CONSTANT-SIGN AND NODAL SOLUTIONS FOR A NEUMANN PROBLEM WITH p-LAPLACIAN AND EQUI-DIFFUSIVE REACTION TERM

Salvatore A. Marano - Nicolaos S. Papageorgiou

Abstract

The existence of both constant and sign-changing (namely, nodal) solutions to a Neumann boundary-value problem with p-Laplacian and reaction term depending on a positive parameter is established. Proofs make use of sub- and super-solution techniques as well as critical point theory.

1. Introduction

Let Ω be a bounded domain in $\mathbb{R}^{N}, N \geq 3$, with a smooth boundary $\partial \Omega$, let $1<p<\infty$, and let $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be a Carathéodory function. Given a real parameter $\lambda>0$, consider the problem

$$
\begin{cases}-\Delta_{p} u=\lambda|u|^{p-2} u-f(x, u) & \text { in } \Omega, \tag{1.1}\\ \frac{\partial u}{\partial n}=0 & \text { on } \partial \Omega,\end{cases}
$$

where

$$
\Delta_{p} u:=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right) \quad \text { and } \quad \frac{\partial u}{\partial n}=|\nabla u|^{p-2} \nabla u \cdot n,
$$

with $n(x)$ being the outward unit normal vector to $\partial \Omega$ at the point $x \in \partial \Omega$.

[^0]In this paper, a smallest positive solution and a biggest negative solution to (1.1) are obtained (see Theorem 3.7) by chiefly assuming that

$$
\lim _{t \rightarrow 0} \frac{f(x, t)}{|t|^{p-2} t}=0, \quad \lim _{t \rightarrow \infty} \frac{f(x, t)}{|t|^{p-2} t}=\infty \quad \text { uniformly in } \Omega
$$

A third nodal solution exists (cf. Theorem 4.1) as soon as, roughly speaking, λ is not an eigenvalue of the operator $-\Delta_{p}$ with homogeneous Neumann boundary conditions. The approach taken exploits truncation techniques, sub- and supersolution methods, besides results from critical point theory.

Problem (1.1) has very recently been investigated in [15]. However, that work treats a different situation, i.e. the case when the parameter λ is near resonance. Other papers on related topics are [1], [10], [13]. If $f(x, t):=|t|^{q-2} t$, $(x, t) \in \Omega \times \mathbb{R}$, for some $q \in] p, p^{*}\left[\right.$, with p^{*} being the critical Sobolev exponent, then the equation in (1.1) reduces to the so-called equi-diffusive equation

$$
-\Delta_{p} u=\lambda|u|^{p-2} u-|u|^{q-2} u \quad \text { in } \Omega
$$

Under homogeneous Dirichlet boundary conditions, it was thoroughly studied; see for instance [7] (where $N=1$) and [9] (where $N>1$).

2. Basic assumptions and preliminary results

Let $(X,\|\cdot\|)$ be a real Banach space. Given a set $V \subseteq X$, write ∂V for the boundary of $V, \operatorname{int}(V)$ for the interior of V, and \bar{V} for the closure of V. The symbol X^{*} denotes the dual space of X, while $\langle\cdot, \cdot\rangle$ indicates the duality pairing between X and X^{*}. A function $\Phi: X \rightarrow \mathbb{R}$ fulfilling

$$
\lim _{\|x\| \rightarrow \infty} \Phi(x)=\infty
$$

is called coercive. Let $\Phi \in C^{1}(X)$. We say that Φ satisfies the Palais-Smale condition when
$(\mathrm{PS})_{\Phi}$ Every sequence $\left\{x_{k}\right\} \subseteq X$ such that $\left\{\Phi\left(x_{k}\right)\right\}$ is bounded and

$$
\lim _{k \rightarrow \infty}\left\|\Phi^{\prime}\left(x_{k}\right)\right\|_{X^{*}}=0
$$

possesses a convergent subsequence.
If $c \in \mathbb{R}$ then, as usual, $\Phi^{c}:=\{x \in X: \Phi(x) \leq c\}$ while $K_{c}(\Phi):=K(\Phi) \cap$ $\Phi^{-1}(c)$, with $K(\Phi)$ being the critical set of Φ, i.e. $K(\Phi):=\left\{x \in X: \Phi^{\prime}(x)=0\right\}$.

