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POSITIVE SOLUTIONS FOR A 2nTH-ORDER
p-LAPLACIAN BOUNDARY VALUE PROBLEM

INVOLVING ALL EVEN DERIVATIVES

Jiafa Xu — Zhongli Wei — Youzheng Ding

Abstract. In this paper, we investigate the existence and multiplicity of

positive solutions for the following 2nth-order p-Laplacian boundary value
problem

8><
>:

−(((−1)n−1x(2n−1))p−1)′

= f(t, x,−x′′, . . . , (−1)n−1x(2n−2)) for t ∈ [0, 1],

x(2i)(0) = x(2i+1)(1) = 0 for i = 0, . . . , n− 1,

where n ≥ 1 and f ∈ C([0, 1] × Rn
+, R+)(R+ := [0,∞)) depends on x

and all derivatives of even orders. Based on a priori estimates achieved by
utilizing properties of concave functions and Jensen’s integral inequalities,

we use fixed point index theory to establish our main results. Moreover,

our nonlinearity f is allowed to grow superlinearly and sublinearly.
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1. Introduction

The paper mainly concerns with the existence and multiplicity of positive
solutions for the following 2nth-order p-Laplacian boundary value problem in-
volving all even derivatives

(1.1)


−(((−1)n−1x(2n−1))p−1)′

= f(t, x,−x′′, . . . , (−1)n−1x(2n−2)) for t ∈ [0, 1],

x(2i)(0) = x(2i+1)(1) = 0 for i = 0, . . . , n− 1,

where f ∈ C([0, 1] × Rn
+,R+). Here, by a positive solution of (1.1) we mean

a function u ∈ C2n−1[0, 1] such that (u(2n−1))p−1 ∈ C[0, 1], u(t) > 0 for t ∈ (0, 1]
and u solves (1.1).

The so-called Lidstone problem{
(−1)nu(2n) = f(t, u,−u′′, . . . , (−1)n−1u(2n−2)),

u(2i)(0) = u(2i)(1) = 0, i = 0, . . . , n− 1,

which f involves all even derivatives explicitly, arises in many different areas
of applied mathematics and physics, and has been extensively studied in recent
years, for more details, the reader is referred to [1]–[5], [8], [10]–[13], [22], [24],
and references cited therein.

In [28], Z. Yang studied the existence and uniqueness of positive solutions
for the generalized Lidstone problem

(−1)nu(2n) = f(t, u,−u′′, . . . , (−1)n−1u(2n−2)),

au(2i)(0)− bu(2i+1)(0) = 0 for i = 0, . . . , n− 1,

cu(2i)(1) + du(2i+1)(1) = 0 for i = 0, . . . , n− 1.

where a, b, c, d ≥ 0 with ac + ad + bc > 0 and f ∈ C([0, 1] × Rn
+,R+). The

main results obtained in [28] are formulated in terms of spectral radii of some
associated linear integral operators and thus can be viewed as extensions of
corresponding sharp results for the case n = 1 due to Z. Liu et al. [21].

Meanwhile, because equations of the p-Laplacian form occur in the study of
non-Newtonian fluid theory and the turbulent flow of a gas in a porous medium.
Since 1980s, there exist a very large number of papers devoted to the existence
of solutions for differential equations with p-Laplacian, see, for instance, [6], [7],
[9], [14], [15], [18]–[20], [25], [27], [29]–[31] and references therein.

However, the existence of positive solutions for p-Laplacian equation with
Lidstone boundary value problems has not been extensively studied yet. In [16],
Y. Guo and W. Ge considered the following boundary value problems{

(Φ(y(2n−1)))′ = f(t, y, y′′, . . . , y(2n−2)) for 0 ≤ t ≤ 1,

y(2i)(0) = y(2i)(1) = 0 for i = 0, . . . , n− 1,
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where f ∈ C([0, 1]×Rn,R)(R := (−∞,∞)). Some growth conditions are imposed
on f which yield the existence of at least two symmetric positive solutions by
using a fixed point theorem on cones. An interesting feature in [16] is that the
nonlinearity f may be sign-changing.

