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CONLEY INDEX OF ISOLATED EQUILIBRIA

MARTIN KELL

ABSTRACT. In this paper we study stable isolated invariant sets and show
that the zeroth singular homology of the Conley index characterizes stabil-
ity completely. Furthermore, we investigate isolated mountain pass points
of gradient-like semiflows introduced by Hofer in [4] and show that the first
singular homology characterizes them completely.

The result of the last section shows that for reaction-diffusion equations

ut — Au = f(u),
ujpn =0,

the Conley index of isolated mountain pass points is equal to 3! — the

pointed 1-sphere. Finally we generalize the result of [1, Proposition 3.3]
about mountain pass points to Alexander—Spanier cohomology.

1. Introduction

Some chemical reactions are described by so called reaction diffusion equa-
tions, i.e. (non-linear) parabolic partial differential equations like

ug — Au = f(u),
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374 M. KELL

for some @ C R™ with “nice” boundary. This equation induces a semiflow whose
equilibria are solutions of the non-linear partial differential equation

ujpn = 0.

Frequently these equilibria are isolated, that is there is no other equilibrium in
a small neighbourhood of a solution. A mathematical tool to describe equilibria is
the Conley homotopy index. This index has the advantage that it stays constant
under perturbations of the equation.

We are going to investigate two classes of isolated equilibria: stable equilibria
and “mountain pass” equilibria. If an isolated equilibrium wug attracts a small
neighbourhood we call it stable. In particular this means that there is no u
close to ug which leaves that neighbourhood. In connection with critical point
theory we will show that the frequently used statement “because the exit set is
non-empty, Hy is trivial” is true.

Mountain pass points were defined the first time by Hofer in [4] and the
topological degree was calculated in [5]. A complete characterization via critical
groups was given in [1]. All these calculations use the energy functional and its
Palais—Smale condition.

Here we use a given flow and its energy function directly. Sometimes this
will lead to simpler and/or more general result. We show that isolated stable
equilibria are completely characterized by the zeroth homology index and isolated
mountain pass points by the first homology index. Finally we will compute the
homotopy index of mountain pass points for reaction diffusion equations.

2. Preliminaries

2.1. Connectedness of topological spaces. In this section we will state
some simple result about path-connectedness and deformations of topological
spaces. For precise definitions see [8] or [2].

Let X be a topological space. For each x € X we will denote by PC, the
path component containing z, i.e. y € PC, if there is some continuous map
f:[0,1] — X such that f(0) =z and f(1) = y. In case of several spaces we will
use PCX.

If ) # A C X then the quotient space X/A is defined by identifying all points
of A to some point [A]. If A = () then X /A is the topological space X IT{p} with
product topology for some p ¢ X. Both quotient spaces are treated as pointed
space with base-point [A] (resp. p). In both cases the quotient map ¢: X — X/A

is continuous.

LEMMA 2.1. If ANPC, # 0 for all x € X then X/A is path-connected.
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ProOF. We will show that each [z] € X/A is path-connected to [A]. Let
x € [r] C X be some representative in [x]. Because A NPCZ is not empty there
is a continuous map f;:[0,1] — X with f(0) =z and f(1) € A.

Define f [0,1] — X/A as f:: q o f. This map is continuous because f and
q are. And

X/A XA
PCLy™ = PO

because f(0) = [z] and f(1) = [A]. Since [z] was arbitrary
X/A 5 ~X/A 5 ~X/A
PCl” =PCLy =Py
for all x,y € X, so that X/A = PC[)Z/]A is path-connected. |

Let X and Y be homotopy equivalent spaces. It can be easily shown that
if X is path-connected, so is Y. Thus we say that the homotopy class [X] is
path-connected if some representative X is path-connected.

A strong deformation retract of X onto a subset A is a continuous map
D: X x [0,1] — X with D(z,0) =z for all z € X and D(¢,a) = a for all (¢,a) €
[0,1] x A. In particular we see that this does defines a homotopy equivalence
and path-connectedness of X implies that of A. Furthermore, we can show the
following.

LEMMA 2.2. Write x ~pc y if  and y are in the same path-component of X.

Let
X = U PC,,
[z]€X/~pe
A C X be a subset of X and D: X x [0,1] — X be a strong deformation retract
of X onto A. Then
A= |J D@EC,,1)
[x]€X/~pe

is the decomposition of A into path-components.

PROOF. According to the previous statement D(PC,,1) C A is path-con-
nected and the union is equal to A. It remains to show that D(PC,, 1) is disjoint
from D(PC,, 1) if [z] # [y] € X/ ~pe-

Suppose this is not the case for some z,y € X with [z] # [y]. Then there is
a path f:[0,1] — A with f(0) = 2 and f(1) = y. Since f([0,1]) C A C X, this
is also a path in X and therefore [z] = [y] in X which is a contradiction. O

2.2. Homology. Finally we want to state a theorem about the first homol-
ogy of the pair (X, X \ {x¢}) for o € X. This result will play a crucial role
in the proof of the mountain pass characterization via the homotopy index. We
assume that the reader is familiar with concepts of relative singular homology
as given in [2].
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All maps in the following are assumed to be continuous. A map o: A" — X
denotes a singular n-simplex, i.e. a continuous map from an n-simplex A™ into X.
The sets C;(X, A) and H;(X, A) (C;(X) and H;(X) in case of A = 0)) will denote
the set of singular i-chains and respectively the i-th singular homology of the
pair A C X with coefficient in the (non-trivial) group G.

THEOREM 2.3. Let X be Hausdorff and xg € X. Suppose there is an open
neighbourhood U C X of xg such that for every a:[0,1] — U with «(0), a(1) # xq
there is a singular 2-chain B € Co(X) with

(a) OB = Bo — b1+ Be,
(b) 1,52 € C1(X \ {z0}),
(€) Bo = 04 with 04: A* — X the induced singular 1-chains of .