Let (A, B) be a topological pair fulfilling $B \subset A \subseteq X$. The symbol $H_{k}(A, B)$, $k \in \mathbb{N}_{0}$, indicates the k-th-relative singular homology group of (A, B) with integer coefficients. If $x_{0} \in K_{c}(\Phi)$ is an isolated point of $K(\Phi)$ then

$$
C_{k}\left(\Phi, x_{0}\right):=H_{k}\left(\Phi^{c} \cap U, \Phi^{c} \cap U \backslash\left\{x_{0}\right\}\right), \quad k \in \mathbb{N}_{0}
$$

are the critical groups of Φ at x_{0}. Here, U stands for any neighbourhood of x_{0} such that $K(\Phi) \cap \Phi^{c} \cap U=\left\{x_{0}\right\}$. By excision, critical groups turn out to be independent of U. The monographs [3], [5] represent general references on this subject.

Finally, an operator $A: X \rightarrow X^{*}$ is called coercive when

$$
\lim _{\|x\| \rightarrow \infty} \frac{\langle A(x), x\rangle}{\|x\|}=\infty
$$

We say that A is of type $(\mathrm{S})_{+}$if $x_{k} \rightharpoonup x$ in X and $\limsup _{k \rightarrow \infty}\left\langle A\left(x_{k}\right), x_{k}-x\right\rangle \leq 0$ imply $x_{k} \rightarrow x$.

Throughout the paper, Ω denotes a bounded domain of the real Euclidean N space $\left(\mathbb{R}^{N},|\cdot|\right), N \geq 3$, with a smooth boundary $\left.\partial \Omega, p \in\right] 1, \infty\left[, p^{\prime}:=p /(p-1)\right.$, and $\|\cdot\|_{p}$ is the standard norm of $L^{p}(\Omega)$. Indicate with p^{*} the critical exponent for the Sobolev embedding $W^{1, p}(\Omega) \hookrightarrow L^{q}(\Omega)$. Recall that $p^{*}=N p /(N-p)$ if $p<N, p^{*}=\infty$ otherwise. Moreover, define

$$
C_{n}^{1}(\bar{\Omega}):=\left\{u \in C^{1}(\bar{\Omega}): \frac{\partial u}{\partial n}=0 \text { on } \partial \Omega\right\} .
$$

If, as usual, $C_{n}^{1}(\bar{\Omega})_{+}:=\left\{u \in C_{n}^{1}(\bar{\Omega}): u(x) \geq 0\right.$ for all $\left.x \in \bar{\Omega}\right\}$ then it is known (see e.g. [15, p. 1261]) that

$$
\operatorname{int}\left(C_{n}^{1}(\bar{\Omega})_{+}\right)=\left\{u \in C_{n}^{1}(\bar{\Omega}): u(x)>0 \text { for all } x \in \bar{\Omega}\right\}
$$

Write $W_{n}^{1, p}(\Omega)$ for the closure of $C_{n}^{1}(\bar{\Omega})$ with respect to the standard norm $\|\cdot\|$ of $W^{1, p}(\Omega)$. When $u, v \in W_{n}^{1, p}(\Omega)$ and $u(x) \leq v(x)$ almost everywhere in Ω we put

$$
[u, v]:=\left\{w \in W_{n}^{1, p}(\Omega): u(x) \leq w(x) \leq v(x) \text { for almost every } x \in \Omega\right\}
$$

From now on "measurable" always signifies Lebesgue measurable while $m(E)$ indicates the Lebesgue measure of E. To shorten notation, define, for any $u, v: \Omega \rightarrow \mathbb{R}$,

$$
\Omega(u>v):=\{x \in \Omega: u(x)>v(x)\}, \quad u^{+}:=\max \{u, 0\}, \quad u^{-}:=\max \{-u, 0\} .
$$

