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EXISTENCE RESULTS FOR THE p-LAPLACIAN EQUATION
WITH RESONANCE AT THE FIRST TWO EIGENVALUES

Ming-Zheng Sun

Abstract. In this paper, by a space decomposition we will study the
existence and multiplicity for the p-Laplacian equation with resonance at

the first two eigenvalues.

1. Introduction

In this paper, we consider the boundary value problem

(1.1)

{
−∆pu = f(x, u) in Ω,

u = 0 on ∂Ω,

where Ω is a bounded domain in RN (N ≥ 1) with smooth boundary ∂Ω, ∆pu =
div(|∇u|p−2∇u) with 1 < p < ∞, and assume that

(f0) f ∈ C(Ω× R, R) satisfying the growth condition:

|f(x, t)| ≤ c(1 + |t|q−1), for all x ∈ Ω, t ∈ R,

for some c > 0 and q ∈ [1, p∗), where p∗ = Np/(N − p) if p < N and
p∗ = ∞ if N ≤ p.
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Let W 1,p
0 (Ω) be the Sobolev space endowed with the norm

‖u‖ =
( ∫

Ω

|∇u|p dx

)1/p

.

Under the condition (f0), it is well known that the weak solutions of (1.1) corre-
spond to the critical points of the functional I:W 1,p

0 (Ω) → R defined by

I(u) =
1
p

∫
Ω

|∇u|p dx−
∫

Ω

F (x, u) dx,

where F (x, u) =
∫ u

0
f(x, t) dt.

In recent years, there are many papers that have studied the equation (1.1)
with the non-resonant or resonant conditions. For example, in order to obtain
the existence of the solutions, the authors in [10], [13], [20] study the case

lim
|u|→∞

pF (x, u)
|u|p

< λ1, uniformly for x ∈ Ω,

and the paper [1], [3], [23] has used the following condition

λ1 � l(x) = lim inf
|u|→∞

f(x, u)
|u|p−2u

≤ lim sup
|u|→∞

f(x, u)
|u|p−2u

= k(x) < λ2,

uniformly for x ∈ Ω, where λ1 and λ2 are the first and second eigenvalues of
−∆p in W 1,p

0 (Ω), respectively (see [19]), and λ1 � l(x) means that λ1 ≤ l(x)
and the strict inequality holds on a set of positive measure.

Equation (1.1) is called a resonant problem at the first eigenvalue if

(1.2) lim
|u|→∞

f(x, u)
|u|p−2u

= λ1, uniformly for x ∈ Ω.

In [18], the authors have obtained the existence of multiple solutions of equation
(1.1) with (1.2) and the following non-quadratic condition

lim
|u|→∞

(uf(x, u)− pF (x, u)) = −∞, uniformly for x ∈ Ω.

Moreover, under the condition (1.2) and

lim
|u|→∞

(uf(x, u)− pF (x, u)) = ∞, uniformly for x ∈ Ω,

the paper [20] has proved that I is coercive, and the same result can also be
found in [1], [18] which assume that

lim
|u|→∞

(F (x, u)− 1
p
λ1|u|p) = −∞, uniformly for x ∈ Ω.

With other versions of the non-quadratic conditions, a lot of papers have studied
the case

(1.3) λ1 ≤ a(x) = lim inf
|u|→∞

f(x, u)
|u|p−2u

≤ lim sup
|u|→∞

f(x, u)
|u|p−2u

= b(x) < λ2,
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uniformly for x ∈ Ω, see for example [22], [24], [25]. In addition, for the solvability
of resonant (1.1) with the Landesman–Lazer type conditions, we refer to [9], [14]
and references therein.

Since the function f depends on x, the aim of our paper is to study the
equation (1.1) with the condition:

(f1) there exists a constant M > 0 such that

a(x) ≤ f(x, u)
|u|p−2u

≤ b(x), for |u| ≥ M, x ∈ Ω,

where a and b are continuous functions.

