Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 39, 2012, 83-92

ON AN ASYMPTOTICALLY LINEAR
SINGULAR BOUNDARY VALUE PROBLEMS

DANG DINH HAI

ABSTRACT. We prove the existence of positive solutions for the singular
boundary value problems

—Au = p@) + Af(u) in Q,
U/B
u=20 on 09,
where € is a bounded domain in R™ with smooth boundary 89,0 < 8 < 1,

A > 0 is a small parameter, f:(0,00) — R is asymptotically linear at co
and is possibly singular at 0.

1. Introduction

Consider the boundary value problems:
_ pz) .
0 —Au = v +Af(u) in Q,
u=0 on 0,

where ) is a bounded domain in R™ with smooth boundary 02,0 < § < 1,

p:Q — R and f:(0,00) — R may be singular at 0.

Singular problems of the type (I) have been studied extensively in recent years
(see [3], [4], [6]-[10], [12]-[16] and the references therein). When f is continuous
and nonnegative on [0,00), lim, o f(u)/u = m € (0,00) and f satisfies some
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additional conditions at 0, Z. Zhang [16] show that (I) has a positive solution
for A € (0, A\1/m), provided that p > 0, p #Z 0, pq&fﬁ € L), n/2 < q. Here
A1 and ¢ are the first eigenvalue and corresponding positive eigenfunction of
—A with Dirichlet boundary conditions. Related results when p = 0 and f is
nonsingular can be found in [1]. In this paper, we are interested in the case
when f is asymptotically linear at co and is possibly singular at 0, and p may
be negative. Our results extend corresponding results [16]. In particular, our
results when applied to the model cases

a b 1
—Au = — — 1+ — in Q
(L.1) U u5+)\<u5+u< +u+l)> in €,
u=20 on 0f),

and
b
“Au=2L + A — + ue/0FW in Q,
ub ud
u=20 on 02,

(1.2)

with a,b € R, 5,6 € (0,1) give the existence of a positive solution to (1.1)
provided that X is close enough to A; on the left, and the existence of a positive
solution to (1.2) if and only if A < A;. Our approach is based on the method of
sub- and supersolutions.

2. Preliminary results

We shall denote the norms in LP(Q2),C*(Q), and C*(Q) by || - ||, | - |1 and
| - |1, respectively. Throughout the paper we assume that ||¢1||e = 1.

Let d(z) denote the distance from z to the boundary of Q.

We first establish a regularity result, which plays a crucial role in the proofs
of the existence results.

LEMMA 2.1. Let h € LY(Q) and suppose that there exist numbers v € (0,1)
and C' > 0 such that

C

¢1 ()

for almost every x € Q. Let u € HE(2) be the solution of
—Au=h inQ,

{ u=20 on 99.

(2.1) Ih()| <

(2.2)
Then there exist constants « € (0,1) and M > 0 depending only on C, 7, 2 such
that u € C1*(Q) and |u|1.o < M.

PROOF. Note that Lemma 2.1 was proved in [8] under the additional as-
sumptions that h > 0 and u < Cd in ) for some C' > 0.
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It follows from [4] that the problem
1
—Av=— in ),
vY
v=20 on 0,
has a positive solution v which is Lipschitz continuous in Q.Let C;, Cy > 0 be

such that v(x) < Cyd(z) < Co¢1(x) in Q. Then

~A(CCv) > —
®q

in Q.
Let @ be the solution of
—Au=1h| inQ,
u=0 on 012,
and let @ = v + w. Then
—Au=h+|h| inQ.

By the maximum principle, u(x) < CCYv(z) < Csd(z) and u(x) < 2C3d(x) for
x € Q. Using the regularity result in [8], we conclude that there exist a € (0,1)
and My > 0 such that @,u € C»*(Q) and |t|1.a, [U1,o < Mo. Since u =u — 1,
Lemma 2.1 follows. O

REMARK 2.2. Note that under the assumptions of Lemma 2.1, (2.2) has a
unique solution u € H}(Q). Indeed, for u,& € H(?), define

a(u,g)z/gvu.vgdm, ﬁ(g):/ghgdx.