The result below represents a $W_{n}^{1, p}(\Omega)$-version of the famous H^{1} versus C^{1} local minimizers theorem by Brézis and Nirenberg [4]. For its proof we refer the reader to [15, Proposition 2.5]. Let $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be a Carathéody function such that

$$
|g(x, t)| \leq a_{1}\left(1+|t|^{q-1}\right) \quad \text { for all }(x, t) \in \Omega \times \mathbb{R}
$$

where $a_{1}>0$ while $\left.q \in\right] 1, p^{*}\left[\right.$, and let $G(x, \xi):=\int_{0}^{\xi} g(x, t) d t,(x, \xi) \in \Omega \times \mathbb{R}$. Define, for every $u \in W_{n}^{1, p}(\Omega)$,

$$
\varphi(u):=\frac{1}{p}\|\nabla u\|_{p}^{p}-\int_{\Omega} G(x, u(x)) d x .
$$

Obviously, $\varphi \in C^{1}\left(W_{n}^{1, p}(\Omega)\right)$. Moreover, one has
Proposition 2.1. If there exist $u_{0} \in W_{n}^{1, p}(\Omega), \delta_{0}>0$ such that $\varphi\left(u_{0}\right) \leq$ $\varphi\left(u_{0}+v\right)$ for all $v \in C_{n}^{1}(\bar{\Omega})$ satisfying $\|v\|_{C^{1}(\bar{\Omega})} \leq \delta_{0}$ then $u_{0} \in C_{n}^{1}(\bar{\Omega})$ and u_{0} turns out to be a $W_{n}^{1, p}(\Omega)$-local minimizer of φ.

Let $A: W_{n}^{1, p}(\Omega) \rightarrow\left(W_{n}^{1, p}(\Omega)\right)^{*}$ be the nonlinear operator, arising from the p-Laplacian, defined by

$$
\langle A(u), v\rangle:=\int_{\Omega}|\nabla u(x)|^{p-2} \nabla u(x) \cdot \nabla v(x) d x \quad \text { for all } u, v \in W_{n}^{1, p}(\Omega)
$$

and let $\sigma\left(-\Delta_{p}\right)$ the family of eigenvalues of the Neumann problem

$$
\begin{equation*}
-\Delta_{p} u=\lambda|u|^{p-2} u \quad \text { in } \Omega, \quad \frac{\partial u}{\partial n}=0 \quad \text { on } \partial \Omega . \tag{2.1}
\end{equation*}
$$

Recall (vide e.g. [11]) that
$\left(\mathrm{p}_{1}\right) \sigma\left(-\Delta_{p}\right)$ contains a strictly increasing sequence $\left\{\lambda_{k}\right\}$ obtained through the Ljusternik-Schnirelman principle.
$\left(\mathrm{p}_{2}\right) \lambda_{1}=0$ and $\lim _{k \rightarrow \infty} \lambda_{k}=\infty$.
$\left(p_{3}\right)$ Eigenfunctions corresponding to positive eigenvalues are nodal.
$\left(\mathrm{p}_{4}\right)$ The operator A is continuous and of type $(\mathrm{S})_{+}$.
From now on, to avoid unnecessary technicalities, "for every $x \in \Omega$ " will take the place of "for almost every $x \in \Omega$ ". Moreover, to avoid cumbersome formulae, the variable x will be omitted when no confusion can arise.

Let $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be a Carathéodory function such that $f(x, 0)=0$ in Ω and the conditions below hold true.
$\left(\mathrm{f}_{1}\right)$ There exist $\left.a_{1}>0, q \in\right] p, p^{*}[$ such that

$$
|f(x, t)| \leq a_{1}\left(1+|t|^{q-1}\right) \quad \text { for all }(x, t) \in \Omega \times \mathbb{R}
$$

