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CONTINUITY OF LYAPUNOV FUNCTIONS
AND OF ENERGY LEVEL

FOR A GENERALIZED GRADIENT SEMIGROUP

Eder R. Aragão-Costa — Tomás Caraballo

Alexandre N. Carvalho — José A. Langa

Abstract. The global attractor of a gradient-like semigroup has a Morse
decomposition. Associated to this Morse decomposition there is a Lya-
punov function (differentiable along solutions)-defined on the whole phase
space- which proves relevant information on the structure of the attractor.
In this paper we prove the continuity of these Lyapunov functions under
perturbation. On the other hand, the attractor of a gradient-like semi-
group also has an energy level decomposition which is again a Morse de-
composition but with a total order between any two components. We claim
that, from a dynamical point of view, this is the optimal decomposition of
a global attractor; that is, if we start from the finest Morse decomposition,
the energy level decomposition is the coarsest Morse decomposition that
still produces a Lyapunov function which gives the same information about
the structure of the attractor. We also establish sufficient conditions which
ensure the stability of this kind of decomposition under perturbation. In
particular, if connections between different isolated invariant sets inside the

attractor remain under perturbation, we show the continuity of the energy
level Morse decomposition. The class of Morse–Smale systems illustrates
our results.
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1. Introduction

Qualitative properties of infinite-dimensional dynamical systems has been re-
ceiving very much attention throughout the last four decades (see, for instance,
[5], [9], [14] or [2]). The analysis of compact attracting invariant sets has devel-
oped a profound area of research, providing crucial information for an increasing
number of models for phenomena from Physics, Biology, Economics, Engineering
and others.

The asymptotic behaviour of a dissipative system can be described by a study
of its associated global attractor. Moreover, a careful study of the geometrical
structure -and its stability under perturbations- of the global attractor leads to
the understanding of its internal dynamics, which, essentially, describes the long
time behaviour of the whole system. The most general result in this line follows
from [4], which describes any flow on a compact metric space as a decomposition
of chain recurrent isolated invariant sets and connections between them. In the
terminology of [4], this is called a Morse decomposition of a compact invariant
set (see Definition 2.10 below), and has been considered in different frameworks,
as in the case of flows [4] and semiflows on compact spaces [13], or even compact
and non-compact topological spaces (see [8], [1], [12]).

Recently, it has been introduced in [3] the so-called gradient-like semigroups
with respect to a disjoint family of isolated invariant sets Ξ = (Ξ1, . . . , Ξn) on the
global attractor (see Definition 2.8 below) in Banach spaces, as an intermediate
concept between gradient semigroups (i.e. those possessing a Lyapunov function)
and semigroups possessing a gradient-like attractor (that is, an attractor that is
characterized as the union of the unstable sets of associated isolated invariant
sets).

In [1], given a gradient-like semigroup in a general metric space, we construct
a differentiable (along solutions) generalized Lyapunov function proving that
gradient-like semigroups are in fact gradient semigroups. This function is not
only constant on each isolated invariant set as in the classical theory of [4], but
it also detects the points in the phase space with orbits having a single value of
this function, a crucial property of Lyapunov functions (see, for instance, [5]).
Indeed, we will say that a semigroup {T (t) : t ≥ 0} with a global attractor A

and a disjoint family of isolated invariant sets Ξ = {Ξ1, . . . , Ξn} is a generalized
gradient semigroup with respect to Ξ if there exists a continuous function V : X →
R such that, V is constant in each in each Ξi, 1 ≤ i ≤ n, [0,∞) � t �→ V (T (t)x) ∈
R is decreasing for each x ∈ X , and V (T (t)x) = V (x) for all t ≥ 0 if and only if
x ∈ ⋃n

i=1 Ξi. For the construction of the Lyapunov function, it is proved in [1]
that the disjoint family of isolated invariant sets of a gradient-like semigroup on
a general metric space can be reordered in such a way that it becomes a Morse
decomposition for the global attractor. A refinement of the results from [4]
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leads to define a generalized Lyapunov function, not only on the attractor but
on the whole phase space. In addition, the Lyapunov function V : X → R of
a generalized gradient-like semigroup can be chosen in such a way that V (Ξj)=j.

Moreover, as gradient-like semigroups are stable under perturbation (see [3]),
we conclude that gradient semigroups are stable under perturbation. In other
words, the existence of a continuous Lyapunov function is robust under pertur-
bation. In this paper, we are able to go further in this direction, i.e. we provide
conditions for which not only a perturbation of a gradient semigroup is still gra-
dient, but also the associated Lyapunov functions move continuously under the
perturbation. A careful study of the upper and lower semicontinuity of local
attractors and repellers will be crucial in our argument.

On the other hand, observe that any Morse decomposition Ξ = (Ξ1, . . . , Ξn)
of a compact invariant set A leads to a partial order among the isolated in-
variant sets Ξi; that is, we can define an order between two isolated invariant
sets Ξi and Ξj if there is a chain of global solutions {ξ�, 1 ≤ � ≤ j − i}, with
limt→∞ ξ�(t) = Ξi+�−1 and limt→−∞ ξ�(t) = Ξi+�, 1 ≤ � ≤ j − i. This defines
a partial order and some of the isolated invariant sets in Ξ may not be compara-
ble. In Section 4 we rewrite and expand the construction in [1] of a new Morse
decomposition of the attractor for a generalized gradient-like semigroup which
improves the construction and dynamical properties of its associated Lyapunov
function. Indeed, we show that, given any generalized gradient-like semigroup
with respect to the disjoint family of isolated invariant sets Ξ = (Ξ1, . . . , Ξn),
there exists another Morse decomposition given by the so-called energy levels
N = (N1, . . . ,Np), p ≤ n, which can be totally ordered by the flow. Each of
the levels Ni, 1 ≤ i ≤ p is made of a finite union of the isolated invariant sets
in Ξ and N is totally ordered. The associated Lyapunov function takes differ-
ent values in any two different sets of N and any two elements of Ξ which are
contained in the same element of N (same energy level) are not connected.

Because of this energy level decomposition can be made from any gradient-
like semigroup (i.e. for any Morse decomposition with a finite number of com-
ponents), when we start form the finest Morse decomposition of an invariant set
in the sense of [12], we claim that our new dynamical decomposition is optimal,
since its associated Lyapunov function is the simplest one in order to describe
connected isolated invariant sets inside the global attractor.

We recall that, given a Morse decomposition of an attractor, it can be contin-
uous under perturbation even if the connections between sets are destroyed (see
figures in Section 3). This is saying that when we describe the geometric struc-
ture of the attractor using the associated isolated invariant subsets it may, under
perturbation, change drastically the way these isolated invariant subsets are con-
nected. In Section 5 we prove that, if connections are kept under perturbation,
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then the energy level decomposition is stable under perturbation. There exists
a general class of semigroups satisfying this last property, being Morse–Smale
systems (see [7], [6]) the prototype of them.

2. Morse decomposition of global attractors
for generalized gradient-like semigroups

Let X be a metric space with metric d: X ×X → R+, where R+ = [0,∞).
Given a subset A ⊂ X , the ε-neighbourhood of A is the set Oε(A) = {x ∈ X :
d(x, a) < ε for some a ∈ A}.

Definition 2.1. A family of mappings {T (t) : t ≥ 0} is a semigroup in X

if

(a) T (0) = IX , with IX being the identity map in X ,
(b) T (t + s) = T (t)T (s), for all t, s ∈ R+ and
(c) R+ ×X � (t, x) �→ T (t)x ∈ X is continuous.

The notion of invariance plays a fundamental role in the study of the asymp-
totic behavior of semigroups

Definition 2.2. A subset A of X is said invariant under the action semi-
group {T (t) : t ≥ 0} if T (t)A = A for all t ≥ 0.

Given A, B ⊂ X , the Hausdorff semidistance from A to B is given by

dist (A, B) = sup
a∈A

inf
b∈B

d(a, b),

and the Hausdorff distance by

dH(A, B) := dist (A, B) + dist (B, A).

For any subsets A, B and C in X it holds

dist (A, C) ≤ dist (A, B) + dist (B, C).

Definition 2.3. Given two subsets A, B of X we say that A attracts B

under the action of the semigroup {T (t) : t ≥ 0} if dist (T (t)B, A) t→∞−−−−→ 0 and
we say that A absorbs B under the action of {T (t) : t ≥ 0} if there is a tB > 0
such that T (t)B ⊂ A for all t ≥ tB.

With this we are in condition to define global attractors.

Definition 2.4. A subset A of X is a global attractor for a semigroup {T (t) :
t ≥ 0} if it is compact, invariant under the action of {T (t) : t ≥ 0} and for
every bounded subset B of X we have that A attracts B under the action of
{T (t) : t ≥ 0}.
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2.1. Gradient-like semigroups and Morse decomposition of attrac-
tors. Next we seek to introduce the notion of generalized gradient-like semi-
groups (see [3]). To that end we first need the definition of isolated invariant
set.