Then a(u, €) is bilinear, continuous, and coercive on H}(Q) x H (2). By Hardy’s
inequality (see e.g. [2, p. 194]) and the fact that d/¢; is bounded in 2, we obtain

|(|<m/w<m<k”ﬂ /’5

for all € € Hi (), where ki, ko are constants independent on &. Thus he H=1(Q)
(the dual of H}(Q2)), and the Lax-Milgram Theorem (see [2, Corollary V.8])

implies the existence of a unique u € H}(Q) such that a(u,&) = E(g) for all
¢ € Hy(Q).

LEMMA 2.3. Let h € L' () satisfy (2.1) and let u be the solution of (2.2).
Then |u|; — 0 as ||h||l1 — 0.

d < kal[VE]|2,

PROOF. By Lemma 2.1, there exists M > 0 such that |u|; o, < M. Multi-
plying the equation in (2.2) by u and integrating gives

[1Vull3 =/Qhud$§ ulloo| Il < Ml

which implies v — 0 in L?(Q) as ||h||; — 0. Since C1%(Q) is compactly imbed-
ded in C*(9), it follows that u — 0 in C*(Q) as ||h||; — 0. O
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Now, consider the problem:
{ —Au=h(z,u) in Q,

2.3
23) u=20 on 0f),

where h: Q2 x (0,00) — R is continuous. Let ¢,1 € C1(Q) satisfy ¢,v > l¢; in
Q for some [ > 0 and suppose there existy € (0,1) and C' > 0 such that

C
* hz,w)| < ——
(¥ aw)] < e
for almost every x €  and all w € C(Q) with ¢ < w < v in Q. Suppose ¢, are
sub- and supersolution of (2.3), respectively, i.e. for all £ € HE(Q) with £ > 0,

/Q Vo.VEdr < /Q h(z, $)¢ de, /Q Vb.VE do > /Q h(w, )¢ dz.

Note that the integrals on the right-hand side are defined by virtue of Hardy’s
inequality.

LEMMA 2.4. Under the above assumptions, there exists a € (0,1) such that
(2.3) has a solution u € C(Q).

PROOF. For cach v € C(Q), define h(z,v) = h(z, min(max(v, ¢),¢)). Then,
in view of (), we have
~ C
h(z,v)| <
|h(z, v)| @)
for almost every x € €2, where C'is a positive constant independent on v. Hence,
it follows from Remark 2.2 and Lemma, 2.1 that for each v € C(Q), the problem

—Au = h(z,v) in £,
u=20 on 0,

has a unique solution u € C**(Q) with |ul; , < C, where o € (0,1) and C' >
0 are constants independent on v. Define Tv = w. Then T is a bounded,
compact, and continuous operator on C'(Q). Note that the continuity of T' follows
from Lemma 2.3, the fact that 1/¢] € L*(), and the Lebesgue dominated
convergence. Hence T has a fixed point u by Schauder fixed point theorem.
Using standard arguments (see e.g. [5], [11]), we obtain ¢ < u < ¢ in Q, and
Lemma 2.4 follows. |

3. Main results

We make the following assumptions:
(A1) pe L>(Q).
(A.2) f:(0,00) — R is continuous and there exists 6 € (0, 1) such that

lim sup u°| f (u)| < oco.
u—0+
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(A.3) There exist positive numbers m, k, A such that
lim 7f(u)
u

U— 00

=m and f(u)>mu+k foru> A

Let A\oo = A1/m. Then we have:

THEOREM 3.1. Let (A.1)-(A.3) hold. Then there ezists a positive number e
such that for X € (Aso — €, Ao ), problem (1) has a positive solution uy € CH*(Q)

for some o € (0,1). Furthermore,

koo

> A 4 in Q.
T WS L

THEOREM 3.2. Let (A.2) hold, f > 0 and suppose
(A.3’) limsup,,_,o f(u)/u=m for some m € (0,00).
In addition, assume p > 0, p Z 0 in Q and either (A.1) or
(A1) pqi)l_ﬁ € LI(Q) for some g > n
holds. Then, for X € (0, ), (I) has a positive solution uy € C1*(Q) for some
a € (0,1). If, in addition, f(u) > mu for all u > 0, then (I) has no positive
solutions for A > .