In [23], Wei et al. considered the existence of positive solutions for the follow-
ing four-point boundary value problems with higher-order p-Laplacian operator
with the nonlinear f involving all derivatives

(BVP)



(φp(u(n−1)))′ + g(t)f(u(t), u′(t), . . . , u(n−2)(t)) = 0,

t ∈ (0, 1), n ≥ 3,

(BC)


u(i)(0) = 0, 0 ≤ i ≤ n− 3,

αu(n−1)(0)− βu(n−2)(ξ) = 0, n ≥ 3,

γu(n−1)(1) + δu(n−2)(η) = 0, n ≥ 3,

where 0 < ξ < η < 1, α > 0, β ≥ 0, γ > 0, δ ≥ 0. By using fixed-point
index theory, they obtained the existence of positive solution and many positive
solutions for the above problem. J. Zhao and W. Ge [32] reconsidered the above
problem and improved the corresponding results in [23] to some extend.

Motivated by the works mentioned above, in this paper, we discuss the pos-
itive solutions for (1.1). To overcome the difficulty resulting from even deriva-
tives, we first transform (1.1) into a boundary value problem for an associated
second-order integro-ordinary differential equation. Then, using fixed point in-
dex theory, combined with a priori estimates achieved by utilizing some prop-
erties of concave functions, properties including Jensen’s inequalities, we obtain
some results on the existence and multiplicity of positive solutions for (1.1). Nev-
ertheless, our methodology and results in this paper are entirely different from
those in the papers cited above. We observe that if p = 2, then (1.1) reduces to
the following Lidstone problem

(1.2)

{
(−1)nx(2n) = f(t, x,−x′′, . . . , (−1)n−1x(2n−2)) for t ∈ [0, 1],

x(2i)(0) = x(2i+1)(1) = 0 for i = 0, . . . , n− 1.

It is of interest to note that we obtain some connections between (1.1) and (1.2)
by repeatedly invoking Jensen’s integral inequalities in our proofs. This method-
ology is initially put forward by Jiafa Xu and Zhilin Yang in [26]. However, this
paper deals with the nonlinearity involving all even derivatives, while the non-
linearity of [26] is independent of derivatives. Thus our main results extend and
improve the corresponding ones in [26].

This paper is organized as follows. Section 2 contains some preliminary
results. Section 3 is devoted to the existence and multiplicity of positive solutions
for (1.1).
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2. Preliminaries

The basic space used in this paper is E := C[0, 1]. It is well known that E is
a real Banach space with the norm ‖ · ‖ defined by ‖u‖ := maxt∈[0,1] |u(t)|. Put
P := {u ∈ E : u(t) ≥ 0, for all t ∈ [0, 1]}, then P is a cone on E. We denote
Bρ := {u ∈ E : ‖u‖ < ρ} for ρ > 0 in the sequel.

Let

u := (−1)n−1x(2n−2), (Bnu)(t) :=
∫ 1

0

Gn(t, s)u(s) ds,

where

G1(t, s) = min{t, s}, Gn(t, s) =
∫ 1

0

G1(t, τ)Gn−1(τ, s) dτ, t, s ∈ [0, 1], n ≥ 2.

It is easy to see that problem (1.1) is equivalent to −((u′)p−1)′ = f

(
t, (Bn−1u)(t), (Bn−2u)(t), . . . , (B1u)(t), u(t)

)
,

u(0) = u′(1) = 0,

which can be written in the form

u(t) =
∫ t

0

( ∫ 1

s

f(τ, (Bn−1u)(τ), . . . , (B1u)(τ), u(τ)) dτ
)1/(p−1)

ds

:= (Au)(t).

Clearly, u is increasing on [0, 1]. Note that if f ∈ C([0, 1]×Rn
+,R+), then A:P →

P is a completely continuous operator. Moreover, we have by the definition
of Gn, 0 ≤ Gn(t, s) ≤ Gn−1(t, s) ≤ . . . ≤ G1(t, s) ≤ 1.

Lemma 2.1. Let ψ(t) := sinπt/2 and λ1 = π2/4. Then ψ ∈ P \ {0} and

(2.1) ψ(s) = λi
1

∫ 1

0

Gi(t, s)ψ(t) dt = λi
1(Biψ)(s) for i = 1, 2, . . .

Lemma 2.2. Let u ∈ C[0, 1] is concave and increasing on [0,1] and u(0) = 0.
Then ∫ 1

0

u(t)ψ(t) dt ≥ 4
π2
‖u‖.