Then Hy(X,X \ {zo}) =0.

PROOF. Let o be a relative 1-cycle, its homology class is denoted by [o].
Using the lemma below we can assume that o is generated by finitely many
1-simplices with endpoints unequal to xy. Because the represented homology
class in such a case is the sum of the homology classes of the generating 1-
simplices times a coefficient it suffices to show that each 1-simplex o with da €
Co(X \ {x0}) represents the trivial relative homology class in Hy (X, X \ {z0}).
This is the case if there is a 8 € C2(X) and a v € C1(X \ {zo}) such that
a=068+1.

Let gq:[0,1] — X be the associated path of ¢, i.e. g5(t) = a(t,1 —1t).

Case 1. go([0,1]) € X \ {z0}. Then o € C1(X \ {zo}) so that we can choose
v =« and § = 0 and therefore [¢] is trivial in Hy (X, X \ {zo}).

Case 2. go([0,1]) C U, where U is the neighbourhood from the assumption
of the theorem. Then there is a singular 2-chain § € C2(X) with

0B = o — B1+ B2

such that By = @ and 3; € C1(X \ {xo}) for i = 1,2. Now choose v = 3; — 32 €
C1(X \ {zo}) then

OB+ =(Bo—P1+B2)+ b1 —B=a.
Therefore [a] is trivial in Hq(X, X \ {x0}).

Case 3. g. arbitrary. We claim that there is a decomposition {0 = ¢y <
o< loggr = 1} such that for g; = Go|[ti—1,ts]

92i41: [t2i tair1] — X \ {zo}, 92i: [tai—1,t2;] — U.

Assuming this, the cases 1 and 2 apply to the associated 1-simplices oy,,,, and,
resp. 0g,,, so that [o4,] =0 in H{(X, X \ {z0}). Therefore

[a]:[090]+"'+[092k+1]:0“!‘-..—1—0:07
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i.e. [a] is trivial in Hy (X, X \ {zo}).

The decomposition of the path can be achieved by noticing that both X\ {zo}
and U are open. Because X is Hausdorff we can find an open neighbourhood
V C U of xg such that g(0),g(1) ¢ V. Continuity of g implies A = g~ (X \ {zo})
and B = g~}(V) are disjoint unions of open intervals in [0,1]. Because [0, 1]
is compact finitely many of these intervals suffice to cover [0,1] and we can
assume no interval is completely contained in another one. This implies that
if two intervals intersect then one belongs to A and the other to B. Because
9(0),g(1) ¢ V the first and last interval must be in A. Splitting ¢g at some
arbitrary ¢ in the intersection of two neighbouring intervals we get the required
decomposition. O

LEMMA 2.4. Let 0 € C1(X) be a relative 1-cycle, i.e. 9o € C1(X \ {z0}).
Then the relative homology class of o can be represented by a relative 1-cycle o
such that

k
5= di;
i=1
where d; € G and 7;: A* — X is a 1-simplex with ;(0), 7;(1) # xo.

PRrROOF. For distinct singular 1-simplices o; and coefficients ¢; € G \ {0} we

have
l

o= g ;o + 0

i=1
where ¢ is a 1-cycle with the required property and zg € |do;| for each o;. The
constant 1-simplex o; = xg is an n-boundary hence ¢ and ¢ — ¢;0; represent the
same relative homology class. So we assume that all o; # xzg.

If do; = o — z9 = 0 then we can split the simplex into o} + o2 such that
01(0,1) = 02(1,0) # zo. Then o and o — ¢;0; + ;o) + ¢;0? represent the same
homology class, i.e. we can replace the 1-cycle by two 1-simplices which are not
1-cycles.

If p is a 1-simplex denote by p~ the reversed l-simplex, i.e. p~(¢,1 —¢) =
p(1 —t,t). Because p + p~ represents the trivial homology class in H;(X) and
Hy (X, X\ {z0}) for every 1-simplex p, we can replace each ¢;0; by —¢;0; . Thus
we can assume that do; = g — x; for all oy, i.e.

l 1
do = E C;To — E c;z; + 00.
i=1 i=1

Since o is a relative 1-cycle, i.e. g ¢ |do|, we must have 22:1 ¢i = 0. And
because ¢; # 0 it is obvious that [ # 1. If [ = 0 then we are done. So assume
[>1.
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Then o] + 03 represent a path from x; to 2 whose 1-simplex will be denoted
by o1 such that Jo; = x1 — 2. Because 01+07 represent the trivial homology, o
and 0/ = o+c1(0] +02—01)—c1(01+07 ) represent the same relative homology
class. ¢/ has the following form

l
o = (Cl + CQ)O‘Q + Zciai +0
=3

where o’ = o — ¢107 has the required form. After renaming we see that | was

reduced by at least 1. So after at most [ — 2 further steps we will be done. 0O

3. Conley index

In this section we are going to show that path-connectedness of the Con-
ley homotopy index of an isolated invariant set characterizes its the stability.
We assume the reader is familiar with the Conley index for semiflows on (not
necessarily locally compact) metric spaces as given in [6], [7].

A semiflow is a continuous map 7: D — X where X is a metric space and
D C RT x X the domain with 270 = z and a7 (t + s) = (znt)ws whenever this
is defined. Here we are going to use a7t for w(¢,z) if (¢t,z) € D.

An isolated invariant set (for 7) is a compact set S C X which admits a closed
isolating neighbourhood N such that the maximal invariant set A(N) is K. The
sets AT(N) and A~ (N) denote the positive and negative invariant sets in N, in
particular we have A(N) = AT(N)N A~ (N). The set w(x) is defined as usual
and for a full left solution o: R~ — X, i.e. o(s)nt = o(s+t) for ¢ > 0 and
s+t <0, a(o) is defined as the set of limit points for sequence (o (t,))nen with
t, — —oo. If 7 is a flow then a(c) = a(c(0)) for the usual definition of a(x).