Definition 2.5. Let {T (t) : t ≥ 0} be a semigroup. We say that an invariant
set Ξ ⊂ X for the semigroup {T (t) : t ≥ 0} is an isolated invariant set if there is
an ε > 0 such that Ξ is the maximal invariant subset of Oε(Ξ).

A disjoint family of isolated invariant sets is a family {Ξ1, . . . , Ξn} of isolated
invariant sets with the property that, for some ε > 0,

Oε(Ξi) ∩ Oε(Ξj) = ∅, 1 ≤ i < j ≤ n.

Definition 2.6. A global solution for a semigroup {T (t) : t ≥ 0} is a con-
tinuous function ξ: R → X with the property that T (t)ξ(s) = ξ(t + s) for all
s ∈ R and for all t ∈ R+. We say that ξ : R → X is a global solution through
x ∈ X if it is a global solution and ξ(0) = x.

Definition 2.7. Let {T (t) : t ≥ 0} be a semigroup which has a disjoint
family of isolated invariant sets Ξ = {Ξ1, . . . , Ξn}. A homoclinic structure
associated to Ξ is a subset {Ξk1 , . . . , Ξkp} of Ξ (p ≤ n) together with a set of
global solutions {ξ1, . . . , ξp} such that

Ξkj

t→−∞←−−−− ξj(t)
t→∞−−−−→ Ξkj+1 , 1 ≤ j ≤ p

where Ξkp+1 := Ξk1 .

We are now ready to define generalized gradient-like semigroups [3].

Definition 2.8. Let {T (t) : t ≥ 0} be a semigroup with a global attractor
A and a disjoint family of isolated invariant sets Ξ = {Ξ1, . . . , Ξn}. We say that
{T (t) : t ≥ 0} is a generalized gradient-like semigroup with respect to Ξ if

(a) For any global solution ξ: R→ A there are 1 ≤ i, j ≤ n such that

Ξi
t→−∞←−−−− ξ(t) t→∞−−−−→ Ξj .

(b) There is no homoclinic structure with respect to Ξ.

Now we will introduce the notion of a Morse decomposition for an attractor
A of a gradient-like semigroup {T (t) : t ≥ 0}. We start with the notion of
attractor-repeller pairs.

Definition 2.9. Let {T (t) : t ≥ 0} be a semigroup with a global attractor A.
We say that a non-empty subset A of A is a local attractor if there is an ε > 0
such that ω(Oε(A)) = A. The repeller A∗ associated to the local attractor A is
the set defined by

A∗ = {x ∈ A : ω(x) ∩A = ∅}.
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The pair (A, A∗) is called attractor-repeller pair for {T (t) : t ≥ 0}.
Note that if A is a local attractor, then A∗ is closed and invariant.

Definition 2.10. Given an increasing family ∅ = A0 ⊂ A1 ⊂ . . . ⊂ An = A,
of local attractors, define Ξj := Aj ∩ A∗

j−1, 1 ≤ j ≤ n. The ordered n-upla
Ξ := (Ξ1, . . . , Ξn) is called a Morse decomposition of A.

Remark 2.11. Observe that Ξ is a local attractor if and only if it is compact,
invariant and attractsOε(Ξ) for some ε > 0. We observe that the above definition
differs slightly from the usual definition since the local attractor is required to
attract a neighbourhood of Ξ in X and not in A as in [4], [13].

The following results are proved in Aragão-Costa et al. [1]:

Lemma 2.12. Let {T (t) : t ≥ 0} be a semigroup in X with a global attractor
A and an attractor-repeller (A, A∗). A global solution ξ : R→ X of {T (t) : t ≥ 0}
with the property that ξ(t) ∈ Oδ(A∗) for all t ≤ 0 for some δ > 0 such that
Oδ(A∗) ∩A = ∅ must satisfy d(ξ(t), A∗) t→−∞−−−−→ 0.

Lemma 2.13. Let {T (t) : t ≥ 0} be a semigroup in X with a global attractor
A and (A, A∗) an attractor-repeller for {T (t) : t ≥ 0}. If ξ: R → X is a global
bounded solution for {T (t) : t ≥ 0} through x /∈ A ∪ A∗, then ξ(t) t→∞−−−−→ A and
ξ(t) t→−∞−−−−→ A∗. Furthermore, if x ∈ X \A then, T (t)x t→∞−−−−→ A ∪A∗.

Corollary 2.14. If {T (t) : t ≥ 0} is a semigroup in X with a global
attractor A and (A, A∗) is an attractor-repeller pair for {T (t) : t ≥ 0}, then
{T (t) : t ≥ 0} is a generalized gradient-like semigroup with respect to the disjoint
family of isolated invariant sets {A, A∗}.

In [1] we describe the construction of a Morse decomposition of the attrac-
tor of a gradient-like semigroup with respect to the disjoint family of isolated
invariant sets {Ξ1, . . . , Ξn} and of the associated collection of increasing local
attractors starting from the collection of isolated invariant sets {Ξ1, . . . , Ξn}.
For the sake of completeness, we recall such a construction here.

Let {T (t) : t ≥ 0} be a generalized gradient-like semigroup with associated
family of isolated invariant sets Ξ = {Ξ1, . . . , Ξn}. If (after possible reordering)
Ξ1 is a local attractor for {T (t) : t ≥ 0} (1) and

Ξ∗
1 = {a ∈ A : ω(a) ∩ Ξ1 = ∅}

each Ξi, i > 1 is contained in Ξ∗
1 and that for any a /∈ A \ {Ξ1 ∪ Ξ∗

1} and global
solution ξ: R→ A with φ(0) = a we have that

Ξ∗
1

t→−∞←−−−− ξ(t) t→∞−−−−→ Ξ1.

(1) If {T (t) : t ≥ 0} is a gradient-like semigroup with respect to Ξ = {Ξ1, . . . , Ξn}, one of
the invariants in Ξ must be a local attractor (see Lemma 2.15 in [1]).
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Considering the restriction T1(t) of T (t) to Ξ∗
1 we have that T1(t) is a generalized

gradient-like semigroup in Ξ∗
1 =: Ξ1,0 with isolated invariant sets {Ξ2, . . . , Ξn}

and we may assume without loss of generality that Ξ2 is a local attractor for
the semigroup {T1(t) : t ≥ 0} in Ξ∗

1. If Ξ∗
2,1 is the repeller with respect to the

isolated invariant set Ξ2 for {T1(t) : t ≥ 0} in Ξ∗
1 we may proceed and consider

the restriction {T2(t) : t ≥ 0} of the semigroup {T1(t) : t ≥ 0} to Ξ∗
2,1 and

{T2(t) : t ≥ 0} is a generalized gradient-like semigroup in Ξ∗
2,1 with associated

isolated invariant sets {Ξ3, . . . , Ξn}.
Proceeding with this until all isolated invariant sets are exhausted we obtain

a reordering of {Ξ1, . . . , Ξn} in such a way that Ξj is a local attractor for the
restriction of {T (t) : t ≥ 0} to Ξ∗

j−1,j−2 (Ξ∗
0,−1 := A).

Definition 2.15. Let {T (t) : t ≥ 0} be a semigroup. The unstable set of
an invariant set Ξ is defined by

W u(Ξ) =
{

z ∈ X : there is a global solution ξ : R→ X

such that ξ(0) = z and lim
t→−∞dist (ξ(t), Ξ) = 0

}
.

Define A0 = ∅, A1 = Ξ1 and for j = 2, . . . , n

(2.1) Aj = Aj−1 ∪W u(Ξj) =
j⋃

i=1

Wu(Ξi).

It is clear that An = A.

Theorem 2.16 (Aragão-Costa et al. [1]). Let {T (t) : t ≥ 0} be a generalized
gradient-like semigroup with associated family of isolated invariant sets Ξ =
{Ξ1, . . . , Ξn} reordered in such a way that Ξj is an attractor for the restriction
of {T (t) : t ≥ 0} to Ξ∗

j−1,j−2. Then Aj defined in (2.1) is a local attractor for
{T (t) : t ≥ 0} in X, and

Ξj = Aj ∩A∗
j−1, 1 ≤ j ≤ n.

As a consequence, Ξ defines a Morse decomposition of A.

2.2. A Lyapunov function for a generalized gradient-like semigroup.
Let us now recall some definitions and results from [1].

Definition 2.17. We say that a semigroup {T (t) : t ≥ 0} with a global
attractor A and a disjoint family of isolated invariant sets Ξ = {Ξ1, . . . , Ξn}
is a generalized gradient semigroup with respect to Ξ if there is a continuous
function V : X → R such that, V is constant in Ξi, for each 1 ≤ i ≤ n, [0,∞) �
t �→ V (T (t)x) ∈ R is decreasing for each x ∈ X and V (T (t)x) = V (x) for all
t ≥ 0 if and only if x ∈ ⋃n

i=1 Ξi. A function V with the properties above is called
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a Lyapunov function for the generalized gradient semigroup {T (t) : t ≥ 0} with
respect to Ξ.