Let λ1(a) be the first eigenvalue of the equation

−∆pu− a(x)|u|p−2u = λ|u|p−2u

with the Dirichlet boundary value, it is well known that λ1(a) is simple and
isolated (see for example [19]), then the second eigenvalue

λ2(a) = inf{λ > λ1(a) | λ is the eigenvalue of −∆p − a(x) on W 1,p
0 (Ω)}

is well defined. By the monotonicity of λ1(a) (see [11]) and λ2(b) (see [2]), the
condition (1.3) implies that

λ1(a) ≤ 0 < λ2(b).

For the first eigenfunction ϕ1(a) > 0, if we assume V = span{ϕ1(a)}, and denote
by

V ⊥ =
{

u ∈ W 1,p
0 (Ω)

∣∣∣∣ ∫
Ω

(ϕ1(a))p−1u dx = 0
}

,

then we have

(1.4) W 1,p
0 (Ω) = V ⊕ V ⊥.

Moreover, from [14], we know that there exists λ(a) ∈ (λ1(a), λ2(a)] such that∫
Ω

(|∇u|p − a(x)|u|p) dx ≥ λ(a)
∫

Ω

|u|p dx, for any u ∈ V ⊥.

Similarly, we can define λ1(b), ϕ1(b) and λ(b).
Now, we state the assumptions

(f2) lim
|u|→∞

∫
Ω

(F (x, u)− 1
p
b(x)|u|p) dx = −∞,

(f3) lim
|u|→∞

(uf(x, u)− pF (x, u)) = −∞,

and the main result in this paper is the followings:
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Theorem 1.1. Assume that (f0) and (f1) hold. If one of the following con-
ditions is satisfied,

(a) λ1(b) > 0,
(b) λ1(b) ≥ 0 and (f2) holds,
(c) λ1(a) < 0 < λ(b),
(d) λ1(a) ≤ 0 ≤ λ(b) and (f3) holds,

then equation (1.1) has at least one solution.

Remark 1.2. (1) For the case p = 2, we can take λ(b) = λ2(b), and the
results of (c) and (d) can be found in [16], [17]. Since the spectrum of −∆p

in the general case p 6= 2 is still being established, it remains an open question
whether the λ(b) in our theorem can be replaced by λ2(b).

(2) The proof of our theorem is based on the linking theorem. There are two
difficulties when one wants to treat the condition (f1). One is the Palais–Smale
condition for I and the other is to construct linking sets. For the case a = λ1

and b = λ2, we can decompose the space W 1,p
0 (Ω) as W 1,p

0 (Ω) = E1⊕E⊥
1 where

E1 = Ker(−∆p − λ1). But in our case, we have to give a decomposition of the
space W 1,p

0 (Ω) according to the eigenfunctions of different functions a and b (see
Lemma 3.2). For p = 2, this method of space decomposition has been used by
[16], [JS] and the paper [12] which studies the periodic boundary value problem.

The paper is organized as follows: In Section 2, we will prove that the func-
tional I satisfies the Palais–Smale condition. In Section 3, we give a decompo-
sition lemma for W 1,p

0 (Ω), which is the basis of the proof of Theorem 1.1. In
Section 4, we are interested in finding the nontrivial solutions of equation (1.1).
In the sequel, the letter C will be used to denote various positive constants whose
exact value is irrelevant.

2. The Palais–Smale condition

In this section, we will prove the following Palais–Smale condition for I.

Definition 2.1. The functional I is said to satisfy the Palais–Smale con-
dition at the level c ∈ R ((PS)c for short) if every sequence {un} ⊂ W 1,p

0 (Ω)
with

(2.1) I(un) → c, (‖un‖+ 1)I ′(un) → 0, as n →∞,

possesses a convergent subsequence. I satisfies the (PS) if I satisfies (PS)c at
any c ∈ R.

This Palais–Smale type condition was introduced by G. Cerami in [6], and it
was shown that this condition suffices to get the linking theorem (see [4]).
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Lemma 2.2. Under the assumptions of Theorem 1.1, the functional I satis-
fies the (PS) condition.

Proof. Case 1. We will show that the functional I is coercive on W 1,p
0 (Ω).