We will use Rybakowski’s strongly m-admissibility (see [6, (H1), (H2)]) for
certain bounded and closed N C X, this roughly says for longer and longer or-
bits inside of N the sequence of endpoints has a convergent subsequence. Let
S be the set of isolated invariant sets admitting a strongly m-admissible isolat-
ing neighbourhood and let N'(K) be the set the strongly m-admissible isolating
neighbourhoods of K.

For each K in S there is a well-defined homotopy index h(K). This index is
the homotopy type quotient space (B/B~,[B~]) of a special pair (B, B~) where
B is a strongly m-admissible isolating block and B~ the exit set, i.e. all points
on the boundary of B either leave B or enter its interior immediately and there
are no solutions o: (—¢,e) — B with ¢(0) € 0B. Such a set always exists if
N € N(K) (see [6, Section 2] for definition and existence).

Now we are able to prove several results concerning stability of isolated in-

variant sets.
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THEOREM 3.1. Let X be locally path-connected and K € S be a path-con-
nected invariant set. Then, for N € N(K),

h(K) is path-connected < K # A~ (N) < Ho(h(K))=0.

Furthermore, if A= (N) = K, i.e. K is stable, then Ho(h(K)) = G.

PROOF. h(K) = [Y,yo] is path-connected if and only if Hy(Y,yo) = 0, so we
only need to show the first equivalence.

Let N1, Ny € N(K) be any admissible neighbourhoods. If y; € A= (Ny) \ K
then there is a full left solution ¢ in N through y, i.e. 0:R™ — N with ¢(0) =
y1. Since a(c) C K and K C int Ny there is a neighbourhood U C Ny of
some Y_oo € a(o) such that o(=T) € U. Because o(R™) C A~ (N;) \ K and
o(-T)¢ K, o(-T) e A~ (N2) \ K, i.e.

AT(N)\K #0 & A7(N2) \ K # 0.

This means we only need to show the result for one isolating neighbourhood.

So let N € N(K) be arbitrary. We use the fact that the semiflow 7 gives us
a natural path in N from z € N to znt € N if (t,x) € D and z7[0,t] C N.

If z € AT(N) then zn[0,t] C N for all ¢ > 0. Hence z and z7t are path-
connected for all t > 0.

Because w(z) C K C int N and X is locally path-connected there is a path-
connected neighbourhood U C N for some z € w(z) (w(x) # 0 because N is
strongly m-admissible). Since zwt,, — o for some t, — oo there is a ty > 0
such that 7wty € U. Therefore there is a path in U from x, to z7ty, i.e. x is
path-connected to zo, € K.

If y € A=(N) then there is a full left solution 0: R~ — N through y and
a(o) C K holds, which is non-empty by strong m-admissibility. So again, there
is a path-connected neighbourhood V' C N for some y_o, € a(c) and a T > 0
such that o(—T) € V. Hence y is path-connected to y_., € K via the paths
from y = (0) to o(—T) and from o(—T) t0 Y—oo-

Now let B C N be a strongly m-admissible, isolating block. Then for all
x € B\ A" (B) there is a t(z) € RT such that x7[0,¢(z)] C B and x7t(z) € B™.
In particular = is path-connected to zwt(xz) € B™.

If A=(N) = K then there is an isolating block B such that B~ = ) (see [7,
I-5.5]). Therefore B = A" (B). Since K is path-connected and any z € A™(B)
is path-connected to some k € K, B itself is path-connected, i.e.
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If A=(N) # K then A= (B) # K and every x € B\ A" (B) is connected
to some T € B~. Furthermore there is a y € A= (B) \ K such that y is path-
connected to a k € K and y € B~. Hence for all z € B

PCEZn B~ #40.

Using Lemma 2.1 we conclude that B/B~ is path-connected and because B is
an isolating block

Ho(h(K)) = Ho(B/B~,[B"]) = 0. U

If w(z) and a(o) consist of a single point we can construct a path from z to
Too € w(x) resp. from o (0) to y_oo € (o). This way we can drop the assumption
that X is locally path-connected.

LEMMA 3.2. Let K € S and N € N(K). Suppose for every x € AT (N)\ K
lw(z)] = 1. If A=(N) = K and K is path-connected then h(K) is not path-
connected and

Ho(h(K)) = G.
If A= (N) # K and for every path-component C of K there is a full left solution
o through somey € A~ (N)\ K with |a(c)] =1 and a(oc) C C. Then h(K) is
path-connected and

Hy(h(K)) = 0.

PROOF. Similarly to the previous lemma this statement does not depend on
the chosen isolating neighbourhood.

We will only construct the paths from z € AT(N) to K and from o(0) with
|a(o)] = 1 to K. The rest of the proof is the same as the previous one. We
define the functions f, g:[0,1] — N as follows

f(t):{xﬂlTT T€[0,1),

Too T=1, o € w(x),
-7

o 7€ 10,1),

Y- T=1, 9y« € a(y)

Since 7/(1 — 7) is continuous for 7 € [0,1), f and g are continuous in [0, 1).
Let 1 # 7, — 1, then ¢, := 7,/(1 — 7,) — o0. The sets {znt,}neny and
{o(—tn) = o(—2t,) 7ty }nen are precompact and every cluster point is in w(z) =
{s} C K resp. a(0) = {y_o} C K. Therefore f(7,) = Too and g(7,) — Y—oo,
i.e. f and g are continuous in [0, 1] with f(1),¢(1) € K. O
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THEOREM 3.3. Let {zo} = K € S and N € N(K). Then
AT(N)=K & h(K)=%"e Hy(MK))#0< Hy(h(K)) =G

and, if A= (N) = K, then there is a contractible isolating block B € N (K) with
B~ =0.