Proposition 2.18. Let {T (t) : t ≥ 0} be a semigroup in a metric space
(X, d) with global attractor A, and let (A, A∗) be an attractor-repeller pair in A.
Then, there exists a function f : X → R satisfying the following:

(a) f : X → R is continuous in X.
(b) f : X → R is non-increasing along solutions.
(c) f−1(0) = A and f−1(1) ∩A = A∗.
(d) Given z ∈ X, if f(T (t)z) = f(z) for all t ≥ 0, then z ∈ (A ∪A∗).

Theorem 2.19 (Aragao-Costa et al. [1]). Let {T (t) : t ≥ 0} be a semi-
group with global attractor A and a disjoint family of isolated invariant sets
Ξ = {Ξ1, . . . , Ξn}. Then, {T (t) : t ≥ 0} is a generalized gradient semigroup
with respect to Ξ if and only if it is a generalized gradient-like semigroup with
respect to Ξ. Moreover, [0,∞) � t �→ V (T (t)z) is differentiable for all z ∈ X.
Finally, the Lyapunov function V : X → R of a generalized gradient-like semi-
group may be chosen in such a way that V (Ξk) = k, k = 1, . . . , n.

2.3. Stability under perturbations of generalized gradient semi-
groups. We introduce the notions of continuity and asymptotic compactness
for a parameter dependent family. We start with the notion of continuity for
a family of semigroups.

Definition 2.20. A family of semigroups {Tη(t) : t ≥ 0}η∈[0,1] is said to

be continuous at η = 0 if Tη(t)x
η→0−−−−→ T0(t)x uniformly for (t, x) in compact

subsets of R+ ×X .

Definition 2.21. A family of semigroups {Tη(t) : t ≥ 0}η∈[0,1] is said to
be collectively asymptotically compact at η = 0 if, given a sequence (ηk)k∈N with
ηk

k→∞−−−−→ 0, a bounded sequence (xk)k∈N in X and a sequence (tk)k∈N in R+

with tk
k→∞−−−−→∞, then (Tηk

(tk)xk)k∈N is relatively compact.

We are now ready to state the following result from [3].

Theorem 2.22 (Carvalho–Langa). Let {Tη(t) : t ≥ 0}η∈[0,1] be a collectively
compact family of semigroups which is continuous at η = 0. Assume that

(a) {Tη(t) : t ≥ 0} possesses a global attractor Aη for each η ∈ [0, 1] and⋃
η∈[0,1] Aη is bounded.

(b) There exists n ∈ N such that Aη has n isolated invariant sets Ξη =

{Ξ1,η, . . . , Ξn,η} for all η ∈ [0, 1], and sup1≤i≤n dH(Ξi,η , Ξi,0)
η→0−−−−→ 0.

(c) {T0(t) : t ≥ 0} is a generalized gradient-like semigroup.
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Then, there exists η0 > 0 such that, for all η ≤ η0, {Tη(t) : t ≥ 0} is a generalized
gradient-like semigroup with respect to Ξη and consequently

Aη =
n⋃

i=1

Wu(Ξi,η), for all η ∈ [0, η0].

As an immediate consequence of this result and the ones in Section 2.2 we
have the following result.

Corollary 2.23. Under the assumption of Theorem 2.22, there exists η0 >0
such that, for all η ≤ η0, {Tη(t) : t ≥ 0} is a generalized gradient semigroup.

Corollary 2.24. Under the assumption of Theorem 2.22, suppose there
exists n ∈ N such that Aη has n stationary solutions Sη = {ξ1,η, . . . , ξn,η} for

all η ∈ [0, 1] and sup1≤i≤n d(ξi,η, ξi,0)
η→0−−−−→ 0. Then, there exists η0 > 0 such

that, for all η ≤ η0, {Tη(t) : t ≥ 0} is a gradient semigroup in the sense of [5].

Remark 2.25. The previous theorem supposes the continuity of the iso-
lated invariant sets in order to prove the stability of the generalized gradient-
like semigroups under perturbation. Note (cf. [3]) that from a perturbation of
a gradient-like semigroup it could emerge a gradient-like semigroup with a dif-
ferent collection of isolated invariant sets.

On the other hand, for a generalized gradient-like semigroup, even when the
isolated sets behave continuously under perturbation, some of the connections
between them may change. So the dynamics under perturbation could suffer
drastic changes. This fact allows that the Lyapunov functions that we have
constructed behave discontinuously under perturbation.

3. Continuity of the Lyapunov function under perturbation

Now, we will analyze the continuity of the Lyapunov function under suitable
perturbations.

Definition 3.1. Let (Aη)η∈[0,1] be a family of sets in a metric space X

with distance d: X ×X → R+. We say that this family is upper semicontinuous
(u.s.c.) at η = 0 if

lim
η→0+

dist (Aη, A0) = 0.

We say that this family is lower semicontinuous (l.s.c.) at η = 0 if

lim
η→0+

dist (A0, Aη) = 0.

Finally, the family is said to be continuous at η = 0 if it is upper and lower
semicontinuous, i.e. when it holds

lim
η→0+

dH(Aη, A0) = 0.
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Lemma 3.2. Let {Tη(t) : t ≥ 0}η∈[0,1] be a family of collectively asymptot-
ically compact semigroups in a metric space X which is continuous at η = 0
(see Definition 2.20). Assume that each {Tη(t) : t ≥ 0} has a global attractor
Aη and that

⋃
η∈[0,1] Aη is bounded in X. Let (Aη)η∈[0,1] be a family of subsets

in X such that, for each η ∈ [0, 1], Aη ⊂ Aη and A0 is a local attractor for
{T0(t) : t ≥ 0} with ω(Oε(A0)) = A0, for some ε > 0. Then, if (Aη)η∈[0,1] is
continuous at η = 0, given δ ∈ (0, ε) there exist δ′ ∈ (0, δ) and η0 > 0 such that
for all η ∈ [0, η0] it holds

γ+
η (Oδ′ (Aη)) ⊂ Oδ(Aη),

where γ+
η (Oδ′ (Aη)) :=

⋃
t≥0 T (t)(Oδ′(Aη)) denotes the positive orbit of the set

Oδ′(Aη) associated to {Tη(t) : t ≥ 0}.
Proof. Suppose not, then there exist δ ∈ (0, ε) and sequences (zj)j∈N

in X , (ηj)j∈N in [0, 1] and (tj)j∈N in R such that ηj
j→∞−−−−→ 0+, tj

j→∞−−−−→ ∞,
dist (zj , Aηj ) < 1/j for all j,

dist (Tηj (t)zj , Aηj ) < δ for all t ∈ [0, tj) and all j ∈ N

and
dist (Tηj (tj)zj , Aηj ) = δ for all j ∈ N.

If, for each j, we now define ξj : [−tj ,∞) → X by ξj(t) := Tηj (t + tj)zj ,
then, by the collective asymptotic compactness and the uniform convergence in
compact sets, it is not difficult to see that there exist a bounded global solution
ξ0: R → X for {T0(t) : t ≥ 0} and a subsequence for (ξj)j∈N, denoted the same,
such that for all t, ξ0(t) = limj→∞ ξj(t).

On the other hand, given t < 0, for all j big enough it holds

dist (ξj(t), A0) ≤ dist (ξj(t), Aηj ) + dist (Aηj , A0),

from where, by the u.s.c. of (Aη)η∈[0,1], we obtain that for all t < 0

dist (ξ0(t), A0) ≤ δ,

and from δ = dist (ξj(0), Aηj ) ≤ dist (ξj(0), A0) + dist (A0, Aηj ), by the l.s.c. of
(Aη)η∈[0,1], it follows that dist (ξ0(0), A0) = δ.

But, as δ < ε, then A0 attracts K = {ξ0(t) : t ≤ 0}, which contradicts the
fact that dist (ξ0(0), A0) = δ. �

We also have the following lemma:

Lemma 3.3. Let {Tη(t) : t ≥ 0}η∈[0,1] be a family of collectively asymptoti-
cally compact semigroups in the metric space X which is continuous at η = 0.
Assume that each {Tη(t) : t ≥ 0} possesses a global attractor Aη, that

⋃
η∈[0,1] Aη

is relatively compact in X and that limη→0 dist (Aη, A) = 0. Let also (Aη)η∈[0,1]
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be subsets of X such that each Aη is a local attractor for {Tη(t) : t ≥ 0} and
let (A∗

η)η∈[0,1] be the family of associated repellers. Suppose there exist a positive
number µ and an index η̃ > 0 such that

inf
aη∈Aη

inf
a∗

η∈A∗
η

d(aη, a∗
η) ≥ µ

if η ∈ [0, η̃]. If (Aη)η∈[0,1] is lower semicontinuous at η = 0, then (A∗
η)η∈[0,1] is

upper semicontinuous at η = 0.

Proof. Suppose that limη→0+ dist (A0, Aη) = 0, but it is not true that
limη→0+ dist (A∗

η, A∗
0) = 0. Then, there exist ε > 0 and a sequence (ηj)j∈N in

[0, 1] with ηj
j→∞−−−−→ 0+ such that

dist (A∗
ηj

, A∗
0) ≥ ε for all j ∈ N.