Proof. Since maxt∈[0,1] u(t) = u(1) = ‖u‖, then∫ 1

0

u(t)ψ(t) dt =
∫ 1

0

u(t · 1 + (1− t) · 0)ψ(t) dt ≥ u(1)
∫ 1

0

tψ(t) dt =
4
π2
‖u‖. �

Lemma 2.3 ([17]). Let Ω ⊂ E be a bounded open set and A: Ω ∩ P → P is
a completely continuous operator. If there exists v0 ∈ P \{0} such that v−Av 6=
λv0 for all v ∈ ∂Ω ∩ P and λ ≥ 0, then i(A,Ω ∩ P, P ) = 0.
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Lemma 2.4 ([17]). Let Ω ⊂ E be a bounded open set with 0 ∈ Ω. Suppose
A: Ω∩P → P is a completely continuous operator. If v 6= λAv for all v ∈ ∂Ω∩P
and 0 ≤ λ ≤ 1, then i(A,Ω ∩ P, P ) = 1.

Lemma 2.5. Let Ω ⊂ E be a bounded open set. Suppose A: Ω ∩ P → P

is a completely continuous operator. If ‖Au‖ < ‖u‖ for all u ∈ ∂Ω ∩ P , then
i(A,Ω ∩ P, P ) = 1.

Proof. We first claim u 6= λAu, for all u ∈ ∂Ω∩P , λ ∈ [0, 1] is satisfied. If
the claim is false, there exist u0 ∈ ∂Ω∩P and λ0 ∈ [0, 1] such that u0 = λ0Au0.
This implies ‖u0‖ = ‖λ0Au0‖ ≤ ‖Au0‖, contradicting ‖Au‖ < ‖u‖ for all u ∈
∂Ω ∩ P and 0 ≤ λ ≤ 1. Consequently, the above claim holds. By Lemma 2.4,
we find i(A,Ω ∩ P, P ) = 1. �

Lemma 2.6 (Jensen’s inequalities). Let θ > 0, x, y ≥ 0 and ϕ∈C([0, 1],R+).
Then( ∫ 1

0

ϕ(t) dt
)θ

≤
∫ 1

0

(ϕ(t))θ dt

and xθ + yθ ≤ (x+ y)θ ≤ 2θ−1xθ + 2θ−1yθ, for all θ ≥ 1,

and( ∫ 1

0

ϕ(t) dt
)θ

≥
∫ 1

0

(ϕ(t))θ dt

and 2θ−1xθ + 2θ−1yθ ≤ (x+ y)θ ≤ xθ + yθ, for all 0 < θ ≤ 1.

3. Main results

For the reason of notational brevity, we denote by y = (y1, . . . , yn) ∈ Rn
+,

p∗ := min{1, p− 1}, p∗ := max{1, p− 1},

βp :=

[
1
/

2p∗−1

(
(n− 1)p∗−1

n∑
i=2

(
4
π2

)i

+
4
π2

)](p−1)/p∗

,

αp :=

[
1
/

2p∗−1

(
(n− 1)p∗−1

n∑
i=2

(
4
π2

)i

+
4
π2

)](p−1)/p∗

.

We now list our hypotheses.

(H1) f ∈ C([0, 1]× Rn
+,R+).

(H2) There exist a1 > βp and c > 0 such that

f(t, y) ≥ a1

( n∑
i=1

yi

)p−1

− c for all y ∈ Rn
+ and t ∈ [0, 1].
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(H3) There exist b1 ∈ (0, αp) and r > 0 such that

f(t, y) ≤ b1

( n∑
i=1

yi

)p−1

for all y ∈ [0, r]n and t ∈ [0, 1].

(H4) There exist a2 > βp and r > 0 such that

f(t, y) ≥ a2

( n∑
i=1

yi

)p−1

for all y ∈ [0, r]n and t ∈ [0, 1].

(H5) There exist b2 ∈ (0, αp) and c > 0 such that

f(t, y) ≤ b2

( n∑
i=1

yi

)p−1

+ c for all y ∈ Rn
+ and t ∈ [0, 1].

(H6) There are ζ > 0 and ω ∈ (0, p/(p− 1)) such that the inequality f(t, y) <
ωp−1ζp−1 holds for all y ∈ [0, ζ]n and t ∈ [0, 1].

