3) hold. Then
(3.12) and (3.13) imply
_ Y 5 C
(3.14) ||ut||Wp2,’;0(Q><Rto,3to) + ||9||W§,’;0(QXRzO,3tO) < eDM e 4 TD <D,
for D sufficiently small and T sufficiently large.
From (3.14) we obtain

(3.15) ||Ut(T)HB§;f)/p0(Q) + ||0(T)H33;1(2]/%(Q) <D.
Let ¢1(t) be a smooth cut-off function such that ¢;1(¢) = 1 for ¢t > T — ¢, and
¢1(t) =0for t <tq, wheret; <T —e and [T —t;| < 1.

Let @ = u(y. Then

r T 1/po
[T Iwz @ < / |at'(t/)||wﬁ(sz)dt'§< / ||atf<t'>|€3;m>dtf> <D.
1 1

Hence

(3.16) 0T a2/ gy < T ey < D

From (3.15) and (3.16) we obtain that X (7', 2T") < ¢1.D so we proved the existence

of solutions in the interval [T, 27.

Continuing the considerations step by step we prove Lemma 3.2. (|

From Lemmas 3.1 and 3.2 Theorem B follows.
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