Thus, there exists a sequence (zj)j∈N in X with zj ∈ A∗
ηj
⊂ Aηj and dist (zj , A

∗
0)

> ε/2 for all j. By the upper semicontinuity of the global attractors, we can

suppose that zj
j→∞−−−−→ z0 for some z0 ∈ A0, so that we have dist (z0, A

∗
0) ≥ ε/2

and therefore ω(z0) ⊂ A0.
On the one hand, for 0 < δ < µ/2, by Lemma 3.2, choose δ′ ∈ (0, δ) and

η0 ∈ (0, η̃] such that

(3.1) γ+
η (Oδ′ (Aη)) ⊂ Oδ(Aη),

if η ∈ [0, η0].
As ω(z0) ⊂ A0, there exists t0 > 0 such that T0(t0)z0 ∈ Oδ′/3(A0).
On the other hand, by the lower semicontinuity of (Aη)η∈[0,1] we get the

existence of η1 ∈ (0, η0] such that for all η ∈ [0, η1] it holds

(3.2) A0 ⊂ Oδ′/2(Aη).

But, by the continuity of {Tη(t) : t ≥ 0}η∈[0,1] at η = 0, there exists η2 ∈
(0, η1] for which Tηj (t0)zj ∈ Oδ′/2(A0) for all j with ηj ∈ [0, η2]. Now, by (3.2),
it holds that Oδ′/2(A0) ⊂ Oδ′(Aη) if η ∈ [0, η2], and so Tηj (t0)zj ∈ Oδ′(Aηj ) if
ηj ∈ [0, η2].

Now (3.1) implies that if ηj ∈ [0, η2] we have that γ+
ηj

(Tηj (t0)zj) ⊂ Oδ(Aηj ),
and so ωηj (zj) ⊂ Oδ(Aηj ) when ηj ∈ [0, η2] but, by the invariance of A∗

ηj
for

{Tηj(t) : t ≥ 0}, it holds that ωηj (zj) ⊂ A∗
ηj

which is a contradiction as δ < µ/2.�

The main result of this section is the following:

Proposition 3.4. Let {Tη(t) : t ≥ 0}η∈[0,1] be a family of asymptotically
collectively compact semigroups in a metric space X which is continuous at η = 0
and such that, for each η ∈ [0, 1], {Tη(t) : t ≥ 0} has a global attractor Aη.
Suppose

⋃
η∈[0,1] Aη is relatively compact in X. Let (Aη)η∈[0,1] be a family of

local attractors for {Tη(t) : t ≥ 0} in X and (A∗
η)η∈[0,1] the associated family of
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repellers. Suppose that the family of local attractors (Aη)η∈[0,1], the corresponding
family of repellers (A∗

η)η∈[0,1], and the family of global attractors (Aη)η∈[0,1] are
continuous at η = 0. Finally, for each η ∈ [0, 1], let fη: X → R be the Lyapunov
function with respect to the pair (Aη, A∗

η) which is defined by

fη(z) := hη(z) + kη(z),

where, for each z ∈ X, hη(z) := sup
t≥0

dist (Tη(t)z, Aη) and

kη(z) := sup
t≥0

lη(Tη(t)z) with lη(z) :=
dist (z, Aη)

dist (z, Aη) + dist (z, A∗
η)

.

Then, fη
η→0+

−−−−→ f0 uniformly in compact sets of de X.

Proof. We split the proof into three steps:

Step 1. lη
η→0+

−−−−→ l0 uniformly in X .

Indeed, by the triangle inequality for the Hausdorff semidistance we have
that, for all η ∈ [0, 1] and all z ∈ X , it holds

|dist (z, Aη)− dist (z, A0)| ≤ dH(Aη, A0)

and
|dist (z, A∗

η)− dist (z, A∗
0)| ≤ dH(A∗

η, A∗
0).

Now, given η ∈ [0, 1] and z ∈ X we have

lη(z)− l0(z) =
dist (z, Aη)

dist (z, Aη) + dist (z, A∗
η)
− dist (z, A0)

dist (z, A0) + dist (z, A∗
0)

=
dist (z, Aη)dist (z, A∗

0)− dist (z, A0)dist (z, A∗
η)

[dist (z, Aη) + dist (z, A∗
η)][dist (z, A0) + dist (z, A∗

0)]
,

and now, by adding and substracting dist (z, A0)dist (z, A∗
0),

lη(z)− l0(z)

=
[dist (z, Aη)− dist (z, A0)]dist (z, A∗

0) + dist (z, A0)[d(z, A∗
0)− dist (z, A∗

η)]
[dist (z, Aη) + dist (z, A∗

η)][dist (z, A0) + dist (z, A∗
0)]

.

Since infa0∈A0 infa∗
0∈A∗

0
d(a0, a

∗
0) > µ for some µ > 0, the continuity of the

families of local attractors and their corresponding repellers ensure the existence
of η̃ ∈ (0, 1] such that, for all η ∈ [0, η̃], it follows that dist (Aη, A∗

η) > µ.
Consequently, for all z ∈ X and η ∈ [0, η̃] we have

|lη(z)− l0(z)| ≤ 1
dist (z, Aη) + dist (z, A∗

η)
[dH(Aη, A0) + dH(A∗

η, A∗
0)]

≤ 1
µ

[dH(Aη, A0) + dH(A∗
η, A∗

0)],



Energy Level Decomposition 69

so that, for all z ∈ X and all η ∈ [0, η̃] we have

|lη(z)− l0(z)| ≤ 1
µ

[dH(Aη, A0) + dH(A∗
η, A∗

0)]

and hence, we obtain the uniform convergence (in X) of lη
η→0+

−−−−→ l0, from the
continuity of the local attractors and their associated repellers.

Step 2. kη
η→0+

−−−−→ k0 uniformly in compact sets of X .

Given z ∈ X consider the following three cases:

Case 1. T0(t)z
t→∞−−−−→ A0 with l0(z) > 0.

Choose 0 < θ < θ+ < l0(z). By the continuity of l0: X → R, let σ1 > 0 such
that l0(Oσ1 (z)) ⊂ (θ+, 1] and, by Step 1, η0 ∈ (0, 1] such that lη(Oσ1(z)) ⊂ (θ, 1]
for all η ∈ [0, η0].

On the one hand, by the continuity of l0: X → R, given 0 < α < θ/2, let
δ > 0 such that l0(Oδ(A0)) ⊂ [0, α).

On the other hand, by Lemma 3.2, let δ′ ∈ (0, δ/2) and η1 ∈ (0, η0] such that
for each η ∈ [0, η1] we have

(3.3) γ+
η (Oδ′(Aη)) ⊂ Oδ/2(Aη).

Now, by the lower semicontinuity of (Aη)η∈[0,1] at η = 0, let η2 ∈ (0, η1] such
that for each η ∈ [0, η2] it holds

(3.4) A0 ⊂ Oδ′/2(Aη).

From the fact that T0(t)z
t→∞−−−−→ A0, let also t0 > 0 such that T0(t0)z ∈ Oδ′/4(A0)

and, by the continuity of T0(t0): X → X , choose σ2 ∈ (0, σ1] such that

T0(t0)(Oσ2(z)) ⊂ Oδ′/4(A0).

From the continuity of {Tη(t) : t ≥ 0}η∈[0,1] at η = 0, we can find σ3 ∈ (0, σ2]
and η3 ∈ (0, η2] such that for all η ∈ [0, η3] we have Tη(t0)(Oσ3 (z)) ⊂ Oδ′/2(A0),
from where, by (3.4), we obtain that Tη(t0)(Oσ3 (z)) ⊂ Oδ′(Aη) if η ∈ [0, η3], and
from (3.3) we conclude that

(3.5) γ+
η (Tη(t0)(Oσ3 (z))) ⊂ Oδ/2(Aη) for all η ∈ [0, η3].

Now observe that, from the uniform convergence of lη
η→0+

−−−−→ l0 in X , we
obtain η4 ∈ (0, η3] so that, for each η ∈ [0, η4], it holds lη(Oδ(A0)) ⊂ [0, 2α), and
from the upper semicontinuity of (Aη)η∈[0,1] in η = 0 we deduce the existence
of η5 ∈ (0, η4] such that, if η ∈ [0, η5], then Aη ⊂ Oδ/2(A0), and therefore,
Oδ/2(Aη) ⊂ Oδ(A0) for all η ∈ [0, η5], so that lη(O

δ/2(Aη)) ⊂ [0, 2α) for all
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η ∈ [0, η5]. Thus, from (3.5) we have that for each η ∈ [0, η5] and each w ∈
Oσ3(z) ⊂ Oσ1(z) it holds

sup
t≥t0

lη(Tη(t)w) ≤ 2α < θ < lη(w) ≤ kη(w),

so that kη(w) = sup0≤t≤t0 lη(Tη(t)w) for all η ∈ [0, η5] and all w ∈ Oσ3(z).
Finally, given ε > 0, by the conclusion in Step 1, there exists η6 ∈ (0, η5]

such that for all w ∈ X

|lη(w) − l0(w)| < ε

2
for all η ∈ [0, η6].

by the uniform continuity of the function l0: X → R, consider β > 0 such that
if x, x′ ∈ X satisfy d(x, x′) < β then |l0(x) − l0(x′)| < ε/2 so that, from the
continuity of {Tη(t) : t ≥ 0}η∈[0,1] at η = 0, we can choose η7 ∈ (0, η6] and
σ4 ∈ (0, σ3] such that

sup
η∈[0,η7]

sup
w∈Oσ4(z)

sup
0≤t≤t0

d(Tη(t)w, T0(t)w) < β.