Theorem 3.1. Suppose that (H1)–(H3) are satisfied. Then (1.1) has at least
one positive solution.

Proof. Let M1 := {u ∈ P : u = Au + λψ for some λ ≥ 0}, where ψ(t) is
determined by Lemma 2.1. We claim M1 is bounded. Indeed, u ∈ M1 implies u
is concave and u(t) ≥ (Au)(t). For any u ∈ M1, by definition we obtain

u(t) ≥
∫ t

0

( ∫ 1

s

f(τ, (Bn−1u)(τ), . . . , (B1u)(τ), u(τ)) dτ
)1/(p−1)

ds.

Notice that p∗, p∗/(p−1) ∈ (0, 1]. Now, by Jensen’s inequality and (H2), we find

(3.1) up∗(t) ≥
[ ∫ t

0

( ∫ 1

s

f(τ, (Bn−1u)(τ), . . . , (B1u)(τ), u(τ)) dτ
)1/(p−1)

ds

]p∗

≥
∫ t

0

∫ 1

s

fp∗/(p−1)(τ, (Bn−1u)(τ), . . . , (B1u)(τ), u(τ)) dτ ds

=
∫ 1

0

G1(t, s)fp∗/(p−1)(s, (Bn−1u)(s), . . . , (B1u)(s), u(s)) ds

≥
∫ 1

0

G1(t, s)
[
a1

( n−1∑
i=1

(Biu)(s) + u(s)
)p−1

− c

]p∗/(p−1)

ds

≥ ap∗/(p−1)
1

∫ 1

0

G1(t, s)
( n−1∑

i=1

(Biu)(s) + u(s)
)p∗

ds

− cp∗/(p−1)

∫ 1

0

G1(t, s) ds

≥ 2p∗−1a
p∗/(p−1)
1

∫ 1

0

G1(t, s)
(( n−1∑

i=1

(Biu)(s)
)p∗

+ up∗(s)
)
ds
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− cp∗/(p−1)

∫ 1

0

G1(t, s) ds.

Let

(3.2) G(s, τ) :=
Gn−1(s, τ) + . . .+G1(s, τ)

n− 1
∈ [0, 1].

Combining this and (3.1) together Jensen’s inequality, we obtain

up∗(t) ≥ 2p∗−1a
p∗/(p−1)
1

∫ 1

0

G1(t, s)
(( ∫ 1

0

(n− 1)G(s, τ)u(τ) dτ
)p∗

+ up∗(s)
)
ds

− cp∗/(p−1)

∫ 1

0

G1(t, s) ds

≥ 2p∗−1a
p∗/(p−1)
1

∫ 1

0

G1(t, s)
(

(n− 1)p∗

∫ 1

0

G(s, τ)up∗(τ) dτ + up∗(s)
)
ds

− cp∗/(p−1)

∫ 1

0

G1(t, s) ds

=(2n− 2)p∗−1a
p∗/(p−1)
1

n∑
i=2

∫ 1

0

Gi(t, s)up∗(s) ds

+ 2p∗−1a
p∗/(p−1)
1

∫ 1

0

G1(t, s)up∗(s) ds− cp∗/(p−1)

∫ 1

0

G1(t, s) ds.

Multiply the both sides of the above by ψ(t) and integrate over [0, 1] and use
(2.1) to obtain∫ 1

0

up∗(t)ψ(t) dt ≥ (2n− 2)p∗−1a
p∗/(p−1)
1

n∑
i=2

λ−i
1

∫ 1

0

up∗(t)ψ(t) dt

+ 2p∗−1a
p∗/(p−1)
1 λ−1

1

∫ 1

0

up∗(t)ψ(t) dt− 8cp∗/(p−1)

π3

and thus∫ 1

0

up∗(t)ψ(t) dt

≤ 8cp∗/(p−1)

/
π3

[
2p∗−1a

p∗/(p−1)
1

(
(n− 1)p∗−1

n∑
i=2

(
4
π2

)i

+
4
π2

)
− 1

]
:= N1.