Since λ1(b) > 0 and b ∈ C(Ω), we have∫
Ω

|∇u|p dx =
∫

Ω

[|∇u|p − b(x)|u|p] dx +
∫

Ω

b(x)|u|p dx

≤
∫

Ω

[|∇u|p − b(x)|u|p] dx + C

∫
Ω

|u|p dx

≤
∫

Ω

[|∇u|p − b(x)|u|p] dx +
C

λ1(b)

∫
Ω

[|∇u|p − b(x)|u|p] dx

≤ C

∫
Ω

[|∇u|p − b(x)|u|p] dx,

then there is a constant δ > 0 such that

(2.2)
∫

Ω

[|∇u|p − b(x)|u|p] dx ≥ δ

∫
Ω

|∇u|p dx, for any u ∈ W 1,p
0 (Ω).

From (f0) and (f1), we get that

(2.3) F (x, u) ≤ 1
p
b(x)|u|p + C,

this together with (2.2) implies that

I(u) =
1
p

∫
Ω

|∇u|p dx−
∫

Ω

F (x, u) dx

=
1
p

∫
Ω

|∇u|p dx− 1
p

∫
Ω

b(x)|u|p dx−
∫

Ω

(F (x, u)− 1
p
b(x)|u|p) dx

≥ δ

p

∫
Ω

|∇u|p dx− C.

Then we get that I(u) →∞ as ‖u‖ → ∞, this proves the case.

Case 2. We will also show that the functional I is coercive on W 1,p
0 (Ω).

By contradiction, we assume that there are a sequence {un} ⊂ W 1,p
0 (Ω) and

a constant C0 such that

(2.4) I(un) ≤ C0, as ‖un‖ → ∞.

Set vn = un/‖un‖, then there exists a v ∈ W 1,p
0 (Ω) such that, passing if necessary

to a subsequence, 
vn ⇀ v weakly in W 1,p

0 (Ω),

vn → v strongly in Lp(Ω),

vn → v for a.e. x ∈ Ω.

Using (2.3) and (2.4), we have

C0

‖un‖p
≥ 1

p

∫
Ω

(|∇vn|p − b(x)|vn|p) dx− C

‖un‖p
,
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which implies that

(2.5) lim sup
n→∞

∫
Ω

|∇vn|p dx ≤
∫

Ω

b(x)|v|p dx.

Moreover, since λ1(b) ≥ 0, from the lower semi-continuity of the norm we get∫
Ω

b(x)|v|p dx ≤
∫

Ω

|∇v|p dx ≤ lim inf
n→∞

∫
Ω

|∇vn|p dx,

this together with (2.5) gives ‖vn‖ → ‖v‖, as n →∞. Since W 1,p
0 (Ω) is uniformly

convex, we have vn → v in W 1,p
0 (Ω), as n →∞ with ‖v‖ = 1 and∫

Ω

b(x)|v|p dx =
∫

Ω

|∇v|p dx.

With no loss generally, we assume that λ1(b) = 0, then we can take v = ±ϕ1(b),
which implies that |un(x)| → ∞ almost everywhere in Ω.

By (f2) it follows

lim
n→∞

∫
Ω

(F (x, un)− 1
p
b(x)|un|p) dx = −∞,

then we have

I(un) =
1
p

∫
Ω

|∇un|p dx−
∫

Ω

F (x, un) dx

=
1
p

∫
Ω

|∇un|p dx− 1
p

∫
Ω

b(x)|un|p dx−
∫

Ω

(F (x, un)− 1
p
b(x)|un|p) dx

≥ −
∫

Ω

(F (x, un)− 1
p
b(x)|un|p) dx →∞, as n →∞.

This is a contradiction with (2.4).

Case 3. We assume that {un} ⊂ W 1,p
0 (Ω) and satisfies (2.1), by (f0) it suffices

to show that {un} is bounded (see [10]).
By contradiction, we assume ‖un‖ → ∞ as n →∞. Let zn = un/‖un‖, then

there exists z ∈ W 1,p
0 (Ω) such that, passing if necessary to a subsequence,

zn ⇀ z weakly in W 1,p
0 (Ω),

zn → z strongly in Lp(Ω),

zn → z for a.e. x ∈ Ω.