Thus, for all w ∈ Oσ4(z), t ∈ [0, t0] and η ∈ [0, η7],

|lη(Tη(t)w) − l0(T0(t)w)|
≤ |lη(Tη(t)w) − l0(Tη(t)w)| + |l0(Tη(t)w) − l0(T0(t)w)| < ε.

Hence

(3.6) sup
w∈Oσ4(z)

|kη(w) − k0(w)| ≤ ε for all η ∈ [0, η7],

where σ4 > 0 and η7 > 0 depend only on z ∈ X and ε > 0.

Case 2. l0(z) = 0.
Under these conditions, note that z ∈ A0 and, consequently, k0(z) = 0. Given

ε > 0, by the continuity of l0: X → R, take δ > 0 such that l0(Oδ(A0)) ⊂ [0, ε/4).
Now, the uniform convergence of (lη)η∈[0,1] to l0 in X implies the existence

of η0 ∈ (0, 1] such that

(3.7) lη(Oδ(A0)) ⊂ [0, ε/2) for each η ∈ [0, η0].

By the upper semicontinuity of (Aη)η∈[0,1] at η = 0 we have the existence
of η1 ∈ (0, η0] such that for all η ∈ [0, η1] we have Aη ⊂ Oδ/2(A0), from which
Oδ/2(Aη) ⊂ Oδ(A0) if η ∈ [0, η1]. And from (3.7) we conclude that for all
η ∈ [0, η1]

(3.8) lη(Oδ/2(Aη)) ⊂ [0, ε/2).

Let also η2 ∈ (0, η1] and δ′ ∈ (0, δ/2), by Lemma 3.2, such that

(3.9) γ+
η (Oδ′(Aη)) ⊂ Oδ/2(Aη) for all η ∈ [0, η2].
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Finally, consider the lower semicontinuity of (Aη)η∈[0,1] at η = 0. Let η3 ∈
(0, η2] such that

(3.10) A0 ⊂ Oδ′/2(Aη) for all η ∈ [0, η3].

Thus, (3.10) holds and, from (3.9), for η ∈ [0, η3], for all t ≥ 0 and all w ∈
Oδ′/2(A0) ⊂ Oδ′(Aη) that Tη(t)w ∈ Oδ/2(Aη) and by (3.8), we obtain that for
all η ∈ [0, η3] and all w ∈ Oδ′/2(A0) it holds

kη(w) = sup
t≥0

lη(Tη(t)w) ≤ ε/2,

so that, in particular,

(3.11) sup
w∈Oδ′/2(A0)

|kη(w) − k0(w)| ≤ ε for all η ∈ [0, η3],

where δ′ > 0 and η3 > 0 that depend only on ε > 0 and A0.

Case 3. T0(t)z
t→∞−−−−→ A∗

0.
In this case k0(z) = 1. By the continuity of l0: X → R, given ε > 0, let δ > 0

such that
l0(Oδ(A∗

0)) ⊂ (1 − ε/4, 1]

and, by the uniform convergence lη
η→0+

−−−−→ l0 in X , take η0 ∈ (0, 1] such that

(3.12) lη(Oδ(A∗
0)) ⊂ (1 − ε/2, 1] for all η ∈ [0, η0].

On the other hand, consider t0 > 0 such that T0(t0)z ∈ Oδ/2(A∗
0) and, by the

continuity of T0(t0): X → X , take σ1 > 0 such that T0(t0)(Oσ1 (z)) ⊂ Oδ/2(A∗
0).

From the continuity of {Tη(t) : t ≥ 0}η∈[0,1] at η = 0, let η1 ∈ (0, η0] and
σ2 ∈ (0, σ1] such that Tη(t0)(Oσ2(z)) ⊂ Oδ(A∗

0) for all η ∈ [0, η1].
Finally, from (3.12) we deduce that lη(Tη(t0)(Oσ2 (z))) ⊂ (1 − ε/2, 1] for

all η ∈ [0, η1], so that, for all w ∈ Oσ2 (z) and all η ∈ [0, η1], we have that
1−ε/2 < lη(Tη(t0)w) ≤ kη(w) ≤ 1, from which |kη(w)−k0(w)| ≤ ε for η ∈ [0, η1]
and w ∈ Oσ2(z). Thus

(3.13) sup
w∈Oσ2(z)

|kη(w) − k0(w)| ≤ ε for η ∈ [0, η1],

where σ2 > 0 and η1 that depend only on z and ε > 0.
Now, from Cases 1, 2 and 3 we obtain that:
Given a compact subset K ⊂ X , and ε > 0, by (3.6), (3/11) and (3.13),

there exist an open subset U = U(ε, K) ⊂ X with K ⊂ U , and an index
η′ = η′(ε, K) > 0 such that

sup
w∈U
|kη(w) − k0(w)| ≤ ε for all η ∈ [0, η′],

and then limη→0+ supw∈K |kη(w) − k0(w)| = 0.
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Step 3. hη
η→0+

−−−−→ h0 uniformly in compact subsets of X .

Indeed, given z ∈ X consider now two cases:

Case 1. dist (z, A0) > 0.
Given α > 0 with 0 < α < dist (z, A0), let, by Lemma 3.2, α′ ∈ (0, α) and

η0 ∈ (0, 1] such that for all η ∈ [0, η0]

(3.14) γ+
η (Oα′(Aη)) ⊂ Oα(Aη).

Choose t0 > 0 such that T0(t0)z ∈ Oα′/4(A0) and by continuity of T0(t0): X → X

let σ1 > 0 such that T0(t0)(Oσ1(z)) ⊂ Oα′/4(A0).
Now, from the continuity of {Tη(t) : t ≥ 0}η∈[0,1] at η = 0, let η1 ∈ (0, η0]

and σ2 ∈ (0, σ1] such that Tη(t0)(Oσ2 (z)) ⊂ Oα′/2(A0) for each η ∈ [0, η1], and,
by the lower semicontinuity of (Aη)η∈[0,1] at η = 0, let η2 ∈ (0, η1] such that
A0 ⊂ Oα′/2(Aη) for all η ∈ [0, η2], so that Oα′/2(A0) ⊂ Oα′(Aη) if η ∈ [0, η2].
Thus, for all η ∈ [0, η2] we have that Tη(t0)(Oσ2 (z)) ⊂ Oα′(Aη) and from (3.14)
we obtain that γ+

η (Tη(t0)(Oσ2(z))) ⊂ Oα(Aη) for all η ∈ [0, η2]. Thus

(3.15) sup
t≥t0

dist (Tη(t)w, Aη) ≤ α for all η ∈ [0, η2] and all w ∈ Oσ2 (z).

On the other hand, for all w ∈ X and all η ∈ [0, 1] we have

|dist (w, Aη)− dist (w, A0)| ≤ dH(Aη, A0).

Then, we can choose η3 ∈ (0, η2] and σ3 ∈ (0, σ2] such that dist (w, Aη) > α for
all η ∈ [0, η3] and all w ∈ Oσ3(z), from which, by (3.15), it follows

sup
t≥t0

dist (Tη(t)w, Aη) ≤ α < dist (w, Aη) for all η ∈ [0, η3] and all w ∈ Oσ3(z),

so that hη(w) = sup0≤t≤t0 dist (Tη(t)w, Aη) for each η ∈ [0, η3] and each w ∈
Oσ3(z).

Note that, for all w ∈ X , all η ∈ [0, 1] and all t ≥ 0 we have that

|dist (Tη(t)w, Aη)− dist (T0(t)w, A0)| ≤ dH(Aη, A0) + d(Tη(t)w, T0(t)w),

so that, for all η ∈ [0, η3]

sup
w∈Oσ3(z)

|hη(w)− h0(w)| ≤ dH(Aη, A0) + sup
w∈Oσ3(z)

sup
0≤t≤t0

d(Tη(t)w, T0(t)w),

and so, it is easy to see that, given ε > 0 there exist σ ∈ (0, σ3] and η4 ∈ (0, η3],
depending only on z and ε > 0, such that

sup
w∈Oσ(z)

|hη(w)− h0(w)| ≤ ε for all η ∈ [0, η4].

Case 2. dist (z, A0) = 0, i.e. z ∈ A0.
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In this case, given ε > 0, by Lemma 3.2, let ε′ ∈ (0, ε/2) and η0 ∈ (0, 1] such
that, for all η ∈ [0, η0],

(3.16) γ+
η (Oε′(Aη)) ⊂ Oε/2(Aη).