Recall that every u ∈ M1 is concave and increasing on [0, 1]. So is up∗ with
p∗ ∈ (0, 1]. Now Lemma 2.2 yields

‖up∗‖ ≤ π2

4
N1 for all u ∈ M1,

which implies the boundedness of M1, as claimed. Taking R > sup{‖u‖ : u ∈
M1} and R > r (r is defined by (H3)), we have u−Au 6= λψ, for all u ∈ ∂BR∩P ,
λ ≥ 0. Now, by virtue of Lemma 2.3, we obtain

(3.3) i(A,BR ∩ P, P ) = 0.
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Let M2 := {u ∈ Br ∩ P : u = λAu for some λ ∈ [0, 1]}. We shall prove
M2 = {0}.

Indeed, if u ∈ M2, we have for any u ∈ Br ∩ P

u(t) ≤
∫ t

0

( ∫ 1

s

f(τ, (Bn−1u)(τ), . . . , (B1u)(τ), u(τ)) dτ
)1/(p−1)

ds.

Note that p∗, p∗/(p − 1) ≥ 1. Now by (H3), (3.2) and Jensen’s inequality, we
obtain

up∗(t) ≤
[ ∫ t

0

( ∫ 1

s

f(τ, (Bn−1u)(τ), . . . , (B1u)(τ), u(τ)) dτ
)1/(p−1)

ds

]p∗

≤
∫ t

0

∫ 1

s

fp∗/(p−1)(τ, (Bn−1u)(τ), . . . , (B1u)(τ), u(τ)) dτ ds

=
∫ 1

0

G1(t, s)fp∗/(p−1)(s, (Bn−1u)(s), . . . , (B1u)(s), u(s)) ds

≤
∫ 1

0

G1(t, s)b
p∗/(p−1)
1

[ n−1∑
i=1

(Biu)(s) + u(s)
]p∗

ds

≤ 2p∗−1b
p∗/(p−1)
1

∫ 1

0

G1(t, s)
[( n−1∑

i=1

(Biu)(s)
)p∗

+ up∗(s)
]
ds

=2p∗−1b
p∗/(p−1)
1

∫ 1

0

G1(t, s)
[(∫ 1

0

(n− 1)G(s, τ)u(τ) dτ
)p∗

+ up∗(s)
]
ds

≤ 2p∗−1b
p∗/(p−1)
1

∫ 1

0

G1(t, s)
[
(n− 1)p∗

∫ 1

0

G(s, τ)up∗(τ) dτ + up∗(s)
]
ds

=(2n− 2)p∗−1b
p∗/(p−1)
1

n∑
i=2

∫ 1

0

Gi(t, s)up∗(s) ds

+ 2p∗−1b
p∗/(p−1)
1

∫ 1

0

G1(t, s)up∗(s) ds.

Multiply the both sides of the above by ψ(t) and integrate over [0, 1] and use
(2.1) to obtain∫ 1

0

up∗(t)ψ(t) dt ≤ (2n− 2)p∗−1b
p∗/(p−1)
1

n∑
i=2

λ−i
1

∫ 1

0

up∗(t)ψ(t) dt

+ 2p∗−1b
p∗/(p−1)
1 λ−1

1

∫ 1

0

up∗(t)ψ(t) dt.

Therefore,
∫ 1

0
up∗(t)ψ(t) dt = 0, whence u(t) ≡ 0, for all u ∈ M2. As a result,

M2 = {0}, as claimed. Consequently,

u 6= λAu for all u ∈ ∂Br ∩ P, λ ∈ [0, 1].
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Now Lemma 2.4 yields i(A,Br ∩ P, P ) = 1. Combining this with (3.3) gives

i(A, (BR \Br) ∩ P, P ) = 0− 1 = −1.

Hence the operator A has at least one fixed point on (BR \Br)∩P and therefore
(1.1) has at least one positive solution. �

Theorem 3.2. Suppose that (H1), (H4) and (H5) are satisfied. Then (1.1)
has at least one positive solution.

Proof. Let M3 := {u ∈ Br ∩P : u = Au+ λψ for some λ ≥ 0}, where ψ(t)
is determined by Lemma 2.1. We claim M3 ⊂ {0}(this indicates M3 is either
M3 = ∅ or M3 = {0}). Indeed, if u ∈ M3, then we have u ≥ Au by definition.
Consequently, for all u ∈ M3,

u(t) ≥
∫ t

0

( ∫ 1

s

f(τ, (Bn−1u)(τ), . . . , (B1u)(τ), u(τ)) dτ
)1/(p−1)

ds.