REMARK 3.4. Because path-connected spaces are also (quasi-)connected, the
result holds for Alexander-Spanier cohomology {H '} as well.

PrROOF. We only need to show the first equivalence. The rest follows from
the previous lemma.

Suppose A~ (N) = K, then we can choose an isolating block B C N with
B~ =( and B = A" (B). We define the following homotopy H: B x [0,1] — B

T
H(y.7) { yro—— TE [0,1),
i) T=1.

Since m: B x [0,00) — B is defined and therefore continuous, H is continuous
for all (y,7) € B x [0,1). So let (yn,7n) — (y,1) with 7,, # 1. Then t, =
Tn/(1 —7n) — 00, {H(Yn,Tn) = YnTtn}nen i precompact and every cluster
point is in A~ (N) = {x¢}, i.e. yn7t, — . Hence H is continuous.

Because H(z,0) =« and H(x,1) = xq for all x € B, H is a contraction of B
to x¢p € B and

hK) = [BI{p},p] = [{zo} I {p},p] = X°.

Conversely, let h(K) = X°. Then h(K) is not path-connected. Because
K = {0}, w(z) = {xo} for all z € AT(B) and a(c) = {x¢} for all full left
solutions ¢ in B. This means that A7(N) = K according to the previous
lemma. O

Finally we calculate the index for stable invariant sets which are local neigh-
bourhood retracts. To show that we need the following lemma which is a variant

for stable invariant set of a lemma in [6] used to prove the existence of isolating
blocks.

LEMMA 3.5 ([6, Lemma 2.1]). Let ) # K € S be stable and B € N(K) be
an isolating block with B~ = (. Define F: B — [0,1] by

F(z) := min{1, dist(z, K)}

and for some strictly increasing C*-diffeomorphism «:[0,00) — [1,2) define
g :B—[0,2] by

g (z) :=sup{a(t)F(znt) | 0 <t < co}.
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Then g~ is continuous and g~ (x) = 0 if and only if x € K. Furthermore,
t — g(xmt) is strictly decreasing for t € RT and x € B\ K.

Using the function g~ we can define a strong deformation retract of B which
ensures that the distance between the boundary of B and K is at most 4.

LEMMA 3.6. Under the assumptions above let 0 < § < 1 and define t5: B —
[0,00) by

ts(x) == tierﬂlé{t | g~ (zmt) < 0}

and define a deformation Hs: B x [0,1] — B by
Hs(z,7) = xn (1 - ts(x)).
Then ts and H are well-defined and continuous. In particular
dist(Hs(z,1),K) <46
and Hs(x,7) =z for all x € B with dist(z, K) < 4.

PROOF. Suppose ts is well-defined and continuous. Then H is a composition
of continuous functions and therefore continuous. Furthermore, if g~ (z) < 1 then
dist(z, K) < g~ (). Because g~ (zmts(x)) < 6 < 1 by definition of ¢5(z),

dist(Hys(z,1), K) < 6.

Now we show that ¢s5 is well-defined and continuous: Let z € B. Since
B~ =0, B= A"(B) and thus

dist(zwt, K) — 0 ast — oo.

Because K is compact, there is a sequence t,, — oo such that znt,, — 2* € K
and thus ¢~ (znt,) — g(z*) = 0, i.e. there is an N > 0 such that g~ (amty) < 0.
Because g~ is decreasing along orbits

g (zmt) < g (zmtn) <6

for t > ty, ie. ts(x) <ty < 0.

Now, let z, — x with z,,z € B. If t5(z) = 0, then g~ (z) < ¢ and thus
g (xn) — g (x) <9, ie. ts5(zy) — 0.

If there is an M > 0 such that ¢5(x) > M then g~ (zwM) > 0 and thus
g (zpmM) > § for large n, ie. ts(x,) > M. Similarly, if ¢5(x) < M, then
g (zmM) < g~ (ants(x)) < 6§ and ¢~ (z,mM) < 6 for large n, i.e. t5(z,) < M.
This shows that ts(z,) — t5(x), i.e. t5 is continuous. O
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DEFINITION 3.7 ((strong) local neighbourhood deformation retract). A sub-
set A of a topological space X is called a local neighbourhood deformation retract
if for every neighbourhood V of A there is neighbourhood U C V of A and
a continuous function D:U x [0,1] — U such that for all z € U and a € A

D(z,0) =z, D(a,1)=a

and D(z,1) € A. If in addition D(a,t) = a for all ¢ then A is called a strong
local neighbourhood deformation retract.

REMARK 3.8. If A is a (strong) local neighbourhood deformation retract
then A is homotopy equivalent to U from the definition. In particular the fol-
lowing theorem generalizes the Theorem 3.3 because stable isolated {z} € S are
locally contractible, i.e. local neighbourhood deformations retracts.

THEOREM 3.9. If K € § is stable and a local neighbourhood deformation
retract then h(K) = [K 11 {p},p].

PROOF. Because K is stable, there is an isolating block B € N (K) with
B~ = (. Since B is a neighbourhood of K and K a local neighbourhood defor-
mation retract, there is a neighbourhood U C B of K and a deformation retract
D:U x [0,1] = U.

Let Bs(z) :== {y € X | d(z,y) < 0}. Because U is a neighbourhood of K
there are d, > 0 such that B;, (z) C U for every z € K. Since K is compact and
{Bs, (z)}zck is an open cover of K, there are finitely many z1, ... ,z, € K such
that K C Us = U, Bs; (i) for 0 := max{d;}. In particular, for every z € Us,
dist(z, K) < .