On the other hand, by the lower semicontinuity of (Aη)η∈[0,1] at η = 0, let
η1 ∈ (0, η0] such that A0 ⊂ Oε′/2(Aη) if η ∈ [0, η1] and thenOε′/2(A0) ⊂ Oε′(Aη)
if η ∈ [0, η1], and thus (3.16) implies that

γ+
η (Oε′/2(A0)) ⊂ Oε/2(Aη) if η ∈ [0, η1],

from which hη(w) = supt≥0 dist (Tη(t)w, Aη) ≤ ε/2 for all η ∈ [0, η1] and w ∈
Oε′/2(A0), so that we conclude

sup
w∈Oε′/2(A0)

|hη(w) − h0(w)| ≤ ε for all η ∈ [0, η1].

In these conditions, given ε > 0, each z ∈ X possesses a neighbourhood
Oσ(z), with σ = σ(ε, z) > 0 and there exists an index η′ = η′(ε, z) > 0 such that

sup
w∈Oσ(z)

|hη(w) − h0(w)| ≤ ε if η ∈ [0, η′],

so that we conclude the convergence of hη
η→0+

−−−−→ h0 uniformly in compact sets
of X by a similar argument to the one in Step 2. �

Remark 3.5. Let {Tη(t) : t ≥ 0}η∈[0,1] be a family of semigroups in a met-
ric space X satisfying hypotheses of Theorem 2.22 with isolated invariant sets
Ξη := {Ξ1,η, . . . , Ξn,η} reordered in such a way that Ξj,0 is a local attrac-
tor for the restriction of {T0(t) : t ≥ 0} to Ξ∗

j−1,j−2,0. For suitably small η,
{Tη(t) : t ≥ 0} is a gradient-like semigroup with respect to Ξη and such that Ξη

is a Morse decomposition with associated local attractors A0,η := ∅ and for each
j = 1, . . . , n

Aj,η :=
j⋃

i=1

Wu
η (Ξi,η).

Then, the repellers are given by: A∗
n,η := ∅ and for each j = 0, . . . , n− 1

A∗
j,η :=

n⋃
i=j+1

W s
η (Ξi,η),

where, for each η ∈ [0, 1] and all i = 1, . . . , n

W s
η (Ξi,η) := {z ∈ Aη : Tη(t)z t→∞−−−−→ Ξi,η}

and W s
loc,η(Ξi,η) or Wu

loc,η(Ξi,η) (in the context of generalized gradient-like semi-
groups) is the intersection of W s

η (Ξi,η) or Wu
η (Ξi,η) with a neighbourhood of Ξi,η.
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Thus, we must look for sufficient conditions to obtain continuity of stable
(restricted to the attractors) and unstable manifolds in order to obtain the con-
tinuity of Lyapunov functions.

This last remark leads us to the following result:

Corollary 3.6. Let {Tη(t) : t ≥ 0}η∈[0,1] be a family of semigroups in
a metric space (X, d) satisfying the hypotheses of Theorem 2.22 with isolated
invariant sets Ξη := {Ξ1,η, . . . , Ξn,η}. If the stable (W s

η (Ξj,η))η∈[0,1] and unsta-
ble (Wu

η (Ξj,η))η∈[0,1] manifolds are continuous at η = 0, for all j = 1, . . . , n,
then the Lyapunov functions associated to {Tη(t) : t ≥ 0}, given with the aid of
Proposition 3.4, for η small enough behave continuously at η = 0.

4. Energy level decomposition
of a generalized gradient-like semigroup

We now give a dynamical description of a generalized gradient-like semi-
group by reordering and regrouping the corresponding isolated invariant subsets
to obtain a totally ordered family of isolated invariant sets that we will refer to as
energy levels. This new family of isolated invariant sets is a Morse decomposition
of A with fewer invariant sets but in such a way that it still gives us a Lyapunov
function that is constant only in the solutions lying in the original isolated in-
variant sets. In a certain sense, this decomposition is the coarsest decomposition
which still gives us a Lyapunov function which is constant only in the solutions
lying in the original isolated invariant sets.

Assume that {T (t) : t ≥ 0} is a generalized gradient-like semigroup with
respect to the disjoint family of isolated invariant sets Ξ = {Ξ1, . . . , Ξn}.

(a) Given Ξl1 and Ξl2 ∈ Ξ, we say that Ξl1 precedes Ξl2 (we write Ξl1 ≺
Ξl2), if there exists a global solution ξ: R → X of {T (t) : t ≥ 0} such
that ξ(R) � Ξl1 ∪ Ξl2 and

lim
t→−∞ d(ξ(t), Ξl2 ) = 0 and lim

t→∞ d(ξ(t), Ξl1 ) = 0.

(b) Let us consider

M1 := {Ξ� ∈ Ξ : there is no element Ξ ∈ Ξ that preceeds Ξ�}
and, for any integer k ≥ 2,

Mk := {Ξ� ∈ Ξ : if Ξ ∈ Ξ and Ξ ≺ Ξ� then Ξ ∈Mk−1}.
Note that, by definition, Mk ⊂Mk+1.

(c) We now define the sets

N1 :=
⋃

Ξ∈M1

Ξ and Nk :=
⋃

Ξ∈Mk\Mk−1

Ξ, for all k ≥ 2.
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Since Ξ is finite, there exists a positive integer q such that Mk =Mq

for each k > q, so that, Nk = ∅ for all k > q. Thus, let N1, . . . ,Np, the
level sets with p := min{q ∈ N :Mk =Mq for each k > q}.

We have the following first result related to this family of sets:

Lemma 4.1 (see [1]). Let {T (t) : t ≥ 0} be a semigroup with global attrac-
tor A. Assume that {T (t) : t ≥ 0} is a generalized gradient-like semigroup with
respect to the disjoint family of isolated invariant sets Ξ = {Ξ1, . . . , Ξn}. Then
each element of Ξ is contained in Nk, for some k ≤ p.

The following result will show that N = (N1, . . . ,Np) is a Morse decompo-
sition for A.

Theorem 4.2. Let {T (t) : t ≥ 0} be a semigroup with global attractor A.
If {T (t) : t ≥ 0} is a generalized gradient-like semigroup with respect to Ξ =
{Ξ1, . . . , Ξn}, then (N1, . . . ,Np) is a Morse decomposition for A.

Proof. Clearly {T (t) : t ≥ 0} is a generalized gradient-like semigroup with
respect to N. The proof of the result now follows from Theorem 2.16 (see [1]).�

In order to see that the continuity of local unstable manifolds is not sufficient
to obtain the continuity of Lyapunov functions one may consider the example in
Figures 1 and 2.
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Figure 1

Note that, in both cases the semigroup associated are gradient-like. Also,
the semigroup associated to Figure 1 has energy levels N1 = {a}, N2 = {b},
N3 = {c}, N4 = {d1, d2}, while the semigroup associated to Figure 2 has energy
levels N1 = {a}, N2 = {b1, b2}, N3 = {c1, c2}. This clearly shows that, even
if all equilibria are hyperbolic, if the connections between them are not stable
under perturbations, the level sets may be discontinuous.

Remark 4.3. All the concepts and results in the previous section can be
written in the particular case in which we have a finite set of equilibria. Indeed,
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let {T (t) : t ≥ 0} be a gradient-like semigroup in X with global attractor A

with equilibrium points E = {ζ1, . . . , ζn}. Then, there exists an energy level
decomposition in A made of equilibrium points.

5. Energy levels for a generalized gradient-like semigroup
under perturbation

Again, for each η ∈ [0, 1], let {Tη(t) : t ≥ 0} a semigroup on a metric
space X , with global attractor Aη and a finite family of isolated bounded sets
Ξη = {Ξ1,η, . . . , Ξn,η}, such that each {Tη(t) : t ≥ 0} is a generalized gradient-
like semigroup with respect to Ξη. We suppose

sup
1≤i≤n

dH(Ξi,η, Ξi,0)
η→0+−−−−→ 0.

Under these conditions, we give sufficient conditions so that the energy levels are
continuous under perturbation.