REMARK 3.3. When p = 0 and f is nonsingular, the existence result in
Theorem 3.1 was obtained in [1] using bifurcation theory. Theorem 3.2 improves
Theorem 1 in [16], where f is required to be continuous on [0, c0), f(0) = 0, and

lirnu~>0Jr f(u)/u =mza.

REMARK 3.4. It should be noted that Theorem 3.1 may not be true if k =0
in (A.3). Indeed, consider the problem

()

fAu:fiJr/\u in Q,
P
u=0 on 0f).

Then, by multiplying the equation in (x%) by ¢; and integrating, we see that
(**) does not have any positive solutions for A < A\; = Aw.

We are ready to give the proofs of the main results. Without loss of generality,

we assume m = 1.

PROOF OF THEOREM 3.1. Let A\1/2 < A < A; and ¢ = kA1 /(4(A1 — A)). Let
o, 2o satisfy

¢0 =0 on 69,

CAdo = { Me + k) i1 2 Ale,
0 if p1 < A/C7
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and
AMc+k in Q,
—Azy = ( o1 2o =0 on 09Q.
z0=10 on 01},
Note that zo = (AM(c+ k)/A1)¢1. Then
0 if (bl 2 A/C,

—A(zp — =h=
(20 = o) { Me+ ko if ¢ < Afe,

Note that
IAc+E)p1| < M(A+k)
if 1 < A/c, and so ||h||1 — 0 as A — A] . Hence Lemma 2.3 implies
|20 — ¢ol1 — 0 as A — A7,
Let ¢g > 0 be such that d < cg¢p in Q. Then there exists € > 0 such that,
for Ay — A < &, we have
k
|0 — z0[1 < o

800
Hence, for such A,

k k Me+k) k
> — —d > — — = _— =
$o > 2o 800d > 20 8(/51 ( N 8)¢1

in Q. Since A > A;/2, this implies

N 3K\, [ kM R\, [k
¢02<)\1+8>¢1<4<)\1_)\)+8>¢1<C+8)¢1

in . Let z be the solution of

{Azd)ln/ in Q,

1
z=0 on 012,

(3.1)

where v = max(8, ), and let ¢; > 0 be such that z < ¢1¢; in Q. Then
¢o > co1 + ki z,

in Q, where k; = k/8c;. By decreasing e further if necessary, we can assume
that

MK pllso
o5 + B < ky,
whereK > 0 is such that
K
(32) )l < 2

for w € (0, A). Note that the existence of K follows from (A.2).
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Let ¢ = ¢p9 — k12z. Then ¢ > c¢p in Q. We shall verify that ¢ is a subsolution
of (I). Let & € H}(Q2) with € > 0. Then

Vo VeEd £

. ¢ T A = A — —

(3 3) / 13 /ﬂ( ¢>)§ dz /Q( ¢o)§ dx — k1 /Q 1{ dzx
= (c+k)¢1§dx—k1/ idaL‘.

b1>A/c o o1

If ¢1(x) > A/c then ¢(z) > A and so

f(9(@)) = d(x) + k = (c + k) (),

which implies

(3.4) A / ()€ da > A / (c+ k)i do.
P1>A/c $1>A/c

On the other hand, using (3.2) and the fact that f(u) > 0 for u > A, we get

AK€
3.5) A dr >\ dx > — —d
3.5) /¢>1<A/cf(¢)§ v /(¢1<A/c)ﬂ(¢<A) f@)de 2 /¢<A @° ’

S A8 MK [
A Jogd T T & Jg bl

Also

p() 3 lpllee [ € IIpllee [ €
(3.6) /Qwﬁde—HpHoo/ﬂﬁde— ) /Mﬁdxz— ) /dex.