Let Hs be the deformation of the previous lemma. Then Hs(z,7) = x for
x € Us and Hs(B,1) C Us C U. We define a deformation retract H: B x [0,1] —
B as follows

Hs(z,27) for 7 € 10,1/2],
H(.’,E, ) =
D(Hs(z,1),27 —1) for 7 € [1/2,1].
Because D and Hj are deformation retracts with image in B and Hs(B,1) C U,
this is well-defined and therefore continuous. In particular H(z,1) € K and

H(a,1) = a for x € B and a € K because Hs(a,7) = a and D(a,1) = a.
Therefore B and K are homotopy equivalent, i.e.

h(K) = [BTI {p},p] = [K 1T {p}, p]. O

4. Mountain pass points

In this section we show that the first singular homology characterizes moun-
tain pass points completely. Under further assumptions we will compute the
homotopy index in the next section.
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DEFINITION 4.1 (gradient-like semiflow). Let X be a metric space, m be
a (local) semiflow on X and E = {z € X | 0(t) = z is a solution of 7} be the set
of equilibria. 7 is called a gradient-like semifiow if there is a continuous function
f:X — R such that, for all x € X \ E, t — f(ant) is strictly decreasing in
0<t<w,:=sup{t>0]|(tz) e D}

NoTATION. We will use the following notation

fo=freX|fl@)<e),  fo={reX|fx)<d,
fe={zeX|fx)>c}, fo={reX|[f(x)>c}
andfé):fbmfo

DEFINITION 4.2 (mountain pass point [4]). Let 7 be a gradient-like semiflow
(w.r.t. f). An isolated equilibrium z¢ with f(z¢) = c is called mountain pass
point if there is a neighbourhood B’ of zy such that for any neighbourhood
B C B’ of gy, f¢N B\ {zp} is non-empty and not path-connected.

The main result of this section is the following theorem:

THEOREM 4.3 (homology index of mountain pass points). Let X be a Banach
space, i.e. a complete normed vector space, and let w be a gradient-like semiflow
(w.r.t. f) in an open set U C X. If {xo} € S is an isolated equilibrium then

xo s a mountain pass point < Hi(h({zo}); G) # 0.

REMARK 4.4. The if-part can be proven with the relaxed condition “X is lo-
cally path-connected in zy” and the “only if” part with “X is locally contractible
in 2¢” (we just need Hy(U) = 0 for a small neighbourhood U of ).

4.1. “If” part. We recall the following lemma from [7] which shows that
for gradient-like flows the exist set can be chosen “below” the energy level of xg
and that the critical groups are essentially the homology groups of the homotopy
index. Usually critical groups are used without a specific (semi)flow and results
are proven using Morse theory and the Palais—Smale condition on f. Here we
only assume continuity of f and strong m-admissibility of a neighbourhood of xg.

LEMMA 4.5 [7, 111-4.8,4.9]). Let {xo} € S with f(xz¢) = c. Then there exists
an isolating block B € N({xo}) with B~ C f¢¢ for some € > 0 and a strong
deformation retract p: B x [0,1] — B of B onto f°N B and

Hp(h({z0})) = Ho(f* N B, f* N B\{zo}) = Ho(f* N U, fCNU \ {z0})
for any neighbourhood U of xo and homology {H,}.

The following theorem is similar to the well-known result that for mountain
pass points the first critical group is non-zero. Instead of using an “artificial”
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pseudo-gradient flow defined via f we use the deformation of the previous lemma,
i.e. we will use the semiflow 7 directly.

THEOREM 4.6. Let X be locally path-connected in xo. If {zo} € S is a moun-
tain pass point for a gradient-like semiflow w (w.r.t. f) with f(xg) = ¢ then

Hi(h({zo})) #0
for the singular homology {H,}.

PROOF. Because {zg} € S, every neighbourhood U of zy contains some
U DN eN({xo}). Let B’ be as in Definition 4.2. Then there exists a strongly
m-admissible, isolating block B C B’ with B~ C f¢¢ for some ¢ > 0.

Let B = U,er
I = B/ ~pc. Because p from Lemma 4.5 is a strong deformation retract, p(Bq, 1)

B, be the decomposition of B into path-components with

is path-connected and equals f¢ N B,,.

According to Lemma 2.2

fnB=p(B,1)= | p(Ba,1) = | J N Ba.
a€cl aecl

Let B, be the path-component containing xy. Because B is a neighbourhood
of x¢ and X is locally path-connected in x(, there is a path-connected neighbour-
hood U C B of x¢. In particular U C B, so B, is the maximal, path-connected
neighbourhood of zg in B C B’.

Therefore C:= f°N By \ {20} is non-empty and not path-connected. Let
J = C/~pe. Then |J| > 1 and Hy(C) = GIV1.

Because B, is path-connected, so is f°N B, = p(Bx,1) and Ho(f°NB,) = G.
Obviously Ho(C) and Hy(f° N B,) are not isomorphic.

For the topological pair (f¢N B, C) the following sequence is exact

A H(F°0 B., C) 25 Ho(C) -2 Ho(f¢N B,) — 0.
Suppose now Hy(f¢N B, C) =0, then 0; = 0 and therefore
H()(C) = Ho(fc n B*),

which is a contradiction.
Finally B, \ {zo} = B, for all « € T\ {*} and

Hy(h(K)) = Hi(f°N B, f* N B\ {zo})

=H1(fcﬂB*7fcﬂB*\{$o})®< ) Hl(BavBoz)>
acl\{*}
=Hy(fN B, N B. \ {xo}) # 0. O
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COROLLARY 4.7. Under the assumptions of the previous theorem let B and
B, be chosen as in the proof. If, in addition, X is locally path-connected then
for every path-component C of f¢N B\ {xzo} there isay € A= (B)NC, i.e. the
path-component C' contains a full left solution (through y) leaving the isolating
block.