Lemma 5.1. For each η ∈ [0, 1], let {Tη(t) : t ≥ 0} be a semigroup on
a metric space X, with global attractor Aη and a finite family of isolated bounded
sets Ξη = {Ξ1,η, . . . , Ξn,η}, such that each {Tη(t) : t ≥ 0} is a generalized
gradient-like semigroup with respect to Ξη and let Nη = (N1,η, . . . ,Np(η),η) be
the corresponding Morse decomposition formed by the energy levels. Assume the
hypotheses of Theorem 2.22. Let Ξ0 ∈ N1,0 and (Ξη)η∈(0,1], with Ξη ∈ Ξη for

each η ∈ (0, 1], the unique family such that dH(Ξη, Ξ0)
η→0+−−−−→ 0. Then there

exist δ > 0 and η1 ∈ (0, 1] such that, for any η ∈ (0, η1], if z ∈ X is such that
dist (z, Ξη) < δ then dist (Tη(t)z, Ξη) t→∞−−−−→ 0. Moreover, for i ≥ 2 if Ξ0 ∈ Ni,0

and (Ξη)η∈(0,1], with Ξη ∈ Ξη for each η ∈ (0, 1], is the unique family such

that dH(Ξη , Ξ0)
η→0+−−−−→ 0, then there exist δ > 0 and ηi ∈ (0, 1] such that for any

η ∈ (0, ηi], if z ∈ X satisfies dist (z, Ξη) < δ then either dist (Tη(t)z, Ξη) t→∞−−−−→ 0
or dist (Tη(t)z,M(i−1),η) t→∞−−−−→, where M(i−1),η :=

⋃i−1
j=1Nj,η, in particular

dist(Tη(t)z,Mi,η) t→0−−−−→ 0.
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Proof. For the case Ξ0 ∈ N1,0, suppose not. Then, there exist ηk → 0+ in
(0, 1], (zk)k∈N in X and (Ξηk

)k∈N subfamily of (Ξη)η∈(0,1] with d(zk, Ξηk
) < 1/k

such that Tηk
(t)zk does not converge to Ξηk

when t → ∞ for all k. Fix δ0 > 0
such that Oδ0(Ξi,η)∩Oδ0(Ξj,η) = ∅ for i �= j and η small enough. Then, as each
{Tηk

(t) : t ≥ 0} is a generalized gradient-like semigroup with respect to Ξηk
, so

that, for each k, dist (Tηk
(t)zk, Ξ(k)

ηk ) t→∞−−−−→ 0 for some Ξ(k)
ηk ∈ Ξηk

\ {Ξηk
} and

so for k big enough, we can find τk > 0 such that

dist (Tηk
(t)zk, Ξηk

) < δ0 for t ∈ [0, τk),(5.1)

dist (Tηk
(τk)zk, Ξηk

) = δ0.(5.2)

By the uniform convergence Tη
η→0+

−−−−→ T0 on compacts of [0,∞) ×X , from

dH(Ξηk
, Ξ0)

k→∞−−−−→ 0 and by (5.2) we have that τk
k→∞−−−−→∞. Thus, consider, for

each k big enough, the map ξk : [−τk,∞) → X given by ξk(t) := Tηk
(t + τk)zk

t ∈ [−τk,∞). By the collective compactness and from (5.1) there exists a global
bounded solution ξ0: R → X for {T0(t) : t ≥ 0} such that limk→∞ ξk(t) =
ξ0(t) for all t ∈ R and limt→−∞ dist (ξ0(t), Ξ0) = 0. But, as Ξ0 in N1,0 with
{T0(t) : t ≥ 0} generalized gradient-like, we have ξ0(t) ∈ Ξ0 for all t ∈ R, which
contradicts d(ξ0(0), Ξ0) = δ0, which comes from (5.2) as k→∞.

For i = 2, we also argue by contradiction. Then we obtain ηk → 0+ in (0, 1],
(zk)k∈N in X and (Ξηk

)k∈N subfamily of (Ξη)η∈(0,1] with dist (zk, Ξηk
) < 1/k

such that Tηk
(t)zk does not converge to Ξηk

when t → ∞ and Tηk
(t)zk does

not converge to N1,ηk
when t → ∞. Now, let δ > 0 such that the conclusion

of the previous case is satisfied in Oδ(N1,ηk
) for all k big enough and with

Oδ(Ξi,η) ∩ Oδ(Ξj,η) = ∅ for i �= j and η small enough. Thus, for all t ≥ 0 and k

we have

(5.3) dist (Tηk
(t)zk,N1,ηk

) ≥ δ.

On the other hand, as each {Tηk
(t) : t ≥ 0} is a generalized gradient-like

semigroup, for each k we have that dist (Tηk
(t)z, Ξ(k)

ηk ) t→∞−−−−→ 0 for some Ξ(k)
ηk ∈

Ξηk
\ {Ξηk

} and, consequently, for each k large enough, there exists τk > 0
satisfying

dist (Tηk
(t)zk, Ξηk

) < δ for t ∈ [0, τk),(5.4)

dist (Tηk
(τk)zk, Ξηk

) = δ.(5.5)

Again, by (5.5), it holds τk
k→∞−−−−→∞ and then, if we define ξk: [−τk,∞)→ X

given by ξk(t) := Tηk
(t+τk)zk, t ∈ [−τk,∞), from the collective compactness and

(5.4), we obtain the existence of a global bounded solution for {T0(t) : t ≥ 0},
ξ0: R→ X , such that

lim
k→∞

ξk(t) = ξ0(t) for all t ∈ R with lim
t→−∞ d(ξ0(t), Ξ0) = 0.
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Since {T0(t) : t ≥ 0} is a generalized gradient-like semigroup with respect to Ξ0,
there exists Ξl1 ∈ Ξ0 with limt→∞ dist (ξ0(t), Ξl1 ) = 0. As Ξ0 ∈ N2,0, it holds
that Ξl1 ∈ N1,0, from where, for τ > 0 with dist (ξ0(τ), Ξl1 ) < δ/2, we deduce, for
k big enough, dist (Tηk

(τ+τk)zk,N1,ηk
) < δ/2, which contradicts (5.3). A similar

argument for the remaining cases finishes the proof. �

Theorem 5.2. Suppose the hypotheses of the previous lemma. Let N1,η, . . . ,

Np(η),η the energy levels associated to the family Ξη = {Ξ1,η, . . . , Ξn,η} for η ∈
(0, 1], and suppose that,

(H) if (ηk)k∈N is a sequence in (0, 1] with ηk
k→∞−−−−→ 0+ and (Ξηk

)k∈N satisfy
that, for some i ∈ ⋂

k∈N
{1, . . . , p(ηk)}, Ξηk

∈ Ni,ηk
and

dH(Ξηk
, Ξ0)

k→∞−−−−→ 0

then Ξ0 ∈ Ni,0.

Then, if p denotes the number of energy levels for {T0(t) : t ≥ 0}, written as
N1,0, . . . ,Np,0, there exists η∗ ∈ (0, 1] such that for all η ∈ (0, η∗] the semigroup
{Tη(t) : t ≥ 0} possesses also p energy levels, N1,η, . . . ,Np,η (i.e. p(η) = p for
all η ∈ (0, η∗]), and

dH(Ni,η,Ni,0)
η→0+

−−−−→ 0 for all i = 1, . . . , p.

Proof. Let us write the energy levels for the limit case. For i = 1, . . . , p,
Ni,0 = {Ξ(i)

l1,0, . . . , Ξ(i)
lk(i),0

}.
If we define, for each η ∈ (0, 1] and i = 1, . . . , p the sets

Hi,η := {Ξ(i)
l1,η, . . . , Ξ(i)

lk(i),η
} and H′

i,η :=
k(i)⋃
j=1

Ξ(i)
lj ,η,

then Theorem 2.22 implies dH(H′
i,η,Ni,0)

η→0+

−−−−→ 0, for all i = 1, . . . , p.
The sets Hi,η’s are the natural candidates to be the energy levels for Tη(·).

Indeed, let us prove that it holds that Hi,η = Ni,η, for i = 1, . . . , p and η small
enough, i.e. H1,η, . . . ,Hp,η are the energy levels of {Tη(t) : t ≥ 0} for η small
enough.

For i = 1 let (Ξ(1)
l1,η)η∈(0,1] be the family within the set H1,η. Then, there

exists θ1 ∈ (0, 1] such that Ξ(1)
l1,η ∈ N1,η for all η ∈ (0, θ1]. Indeed, if not, we can

find a sequence ηk → 0+ and global solutions ξk : R → X for {Tηk
(t) : t ≥ 0}

such that limt→−∞ dist (ξk(t), Ξ(1)
lj ,ηk

) = 0 and limt→∞ dist (ξk(t), Ξηk
) = 0, for

some isolated invariant set Ξηk
∈ Ξηk

, but with Ξηk
�= Ξ(1)

l1,ηk
for all k.