Let gn(x) = f(x, un)/‖un‖p−1, then gn is bounded in Lp′(Ω) with 1/p +
1/p′ = 1, and for a subsequence, we assume that

(2.6) gn ⇀ g weakly in Lp′(Ω).

The proofs of the following two claims are similar to Lemmas 2.6 and 2.7 in
the paper [3], respectively.

Claim 1. g = 0 almost everywhere in Ω \A, where A = {x ∈ Ω | z(x) 6= 0}.
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Claim 2. Set

m(x) =


g(x)

|z(x)|p−2z(x)
on A,

a(x) on Ω \A,

then we have

(2.7) a(x) ≤ m(x) ≤ b(x), a.e. in Ω.

Claim 3. zn → z in W 1,p
0 (Ω) and z is a nontrivial solution of the equation

(2.8)

{
−∆pu = m(x)|u|p−2u for x ∈ Ω,

u = 0 for x ∈ ∂Ω.

Indeed, from (2.1), for any φ ∈ W 1,p
0 (Ω) we have

(2.9)
∫

Ω

|∇zn|p−2∇zn∇φdx−
∫

Ω

f(x, un)
‖un‖p−1

φdx = o(1)‖φ‖.

Let φ = zn − z, it is easy to see that

lim
n→∞

∫
Ω

f(x, un)
‖un‖p−1

(zn − z) dx = 0,

this together with (2.9) gives

lim
n→∞

∫
Ω

|∇zn|p−2∇zn∇(zn − z) dx = 0.

From the fact that −∆p is of type S+ (see [10]), we conclude that zn → z in
W 1,p

0 (Ω) with ‖z‖ = 1.
Using (2.6) we deduce that

lim
n→∞

∫
Ω

f(x, un)
‖un‖p−1

φ dx =
∫

Ω

gφ dx,

then from (2.9) and our claims we have∫
Ω

|∇z|p−2∇z∇φdx =
∫

Ω

m(x)|z|p−2zφ dx,

which implies the equation (2.8).
By (2.7), the monotonicity of λ1(a) (see [11]) and λ2(b) (see [2]) gives

λ1(m) ≤ λ1(a) < 0, λ2(m) ≥ λ2(b) ≥ λ(b) > 0,

then 0 is not an eigenvalue of −∆p−m(x), which contradicts the equation (2.8).
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Case 4. By contradiction, we assume that {un} ⊂ W 1,p
0 (Ω) and satisfies (2.1),

but ‖un‖ → ∞ as n → ∞. Let zn = un/‖un‖, then there exists z ∈ W 1,p
0 (Ω)

such that, passing if necessary to a subsequence,
zn ⇀ z weakly in W 1,p

0 (Ω),

zn → z strongly in Lp(Ω),

zn → z for a.e. x ∈ Ω.

From (f0) and (f3), it is easy to show that

(2.10) F (x, u) ≤ C|u|p + C.

Combining (2.1) and (2.10), we obtain that

1
p
‖un‖p − C‖un‖p

p − C ≤ C,

which implies that
1
p
− C‖z‖p

p ≤ 0,

so z 6= 0. If we define Ω′ = {x ∈ Ω | z(x) 6= 0}, then we have

mes(Ω′) > 0, |un(x)| → ∞, as n →∞, x ∈ Ω′,

which implies that

lim
n→∞

(pF (x, un)− unf(x, un)) = ∞, x ∈ Ω′.

From the Fatou’s lemma we conclude that

lim
n→∞

∫
Ω

(pF (x, un)− unf(x, un)) dx = ∞.

However, using (2.1), it follows that

lim
n→∞

∫
Ω

(pF (x, un)− unf(x, un)) dx = −pc.

This contradiction completes the proof. �

3. Proof of the Theorem 1.1

In this section, we will first give a decomposition of W 1,p
0 (Ω) which is the

basis of the linking theorem. We recall the following lemma:

Lemma 3.1 ([21]). Let E be a vector space such that for subspaces X and Y ,
E = X ⊕ Y . If Y is finite dimensional and Z is a subspace of E such that
X ∩ Z = {0} and dim (Y ) = dim (Z) then E = X ⊕ Z.