PROOF. Let & € f°N B, \ {zo} be arbitrary. Because f¢N B, is path-
connected, there is a path ¢:[0,1] — f°N B, with g(0) = = and g(1) = x.
Since [0, 1] is compact, {z¢} closed and g continuous, g~!({x¢}) is compact. Let
to = min{t € [0,1] | g(t) = zo}. Because g(0) # xo, to > 0 and o & ¢([0, ¢0))-

Therefore g([0,t9) C f¢N By \ {x0}. In particular ¢([0,%p)) is in the path-
component of f¢N B, \ {xo} containing x. If this wasn’t the case, then there
would be a t’ € [0,%9) such that there is no path in f°N B, \ {zo} between x and
g(t'). But h: [0,1] — feN B, \ {zo} with h(t) = g(t - to) is such a path, which is
a contradiction.

According to the proof of the previous theorem there is an ¢ > 0 such that
B~ C f¢. Choose 0 < § < e. Similarly to the proof of [7, III-4.8] there is
unique 7(x) € [0,00) for all z € B, N f¢_5\ {xo} such that f(znr(z)) =c—4.

Let 0 < t,, < ty be a sequence with t,, — ty. Because f and g are continuous
lime, 1y f(g(tn)) = f(z0) = ¢, so there is an N > 0 such that, for all n > N,

fg(tn)) > c—0.

W.l.o.g. we can choose a sequence t,, — to such that this always holds.

Let z,, = g(t,) and y,, = x,7r(x,). Obviously every z, and y, are in the
same path-component of f¢N B, \ {x¢}, which contains x.

Suppose there is an M < oo such that r(x,) < M. Then there is a subse-
quence n’ such that r(z, ) — 19 < co. Because z,, — x¢ and [6, Lemma 1.1]

Tpmr(Ty,) — Temrg = xo ¢ fc_‘s.

But f°? is closed and z,7r(x,) € f¢7°, i.e. the limit must be in f¢~°, which is
a contradiction.

So we can assume 7(z,) /" 0o. By [6, Lemma 1.1] {z,77(2y) fnen is precom-
pact and every cluster point z is in A~ (B) and therefore f(z) = f(zpmr(z,)) =
c— 0.

Choose a subsequence (z,/) such that y,» = z,7r(z,) — z* € A=(B)\
{zo}. We will finish the proof if we show that x and z* are path-connected in
fen B\ {xo}-

Suppose z* € 0B. Because B is an isolating block and A~ (B)NdB C B,
x* € BT C f°¢. But this is a contradiction because f(z*) =c—0§ > ¢ —e¢.
Therefore 2* is in the interior of B and in f¢Nint B, too. In particular f¢Nint B
is open and disjoint from {x¢}.
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Since X is locally path-connected, so is fc N int B and there is a path-
connected neighbourhood U C fc Nint B of x*. Because y,, — z*, there is
an N > 0 such that y,,» € U for all n > N.

So there is a continuous function h: [0, 1] — U with h(0) = 2* and h(1) = yy.
Because U C f*N B\ {0},

¥ ~pe YN ~pe & In fCN B\ {xo},

that is * and z are in the path-component of f¢N B\ {x¢} and therefore they
are in the same path-component of f¢N B, \ {zo}. O

4.2. “Only if” part. For the ,only if” part we will show that the assump-
tions of Theorem 2.3 are satisfied if xg is not a mountain pass point. First of all
let’s look at the converse of the definition of a mountain pass point

DEFINITION 4.8. An isolated equilibrium zg of a gradient-like semiflow 7
(w.r.t. f)is not a mountain pass point if for every neighbourhood B’ of x there
is a neighbourhood B C B’ of x( such that f¢N B\ {zo} is path-connected (the
empty set is path-connected).

From now on let X be a Banach space. With the help of Theorem 2.3 we
are now able to complete the proof:

PROOF OF THEOREM 4.3. Since X is a Banach space it is locally path-
connected and therefore U is locally path-connected, too. So Theorem 4.6 ap-
plies, i.e. if zy is a mountain pass point then H;(h({z¢})) # 0.

We will show the converse. Suppose x( is not a mountain pass point. Let
B and B, be chosen as in the proof of Theorem 4.6 such that B, is the path-
component of B containing xg. In addition, it was shown that

Hy(h({zo})) = Hi(f° 0 Bx, [N B\ {z0}).

Suppose f¢NB\{zo} = 0 then f°NB, = {xo} and therefore Hy(h({z0})) =
Hy({zo}) = 0. In particular z is stable if this happens.

So w.l.o.g. we can assume f¢N By \ {zo} # 0. Because X is locally convex
and B, is a neighbourhood of xg, there is a convex neighbourhood V' C B, of xg
(we only need a neighbourhood with H;(V) = 0). Since z¢ is not a mountain
pass point there is a neighbourhood U C V of zy such that fcNU \ {zo} is
path-connected.

If feNU\{zo} =0 then f¢NU = {zp} and according to Lemma 4.5

Hy(h({xo})) = Hi(f* N U, f*NU\A{zo}) = Hi({xo}) = 0.

Otherwise f¢NU\ {xo} is non-empty and path-connected. Let ag: [0,1] — feNU
any path with a(0), «(1) # x¢ and let * € fcNU \ {xo} be arbitrary. Because
fen U\ {zo} is path-connected, there are paths aj,as:[0,1] — fcNU \ {zo}
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such that ag(l) = a1(1), @1(0) = z* = a2(0) and az(1) = ap(0). Denote by
Bi = 04, the induced 1-chains. Then the 1-chain v = By — (1 + B2 is a 1-cycle,
i.e. Oy = 0. Since the image of «v; isin f°NU C VN (f°N B,) we regard 3; and
v as 1-chains in C1(V) as well as in C1(f°N B,).

Because Hq (V) = 0 there is a singular 2-chain 8 € C5(V) with 98 = ~.