Choose now, for each k big enough, τk such that dist (ξk(t), Ξ(1)
lj ,ηk

) < δ0 for
all t < τk and

(5.6) dist (ξk(τk), Ξ(1)
l1,ηk

) = δ0,
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where δ0 > 0 satisfies Oδ0(Ξi,η) ∩ Oδ0(Ξj,η) = ∅ for i �= j and η small enough.
If we define for k big enough, ζk: R → X by ζk(t) := ξk(t + τk), t ∈ R,

we get ζ0: R → X a global solution of {T0(t) : t ≥ 0} and a subsequence of
(ζk)k∈N, written the same, satisfying limk→∞dist (ζk(t), ζ0(t)) = 0 for all t ∈ R,
with limt→−∞ dist (ζ0(t), Ξ

(1)
l1,0) = 0. Since Ξ(1)

l1,0 ∈ N1,0, from the definition of

N1,0 it follows that ζ0(t) ∈ Ξ(1)
l1,0 for all t ∈ R. But this fact contradicts that

dist (ζ0(0), Ξ(1)
l1,0) = δ0, which comes from (5.6) as k → ∞. The same argument

for j = 2, . . . , k(1) leads to η1 ∈ (0, 1] such that Ξ(1)
lj ,η ∈ N1,η for j = 1, . . . , k(1),

η ∈ (0, η1], that is, H1,η ⊂ N1,η for all η ∈ (0, η1].
On the other hand, there exists η′

1 ∈ (0, η1] such that N1,η ⊂ H1,η when
η ∈ (0, η′

1]. If not, there exist a sequence ηk → 0+ and, for each k, an iso-
lated invariant set Ξηk

∈ N1,ηk
\ H1,ηk

such that the sequence (Ξηk
)k∈N satisfies

dH(Ξηk
, Ξ0)

k→∞−−−−→ 0. However, from (H), we have Ξ0 ∈ N1,0, which contradicts
that Ξηk

/∈ H1,ηk
for any k. Thus, we conclude that H1,η = N1,η for η ∈ (0, η′

1].
We now show that there exists η2 ∈ (0, η′

1] such that H2,η ⊂ M2,η if η ∈
(0, η2]. Note that, if this claim holds, from the proof of the above case we have
that H2,η ⊂ M2,η \ N1,η = N2,η, once H2,η is disjoint of H1,η = N1,η for all
η ∈ (0, η2].

To get the existence of η2, take the family (Ξ(2)
l1,η)η∈(0,η1] of the elements

in H2,η’s. Then there exists θ2 ∈ (0, η1] such that Ξ(2)
l1,η ∈ M2,η for all η ∈

(0, θ2]. If not, by the same argument above, we get a subsequence ηk → 0+

and corresponding global solutions ξk: R → X for {Tηk
(t) : t ≥ 0} such that

limt→−∞ dist (ξk(t), Ξ(2)
l1,ηk

) = 0 and limt→∞ d(ξk(t), Ξηk
) = 0, for some isolated

invariant sets Ξηk
∈ Ξηk

with Ξηk
/∈ M1,ηk

= N1,ηk
and Ξηk

�= Ξ(2)
l1,ηk

for all k. As

above and for the same δ0 let, for each k, τk ∈ R such that dist (ξk(t), Ξ(2)
l1,ηk

) < δ0

for all t < τk and dist (ξk(τk), Ξ(2)
l1,ηk

) = δ0.
From Lemma 5.1, let δ > 0 and η1 ∈ (0, η′

1] such that the asymptotic stability
of the elements in N1,η are satisfied in Oδ(N1,η) if η ∈ [0, η1]. Then,

(5.7) dist (ξk(t),N1,ηk
) ≥ δ, for all t ∈ R and all k ∈ N.

If we define the solutions of ζk: R → X by ζk(t) = ξk(t + τk) t ∈ R, we get
again a global solution ζ0: R→ X in {T0(t) : t ≥ 0} such that

lim
k→∞

ζk(t) = ζ0(t) for all t ∈ R with lim
t→−∞dist (ζ0(t), Ξ

(2)
l1,0) = 0.

As {T0(t) : t ≥ 0} is a generalized gradient-like semigroup, there exists Ξ0 ∈ Ξ0

such that limt→∞ dist (ζ0(t), Ξ0) = 0 and since Ξ(2)
l1,0 ∈ N2,0 we get Ξ0 ∈ N1,0.

Thus, let τ > 0 such that dist (ζ0(τ), Ξ0) < δ/2, from which it follows the
existence of k0 ∈ N such that dist (ξk(τ + τk),N1,ηk

) < δ for all k ≥ k0, which
contradicts (5.7).
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The same argument can be used for all j = 2, . . . , k(2) and so we obtain
η2 ∈ (0, 1] such that H2,η ⊂M2,η if η ∈ (0, η2].

Again, we get η′
2 ∈ (0, η2] such that N2,η ⊂ H2,η if η ∈ (0, η′

2], from which
we conclude that H2,η = N2,η for all η ∈ (0, η′

2].
Finally, repeating the reasoning for i = 3, . . . , p and recalling that Ξη =

H1,η ∪ . . . ∪Hp,η for each η. �

In the following theorem we state a sufficient condition for the hypotheses
in the previous result. In particular, we prove that the stability of connecting
orbits under perturbation gives the desired result on the continuity of the energy
level sets.

Consider {Tη(t) : t ≥ 0}η∈[0,1] a family of generalized gradient-like semi-
groups with respect to Ξη = {Ξ1,η, . . . , Ξn,η} for each η ∈ [0, 1]. Suppose that:

(HG) For each Ξl1,0, Ξl2,0 ∈ Ξ0 such that Ξl1,0 ≺ Ξl2,0, if Ξl1,η, Ξl2,η are in
Ξη for η ∈ (0, 1] and satisfy

dH(Ξl1,η, Ξl1,0)
η→0+

−−−−→ 0 and dH(Ξl2,η, Ξl2,0)
η→0+

−−−−→ 0,

then Ξl1,η ≺ Ξl2,η for all η small enough.

Theorem 5.3. Suppose hypotheses in Theorem 2.22, and that (HG) is sat-
isfied for {Tη(t) : t ≥ 0}η∈[0,1]. Then, if (ηk)k∈N is a sequence in (0, 1] with

ηk
k→∞−−−−→ 0+ and for some i ∈ ⋂

k∈N
{1, . . . , p(ηk)} (Ξηk

)k∈N is a sequence with

Ξηk
∈ Ni,ηk

for all k and dH(Ξηk
, Ξ0)

η→0+

−−−−→ 0 for some Ξ0 ∈ Ξ0, then Ξ0 ∈ Ni,0.

Proof. Indeed, if for i = 1 and Ξ0 does not belong to N1,0 there exits
Ξl1 ∈ Ξ0 with Ξl1 ≺ Ξ0 but with Ξl1 �= Ξ0. Then, let (Ξl1,ηk

)k∈N the sequence

with Ξl1,ηk
∈ Ξηk

, for all k, such that dH(Ξl1,η, Ξl1)
η→0+

−−−−→ 0. By (HG) we have
Ξl1,ηk

≺ Ξηk
for all k big enough, which contradicts that Ξηk

∈ N1,ηk
. Thus the

result is true for i = 1 and from it and the first part of the proof in Theorem 5.2,
we get η1 ∈ (0, 1] such that H1,η, are N1,η for η ∈ (0, η1].

For i = 2, if Ξ0 does not belong to N2,0 = M2,0 \ N1,0 we have, on the
one hand, that Ξ0 is not in N1,0, since if Ξ0 ∈ N1,0, as we have seen above

N1,η = H1,η and so dH(N1,η,N1,0)
η→0+

−−−−→ 0, so that Ξηk
∈ N1,ηk

for all k big
enough, which contradicts that Ξηk

∈ N2,ηk
for all k.

Thus, Ξ0 ∈ N3,0∪N4,0∪ . . .∪Nn,0 and so we can find Ξl1 ∈ Ξ0 with Ξl1 ≺ Ξ0

such that Ξl1 is not in N1,0. Let (Ξl1,ηk
)k∈N the sequence with Ξl1,ηk

∈ Ξηk
, for

all k, such that dH(Ξl1,ηk
, Ξl1)

k→∞−−−−→ 0. By (HG) we have Ξl1,ηk
≺ Ξηk

for all k

big enough, but, as Ξηk
∈ N2,ηk

for each k, then Ξl1,ηk
∈ N1,ηk

for each k, but
then we get that Ξl1 ∈ N1,0, which is a contradiction, so that the case i = 2 is
also proved.



Energy Level Decomposition 81

Thus, by the second part in the proof of Theorem 5.2 we get η2 ∈ (0, η1]
such that the sets H2,η, defined as in the previous theorem, are the sets N2,η for

η ∈ (0, η1], from which, in particular, dH(N2,η,N2,0)
η→0+

−−−−→ 0.
For i = 3, suppose Ξ0 /∈ N3,0. Again, we then have that Ξ0 /∈ N1,0 ∪ N2,0 =

M2,0, since as dH(Ni,η,Ni,0)
η→0+

−−−−→ 0 for i = 1 and 2, if Ξ0 ∈ N1,0 ∪ N2,0 we
would have that Ξηk

∈ N1,ηk
∪N2,ηk

for all k big enough, which contradicts that
Ξηk
∈ N3,ηk

for all k.
Thus, Ξ0 ∈ N4,0 ∪ . . . ∪ Nn,0 and then we can find Ξl1 ∈ Ξ0 with Ξl1 ≺ Ξ0

such that Ξl1 /∈ M2,0. As in the above cases, let (Ξl1,ηk
)k∈N the sequence with

Ξl1,ηk
∈ Ξ0, for all k, such that dH(Ξl1,ηk

, Ξl1)
k→∞−−−−→ 0. From (HG) we have

that Ξl1,ηk
≺ Ξηk

for all k big enough, but since Ξηk
∈ N3,ηk

for each k, then
Ξl1,ηk

∈ M2,ηk
for each k, but then Ξl1 must be in N1,0 ∪ N2,0 =M2,0, which

contradicts the way it was chosen.
The argument must stop in a finite number of steps and so the proof is

finished. �
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