Let ϕ1(a) and ϕ1(b) be the first eigenfunctions of λ1(a) and λ1(b), respec-
tively. If we set E1 = span {ϕ1(a)} and E2 = span {ϕ1(b)}, then similar to (1.4)
we have

W 1,p
0 (Ω) = E1 ⊕ E⊥

1 , W 1,p
0 (Ω) = E2 ⊕ E⊥

2 .
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Lemma 3.2. If the continuous functions a(x) ≤ b(x) for x ∈ Ω satisfying

λ1(a) ≤ 0 ≤ λ(b),

then we have that W 1,p
0 (Ω) = E1 ⊕ E⊥

2 .

Proof. From the Lemma 3.1, we only need to prove that E1 ∩ E⊥
2 = {0}.

With no loss generally, we assume that {x ∈ Ω | a(x) 6= b(x)} is not empty, so it
is easy to see that if u ∈ Ker(−∆p − a) ∩Ker(−∆p − b), then we get u = 0.

For any u0 ∈ E1 ∩ E⊥
2 , by the assumptions, we get

0 ≥ λ1(a)
∫

Ω

|u0|p dx =
∫

Ω

(|∇u0|p − a(x)|u0|p) dx

≥
∫

Ω

(|∇u0|p − b(x)|u0|p) dx ≥ λ(b)
∫

Ω

|u0|p dx ≥ 0,

which implies that u0 ∈ Ker (−∆p − a) ∩Ker (−∆p − b), then u0 = 0. �

Now, we are ready to give the proof of our theorem.

Proof of the Theorem 1.1. (a) and (b). Since in each case the functional
I is coercive on W 1,p

0 (Ω), the existence of a solution is trivial.
(c) Now, we want to prove that:
(1) I(u) → −∞ as ‖u‖ → ∞, u ∈ E1.
From (f0) and (f1), if we set G(x, u) = F (x, u)− (1/p)a(x)|u|p, then

(3.1) G(x, u) ≥ −C.

Since λ1(a) < 0 and dim (E1) < ∞, (3.1) gives that

I(u) =
1
p

∫
Ω

|∇u|p dx−
∫

Ω

F (x, u) dx

=
1
p

∫
Ω

|∇u|p dx− 1
p

∫
Ω

a(x)|u|p dx−
∫

Ω

G(x, u) dx

≤ λ1(a)
p

∫
Ω

|u|p dx + C ≤ −C‖u‖p + C,

then I(u) → −∞ as u ∈ E1 and ‖u‖ → ∞.
(2) I(u) is bounded from below on E⊥

2 .
Similarly, if we set G1(x, u) = F (x, u) − (1/p)b(x)|u|p, then G1(x, u) ≤ C,

which implies that, for any u ∈ E⊥
2 ,

I(u) =
1
p

∫
Ω

|∇u|p dx−
∫

Ω

F (x, u) dx

=
1
p

∫
Ω

|∇u|p dx− 1
p

∫
Ω

b(x)|u|p dx−
∫

Ω

G1(x, u) dx

≥ λ(b)
p

∫
Ω

|u|p dx− C ≥ −C,

so I(u) is bounded from below on E⊥
2 .
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(3) Now, we fix an R such that supu∈∂B(R)∩E1
I(u) ≤ β − 1, where β =

infu∈E⊥
2

I(u), and B(R) = {u ∈ W 1,p
0 (Ω) | ‖u‖ ≤ R}. Set

Γ = {γ : B(R) ∩ E1 → W 1,p
0 (Ω) | γ(u) = uif u ∈ E1, ‖u‖ = R},

c = inf
γ∈Γ

max
u∈B(R)

I(u).

Since ∂B(R) ∩ E1 and E⊥
2 are linking and the (PS) condition holds for I,

c ≥ β is a critical value of I (see [7]). So there is a critical point u0 ∈ W 1,p
0 (Ω)

such that I(u0) = c. The proof of this case is finished.
(d) Similar to (c) we only need to prove that I(u) → −∞ as ‖u‖ → ∞,

u ∈ E1.
Indeed, we still write G(x, u) = F (x, u) − (1/p)a(x)|u|p−2u, and g(x, u) =

f(x, u)− a(x)|u|p−2u, then using (f3) we have

lim
|u|→∞

(g(x, u)u− pG(x, u)) = −∞,

which implies that (see [18])

(3.2) lim
|u|→∞

G(x, u) = ∞, for x ∈ Ω.