Let p be the strong deformation retract of Lemma 4.5. Then ¢ = io
p(+,1):V — fen By, where i: p(V,1) — f¢N B, is the inclusion map, induces
a map ¢3:Cp (V) — Co(f° N By) on the singular n-chains. Since pjfenp, =
idfenp, and «;([0,1]) C f°N B, we have ¢4(8;) = 8;. Because ¢y is linear and
commutes with the boundary map 0

0(ps3) = ¢4(08) = ¢4(Bo — B1 + P2) = Bo — B1 + Pa.

Obviously f¢NU is a neighbourhood of z in f¢N B, and §; € C1(f°N B, \
{zo}) for i = 1,2 so that Theorem 2.3 applies and

Hl(fCOB*,fcﬁB*\{xo}):O O

4.3. Mountain pass lemma. Let 7 be a gradient-like, global semiflow
w.r.t. f on a locally path-connected space X such that X is strongly m-admissi-
ble. Let E be the set of equilibria in X. Then every isolated equilibrium z is in
S(m). Because 7 is gradient-like, w(x) C E for all x € X.

We want to show the existence of a mountain pass point in £. We define
Iy, for x,y € X as follows

Loy ={f € C([0,1], X) | f(0) = 2, f(1) = y}.

THEOREM 4.9. Suppose E is finite, for an x1 € E there is an isolating block
B e N({z1}) with f(z) > ¢ for allz € B and ¢ > ¢ = f({z1}) and there is an
zo € E\ {x1} with f(z2) < ¢ path-connected to x1, i.e. Uy, », # 0. Then there
s an equilibrium xg € E with

f(zo) = inf sup f(g(t)) >c.
gEle,wz t€[071]

If, in addition, there is a path g € Ty, », with sup,ejoq1] f(9(t)) = f(xo) then

there is a mountain pass point x,, € E with f(x,,) = f(xo).

REMARK 4.10. We believe that the existence of the path ¢ is necessary for
the equilibrium x,, with f(z,,) = f(x¢) to be a mountain pass point.

PROOF. Because I'y, ., # 0,

M:= inf sup f(g(t))
9ET 2 ay te[0,1]
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is defined and ¢ < ¢ < M < oco. So there is a sequence g,, € I'y, 5, such that

1
sup f(gn(t)) <M + —.
te(0,1] n

Let Eg = {z € E | f(z) = d}. Suppose Ej; = (). Because E is finite, there
is an N > 0 such that Fp.. =0 for all 0 <e <1/N.

Let € fM+1/N Because X is positive m-invariant and strongly m-admissible,
{x7t, }nen is precompact for some ¢, — oo. In particular every cluster point is
in w(z) C E. Choose a subsequence n' such that znt,, — z* € E. Because 7 is
gradient-like and Epjqe = 0 for all 0 < e < 1/N, f(z*) < M. This shows that
f(zmt,) < M for large 7/, i.e. for every x € fM+1/N there is a t(z) such that
flzmt) < M for t > t(z).

Because 7(-,t) and f are continuous, there is a neighbourhood U, of x such
that f(ynt) < M for y € U, and t > ¢(x).

Let gn € T'y, 4, be chosen as above. Then f(z) < M + 1/N for every
z € gn'([0,1]). Because [0,1] is compact, so is gn([0,1]) and there is a finite
cover Uy, ,...,U,, of gn(]0,1]) for y; € gn([0,1]).

Let T := maxt(y;) and define gn(t) = gn(t)7T. Because 7 is continuous
and gn(0),9n(1) € E, gy € I'y, 2, and supcpo 1) g (t) < M. But this is a con-
tradiction to the definition of M. Therefore Ep; # 0.

Suppose there is a g € I'y, », with ¢([0,1]) € f™. Let B, be an isolating
block of x € Eyy with By C fM~¢. We can choose B, such that B, N By, =10
for all z,y € Epy and = # y. Because fM N B, \ {z} is disjoint from AT (B,)
(see proof of [7, Theorem I11-4.8]), we have f(yrl) < M for all fM N B, \ {z}.
So if we define g(t) = g(t)m1 then g € I'y, », and

F7H M) Ng([0,1]) € Ear,

i.e. the maximum is only achieved on the set Fj;.
If there is no mountain pass point in Ej,;, then there are neighbourhoods
U, C B, such that fM NU, \ {z} is path-connected. So we can construct a path
h € Iy, 2, With supyep 1) f(h(t)) < M which avoids all x € Ep. (If MU N\{x}
is empty then z ¢ ¢([0,1]).) Again h(t) = h(t)r1 is in Iy, 2, and
sup f(h(t)) < M,
te[0,1]

which is a contradiction to the definition of M. Therefore there is a mountain
pass point z,,, € Ejy. O

This can be applied to the following case. The reaction diffusion equation

up — Au = f(u),

ujpn =0,
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for some open, bounded Q2 C R™ with “nice” boundary and a “nice” function f
induces a semiflow 7 on U C X C LP(Q) (see below). Furthermore, if u_ and
uy are two equilibria and u_(z) < uy(z) in €, then the set

C=luyus]i={ue X u(z) <ulz) <uy(r)}

is positive m-invariant and strongly m-admissible. If uy are stable in C, then
there is a mountain pass point ug in C, which is in the interior of C (see [4,
Theorem 1]). The result from the next section shows that h({ug}) = X1

5. Semilinear parabolic equations

Now we want to compute the homotopy index of mountain pass points of
parabolic equations completely. We only mention briefly the required definitions
and otherwise refer to [3] and [7, Chapter II].

DEFINITION 5.1. Let A be sectorial in a Banach space X and U C X¢
open where X for some « € [0,1) is the fractional Banach space induced by A.
Furthermore, let f: U — X be a locally Lipschitz continuous map. The following
equation is called an (autonomous) semilinear parabolic equation:

(5.1) = Au = f(u).