Recall that p∗, p∗/(p − 1) ∈ (0, 1]. Now by (H4), (3.2) and Jensen’s inequality,
we obtain

up∗(t) ≥
[ ∫ t

0

( ∫ 1

s

f(τ, (Bn−1u)(τ), . . . , (B1u)(τ), u(τ)) dτ
)1/(p−1)

ds

]p∗

≥
∫ t

0

∫ 1

s

fp∗/(p−1)(τ, (Bn−1u)(τ), . . . , (B1u)(τ), u(τ)) dτ ds

=
∫ 1

0

G1(t, s)fp∗/(p−1)(s, (Bn−1u)(s), . . . , (B1u)(s), u(s)) ds

≥
∫ 1

0

G1(t, s)a
p∗/(p−1)
2

[ n−1∑
i=1

(Biu)(s) + u(s)
]p∗

ds

≥ 2p∗−1a
p∗/(p−1)
2

∫ 1

0

G1(t, s)
[(∫ 1

0

(n− 1)G(s, τ)u(τ) dτ
)p∗

+ up∗(s)
]
ds

≥ (2n− 2)p∗−1a
p∗/(p−1)
2

n∑
i=2

∫ 1

0

Gi(t, s)up∗(s) ds

+ 2p∗−1a
p∗/(p−1)
2

∫ 1

0

G1(t, s)up∗(s) ds.

Multiply the both sides of the above by ψ(t) and integrate over [0, 1] and use
(2.1) to obtain∫ 1

0

up∗(t)ψ(t) dt ≥ (2n− 2)p∗−1a
p∗/(p−1)
2

n∑
i=2

λ−i
1

∫ 1

0

up∗(t)ψ(t) dt

+ 2p∗−1a
p∗/(p−1)
2 λ−1

1

∫ 1

0

up∗(t)ψ(t) dt,
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so that
∫ 1

0
up∗(t)ψ(t) dt = 0, whence u(t) ≡ 0, for all u ∈ M3. Therefore, we

claim M3 ⊂ {0}. As a result of this, we have

u−Au 6= λψ, for all u ∈ ∂Br ∩ P, λ ≥ 0.

Now Lemma 2.3 gives

(3.4) i(A,Br ∩ P, P ) = 0.

Let M4 := {u ∈ P : u = λAu for some λ ∈ [0, 1]}. We assert M4 is bounded.
Indeed, if u ∈ M4, then u is concave and u ≤ Au, which can be written in the
form

u(t) ≤
∫ t

0

( ∫ 1

s

f(τ, (Bn−1u)(τ), . . . , (B1u)(τ), u(τ)) dτ
)1/(p−1)

ds,

for all u ∈ M4. Recall that p∗, p∗/(p− 1) ≥ 1. Now by (H5), (3.2) and Jensen’s
inequality, we obtain

(3.5) up∗(t) ≤
[ ∫ t

0

( ∫ 1

s

f(τ, (Bn−1u)(τ), . . . , (B1u)(τ), u(τ)) dτ
)1/(p−1)

ds

]p∗

≤
∫ t

0

∫ 1

s

fp∗/(p−1)(τ, (Bn−1u)(τ), . . . , (B1u)(τ), u(τ)) dτ ds

=
∫ 1

0

G1(t, s)fp∗/(p−1)(s, (Bn−1u)(s), . . . , (B1u)(s), u(s)) ds

≤
∫ 1

0

G1(t, s)
[
b2

( n−1∑
i=1

(Biu)(s) + u(s)
)p−1

+ c

]p∗/(p−1)

ds

≤ bp
∗/(p−1)

3

∫ 1

0

G1(t, s)
( n−1∑

i=1

(Biu)(s) + u(s)
)p∗

ds

+ c
p∗/(p−1)
1

∫ 1

0

G1(t, s) ds

≤ 2p∗−1b
p∗/(p−1)
3

∫ 1

0

G1(t, s)
[( n−1∑

i=1

(Biu)(s)
)p∗

+ up∗(s)
]
ds

+ c
p∗/(p−1)
1

∫ 1

0

G1(t, s) ds

≤ (2n− 2)p∗−1b
p∗/(p−1)
3

n∑
i=2

∫ 1

0

Gi(t, s)up∗(s) ds

+ 2p∗−1b
p∗/(p−1)
3

∫ 1

0

G1(t, s)up∗(s) ds

+ c
p∗/(p−1)
1

∫ 1

0

G1(t, s) ds
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for all u ∈ M4, b3 ∈ (b2, αp) and c1 > 0 being chosen so that

(b2z + c)p∗/(p−1) ≤ b
p∗/(p−1)
3 zp∗/(p−1) + c

p∗/(p−1)
1 , for all z ≥ 0.