Then for any u ∈ E1, (3.2) and the fact dim (E1) < ∞ give that

I(u) =
1
p

∫
Ω

|∇u|p dx−
∫

Ω

F (x, u) dx

=
1
p

∫
Ω

|∇u|p dx− 1
p

∫
Ω

a(x)|u|p dx−
∫

Ω

G(x, u) dx

=
λ1(a)

p

∫
Ω

|u|p dx−
∫

Ω

G(x, u) dx → −∞, as ‖u‖ → ∞. �

4. Multiplicity results of equation (1.1)

Now, we are interested in finding multiple nontrivial solutions of equation
(1.1). First, let us recall some results of Morse theory that will be used below,
for details, we refer to [7]. Let X be a real Banach space and Φ ∈ C1(X, R)
and satisfies the Palais–Smale condition. Let K = {u ∈ X | Φ′(u) = 0} be the
critical set of Φ. Let u ∈ K be an isolated critical point with Φ(u) = c ∈ R, and
U be an isolated neighbourhood of u, i.e. K ∩ U = {u}. The group

C∗(Φ, u) = H∗(Φc ∩ U,Φc ∩ U \ {u}), ∗ = 0, 1, . . . ,

is called the ∗-th critical group of Φ at u, where Φc = {u ∈ X | Φ(u) ≤ c},
H∗( · , · ) are the singular relative homology groups with a coefficient group G. By
the excision property of the homology groups, the critical groups are independent
of the choices of U , then they are well defined. In particular, if u, v are the critical
points of Φ and Cq(Φ, u) 6= Cq(Φ, v) for some q then u 6= v.
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Our result in this section reads as follows.

Theorem 4.1. Under the assumptions (c) or (d) of Theorem 1.1, if the
following condition holds,

(f4) f(x, 0) = 0 and there is a continuous function l(x) such that

lim
|u|→0

pF (x, u)
|u|p

≤ l(x) with λ1(l) > 0, x ∈ Ω,

then equation (1.1) has one nontrivial solution.

Remark 4.2. Obviously, (f4) is weaker than the condition

lim
|u|→0

pF (x, u)
|u|p

= l(x) � λ1, x ∈ Ω,

which implies that 0 is a local minimum of I (see [8], [18]).

Lemma 4.3. Under our conditions, 0 is a local minimum of the functional I.

Proof. Since λ1(l) > 0, there exists a constant ε > 0 such that λ1(l+ε) > 0
(see for example [15]). From (f4), there is a δ = δ(ε) such that

F (x, t) ≤ 1
p
(l(x) + ε)|t|p, for |t| ≤ δ, x ∈ Ω.

Moreover, for p < s ≤ p∗ we can find C > 0 such that

F (x, t) ≤ C|t|s, for |t| > δ, x ∈ Ω.

Then we get

(4.1) F (x, t) ≤ 1
p
(l(x) + ε)|t|p + C|t|s, for t ∈ R, x ∈ Ω.

Similar to (2.2), combining (4.1) and the embedding theorem, we have

I(u) =
1
p

∫
Ω

|∇u|p dx−
∫

Ω

F (x, u) dx

≥ 1
p

∫
Ω

|∇u|p dx− 1
p

∫
Ω

(l(x) + ε)|u|p dx−
∫

Ω

C|u|s dx

≥ C‖u‖p − C‖u‖s
s ≥ C‖u‖p − C‖u‖s > 0,

as 0 < ‖u‖ � 1, which implies that 0 is a local minimum of I. �

Proof of the Theorem 4.1. From Lemma 4.2, we obtain that

C∗(I, 0) = δ∗,0G.

Using the results in [5], the solution u0 obtained by Theorem 1.1 satisfies

C1(I, u0) 6= 0.

Hence u0 is the nontrivial critical point of I. �
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