Combining (3.3)—(3.6), we obtain

/Qws.vg dz < /Q (p;? + )\f(qﬁ)) ¢dz,

i.e. ¢ is a subsolution of (I).
Next, we shall construct a supersolution ¢ of (I) with ¢ > ¢. Let A, ¢ be as
in the above and let a > 1 be such that

Aa < Aq.
By (A.2) and (A.3), there exist B, L > 0 such that
(3.7) flu) <au
for u > B, and
L
(38) )l <

for u < B. LetMy = AL + ||p||co and M > max{(Aac1 Mp)/(A1 — Aa), 1}, where
¢1 > 0 is such that z < ¢3¢ in Q and z is defined in (3.1).
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Let v = M ¢, + Myz. We shall verify that 1 is a supersolution of (I). Let
€ € H}(Q) with € > 0. Then

(3.9) / V. VE dr = AlM/ £ dz + Mo/ %d:c.
0 0 o 1
We have
1) [ s = [ f@gden [ jwids
Q Y>B Y<B
By (3.7),
(3.11) A F()Edr <Xa Ve d
v>B Y>B
<AaM o1& dx + AaMy / zEdx
Y>B Y>B
< aM ¢1€ dx + Aaci My / 1€ dx
Y>B Y>B
S)\lM/ §pr d.
Q
Next, using (3.8), we obtain
(3.12) A f(qp)gdzg/\L/ 55 dxg)\L/ %dngL/ £
Y<B y<B Y v<B P1 a $
Finally,
p(@)¢ / 3 3
3.13 /7da:§ Do = dz <||p||s — dx.
(3.13) r [Ipll oo [Ipll o7
Combining (3.9)—(3.13), we obtain
/Vz/J.Vfdm 2/ (p(“? +)\f(¢))§dx,
Q o\ ¥
i.e. 1 is a supersolution of (I). Lemma 2.4 now gives the existence of a C1%(Q)
solution u of (I) with u > ¢¢; in Q. O

PrROOF OF THEOREM 3.2. Under the assumptions on p, it follows from
Lemma 2.1 or regularity results (see e.g. [2]) that the problem

—Aw = ZL:;) in €,
o
w=0 on 0f).

has a solution w € C1*(Q) for some a € (0,1). Let mg,m; > 0 be such that

mod1 < w < my¢; in Q. For v € C(Q), let u = Twv be the solution of

_ @) :
—A¢= max? (v, coy) in £,

6=0 on 02,
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where ¢ > 0 is a small number so that 18 < mfﬁmo and ¢'t? < my. Then T
is a bounded compact mapping on C(Q) by Lemmas 2.1 and 2.3. Hence T has
a fixed point ¢. We claim that ¢ > c¢; in Q2. Indeed, since

p(z)

—Aop <
¢‘ﬁ%

in Q, it follows from the weak maximum principle that
¢ < cPuw < c_ﬁml(bl
in 2. Hence

plx) P mip(x)

—Ao¢ > —
¢2 maxﬁ(c—ﬂml,c)qﬁf qﬁf

in 2, and so
u> P miPw > m Py > iy
in 2. Thus ¢ is a solution of
_pl@) .
—A¢ = ¢7 m Q,
=0 on 02,

and since f > 0, it is easily seen that ¢ is a subsolution of (I). The existence of
a supersolution ¥ with ¢ > ¢ is derived exactly as in the proof of Theorem 3.1.
Finally, the nonexistence result under the additional assumption follows upon
multiplying the equation by ¢; and integrating. O
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