Multiply the both sides of (3.5) by ψ(t) and integrate over [0, 1] and use (2.1) to
obtain∫ 1

0

up∗(t)ψ(t) dt ≤ (2n− 2)p∗−1b
p∗/(p−1)
3

n∑
i=2

λ−i
1

∫ 1

0

up∗(t)ψ(t) dt

+ 2p∗−1b
p∗/(p−1)
3 λ−1

1

∫ 1

0

up∗(t)ψ(t) dt+
8cp

∗/(p−1)
1

π3

and thus∫ 1

0

up∗(t)ψ(t) dt

≤ 8cp
∗/(p−1)

1

/
π3

[
1− 2p∗−1b

p∗/(p−1)
3

(
(n− 1)p∗−1

n∑
i=2

(
4
π2

)i

+
4
π2

)]
:= N2.

This, together with Jensen’s inequality and ψ(t) ∈ [0, 1], leads to

∫ 1

0

u(t)ψ(t) dt ≤
( ∫ 1

0

up∗(t)ψp∗(t) dt
)1/p∗

≤ N
1/p∗

2

for all u ∈ M4. From Lemma 2.2, we find

‖u‖ ≤ π2

4
N

1/p∗

2 , for all u ∈ M4.

Now the boundedness of M4, as asserted. Taking R > sup{‖u‖ : u ∈ M4} and
R > r (r is defined by (H4)), we have

u 6= λAu, for all u ∈ ∂BR ∩ P, λ ∈ [0, 1].

Now Lemma 2.4 yields

i(A,BR ∩ P, P ) = 1.

Combining this with (3.4) gives

i(A, (BR \Br) ∩ P, P ) = 1− 0 = 1.

Hence the operator A has at least one fixed point on (BR \Br)∩P and therefore
(1.1) has at least one positive solution. �
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Theorem 3.3. Suppose that (H1), (H2), (H4) and (H6) are satisfied. Then
(1.1) has at least two positive solutions.

Proof. By (H6), we have

‖Au‖ = (Au)(1) =
∫ 1

0

( ∫ 1

s

f(τ, (Bn−1u)(τ), . . . , (B1u)(τ), u(τ)) dτ
)1/(p−1)

ds

≤
∫ 1

0

( ∫ 1

s

ωp−1ζp−1 dτ

)1/(p−1)

ds

=ωζ

∫ 1

0

(1− s)1/(p−1) ds =
ωζp

p− 1
< ζ

and thus ‖Au‖ < ‖u‖ for all u ∈ Bζ ∩ P . Now Lemma 2.5 yields

(3.6) i(A,Bζ ∩ P, P ) = 1.

On the other hand, in view of (H2) and (H4), we may choose R > ζ and r ∈ (0, ζ)
so that (3.3) and (3.4) hold (see the proofs of Theorems 3.1 and 3.2). Combining
(3.3), (3.4) and (3.6), we obtain

i(A, (BR \Bζ) ∩ P, P ) = 0− 1 = −1, i(A, (Bζ \Br) ∩ P, P ) = 1− 0 = 1.

Hence A has at least two fixed points, one on(BR \ Bζ) ∩ P and the other on
(Bζ \Br) ∩ P . This proves that (1.1) has at least two positive solutions. �

4. Examples

In this section we offer two examples to illustrate our main results in Sec-
tion 3.

Example 4.1. Let

f(t, y) :=
( n∑

i=1

yi

)α

, t ∈ [0, 1], y ∈ Rn
+,

where α ∈ (0, p− 1)∪ (p− 1,∞). If α ∈ (p− 1,∞), then (H2) and (H3) hold. If
α ∈ (0, p− 1), then (H4) and (H5) are satisfied.

Example 4.2. Let

f(t, y) = η

(( n∑
i=1

yi

)a

+
( n∑

i=1

yi

)b)
,

where 0 < a < p − 1 < b, 0 < η < ωp−1/(na + nb). Then (H2), (H4) and (H6)
are satisfied with ζ = 1.
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