A solution of (5.1) through ug € U is a continuous map u: [0,ty) — X with
u(0) = ug such that u is differentiable in (0,ty) and u(t) € D(A) for t € (0,%o),
the map ¢ — f(u(t)) is locally Holder continuous in (0,t), [y [If(u(t))||dt < oo
for some a > 0 and (5.1) is satisfied in (0, ).

Assume below that the assumptions of Definition 5.1 hold and denote by 7
the induced flow which exists under the condition given in the definition (see [3]).

Let x¢ be an isolated equilibrium. Then it admits a strongly m-admissible
isolating neighbourhood. The linearization in xz( is defined as L := A — f'(x).
Set 0g(L) :=o(L)NiR and o< (L) := o(L)N{A € C | X < 0} and denote by Xy
and X_ the corresponding generalized eigenspaces. If og(L) is isolated in o (L),
Xo @ X_ is finite dimensional then according to the index product formula [7,
11-3.1]

h({zo},m) = h({ze},me) ANX™

where m = dim X_ | 7. is the center flow on a dim Xy-dimensional (local) center
manifold (see [3] or [7, II-2.1]) and {z.} is isolated for .. Combining this formula
and Theorem 4.3 we can compute the homotopy index for mountain pass points.

THEOREM 5.2. Suppose the assumptions above hold and 7 is gradient-like
w.r.t. some continuous map f. Furthermore, suppose the following holds

o s isolated and dim X_ =0 = dim Xy < 1.
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Then

xo is an isolated mountain pass point < h({xe}) = L.

PROOF. If z is an isolated equilibrium then {x¢} € S and thus
h({zo}, m) = h({zc}, me) AZ™,

where m = dim X_ and 7. is the reduced semiflow on the local center manifold.
In particular we have

Huri(h({2o}, ) = Himyi(h({ze}, me) AE™) = Hi(h({2c}, me)),
so that H;(h({zo}, 7)) =0 for j < m.

Suppose z( is a mountain pass point then

H,(h({x0}, 7)) # 0.

Because H;j(h({zo}, 7)) = 0 for j < m, we must have m < 1.
If m =1 then

0 # Hy(h({zo}, 7)) = Ho(h({zc}, 7))

Because g is isolated and thus x., Theorem 3.3 states that h({z.},7.) = X°
and therefore
h({zo},7) =2 A =%

If m = 0 then dim Xy, < 1. Suppose dim Xy = 0 then h({zo},7) =
h({ze},me) = X9 Thus Hy(h({zo},m) = 0 which is not possible. Hence
dim Xy = 1.

For one dimensional isolated equilibria we have

¥0 then Ho(h({z.},7)) # 0,
h({z},me) = ¢ B then Hy(h({z.}, 7)) # 0,
0  then H.(h({z.},7.)) =0.
Because
Hy(h({zc}, me)) = Hi(h({zo}, 7)) # 0,

only the second case can happen, i.e.
h({zo},7) = B° A h({zc}, 7)) = L.
It remains to show the “only if” part. Suppose h({z¢},m) = £!. Then
Hy(h({zo}, 7)) =G #0.

Because U C X“ is open, according to Theorem 4.3 zg is a mountain pass
point. ([l

REMARK 5.3. The conclusion “H; # 0 then h = %'” can also be made for
the Alexander-Spanier cohomology {H '} (also see Remark 3.4).



392 M. KELL

With the help of this theorem we are able to compute the homotopy index
of isolated mountain pass points for reaction diffusion equations completely: For
this type of equation A is the Laplacian —A on X = LP(Q) for some open and
bounded 2 C R™ with smooth boundary. If u € X is a solution of —Au = f(u)
and f'(u) € L*(2) then L = —A — f’(u) has simple principal eigenvalue. If we
assume that u;—Au = f(u) induces a semiflow on some X ¢ then the assumptions
of the previous theorem are satisfied and the homotopy index of a mountain pass
point is 3!.

Besides this we can prove a result for mountain pass points and critical groups
which is proven completely in [1, Proposition 3.3]. Instead of infinite dimensional
Morse theory we will use the homotopy index and generalize the statement to
Alexander—Spanier cohomology.

COROLLARY 5.4. Let U C H be an open neighbourhood of 0 in a Hilbert
space H, ¢:U — R a C?-function satisfying the Palais-Smale condition in 0 and
#(0) =0, Vo(0) =0, Vo(u) # 0 for u # 0. Furthermore, L = ¢"(0): H — H is
a Fredholm operator with finite Morse index m such that dimker L < 1 whenever
L > 0. Under these assumptions

0 is an isolated mountain pass point < h({0}) = X!
& Hi(¢"NU"NUN{0}) =Z & Hi(¢°NTU,¢"NU\{0}) #0

for {H,} either the singular homology {H,} or the Alexander—Spanier cohomo-
logy {H"}.

REMARK 5.5. For singular homology we don’t need the finite Morse index
because Rybakowski proved in [7, I11-4.10] that H,,(¢° N U,¢° N U \ {0}) = 0 if
m = oo. Using [1, Proposition 3.3] shows that the linearization of a mountain
pass point has finite Morse-index.

PrROOF. We will use the statements from the proof of Theorem 4.10 in [7],
ie. & = —V¢(z) induces a two-sided local gradient-like flow 74 w.r.t. ¢ whose
critical points (V¢ (zg) = 0) are exactly the equilibria of my and the linearization
in 0is L.

Since L is self-adjoint and Fredholm and its Morse index is finite, L is sectorial
and the previous theorem can be applied, i.e.

0 is an isolated mountain pass point < h({0}) = %'
Lemma 4.5 shows that
H,, (h({0})) = Ha(¢” N U, ¢" N U\ {0}).
According to the Remark 5.3 Hy (R({0})) # 0 is only possible if and only if

h({0}) = ¥, O
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