(f_{2}) $\lim _{t \rightarrow 0} \frac{f(x, t)}{|t|^{p-2} t}=0$ uniformly in $x \in \Omega$.
(f_{3}) $\lim _{|t| \rightarrow \infty} \frac{f(x, t)}{|t|^{p-2} t}=\infty$ uniformly in $x \in \Omega$.
(f_{4}) To every $\rho>0$ and every bounded interval $\Lambda \subseteq[\lambda, \infty[$ there correspond constants $r>p, \theta>0$ such that the function

$$
t \mapsto \eta|t|^{p-2} t-f(x, t)+\theta|t|^{r-2} t
$$

turns out increasing in $[-\rho, \rho]$ for all $\eta \in \Lambda, x \in \Omega$.
A function $\underline{u} \in W^{1, p}(\Omega)$ is called a sub-solution to (1.1) if

$$
\int_{\Omega}|\nabla \underline{u}|^{p-2} \nabla \underline{u} \cdot \nabla v d x+\int_{\Omega}\left(f(x, \underline{u})-\lambda|\underline{u}|^{p-2} \underline{u}\right) v d x \leq 0 \quad \text { for all } v \in C_{n}^{1}(\bar{\Omega})_{+} .
$$

Likewise, we say that $\bar{u} \in W^{1, p}(\Omega)$ is a super-solution of (1.1) when

$$
\int_{\Omega}|\nabla \bar{u}|^{p-2} \nabla \bar{u} \cdot \nabla v d x+\int_{\Omega}\left(f(x, \bar{u})-\lambda|\bar{u}|^{p-2} \bar{u}\right) v d x \geq 0 \quad \text { for all } v \in C_{n}^{1}(\bar{\Omega})_{+}
$$

Lemma 2.2. Let $\left(\mathrm{f}_{1}\right)-\left(\mathrm{f}_{3}\right)$ be satisfied. Then (1.1) possesses a sub-solution \underline{u}_{λ} and a super-solution \bar{u}_{λ} such that $\underline{u}_{\lambda} \leq \bar{u}_{\lambda}$ in Ω and $\underline{u}_{\lambda}, \bar{u}_{\lambda} \in \operatorname{int}\left(C_{n}^{1}(\bar{\Omega})_{+}\right)$.

Proof. Pick $\lambda_{0}>\lambda, \mu>0, \eta>\lambda_{0}+\mu$. Owing to $\left(\mathrm{f}_{3}\right)$ and $\left(\mathrm{f}_{1}\right)$ there exists a $c_{\eta}>0$ such that

$$
\begin{equation*}
f(x, t)>\eta t^{p-1}-c_{\eta} \quad \text { for all }(x, t) \in \Omega \times \mathbb{R}_{0}^{+} . \tag{2.2}
\end{equation*}
$$

Since $\eta>\lambda_{0}+\mu$, the functional $\psi: W_{n}^{1, p}(\Omega) \rightarrow \mathbb{R}$ given by $\psi(u):=\frac{1}{p}\|\nabla u\|_{p}^{p}+\frac{\mu}{p}\|u\|_{p}^{p}+\frac{\eta-\lambda_{0}-\mu}{p}\left\|u^{+}\right\|_{p}^{p}-c_{\eta} \int_{\Omega} u d x \quad$ for all $u \in W_{n}^{1, p}(\Omega)$ is coercive. A simple argument, based on the compact embedding of $W_{n}^{1, p}(\Omega)$ in $L^{p}(\Omega)$, ensures that it is weakly sequentially lower semi-continuous. Therefore,

$$
\psi\left(\bar{u}_{\lambda}\right)=\inf _{u \in W_{n}^{1, p}(\Omega)} \psi(u)
$$

for some $\bar{u}_{\lambda} \in W_{n}^{1, p}(\Omega)$. This implies $\psi^{\prime}\left(\bar{u}_{\lambda}\right)=0$, i.e.

$$
\begin{equation*}
A\left(\bar{u}_{\lambda}\right)+\mu\left|\bar{u}_{\lambda}\right|^{p-2} \bar{u}_{\lambda}=\left(\lambda_{0}+\mu-\eta\right)\left(\bar{u}_{\lambda}^{+}\right)^{p-1}+c_{\eta} \quad \text { in }\left(W_{n}^{1, p}(\Omega)\right)^{*} . \tag{2.3}
\end{equation*}
$$

Acting on (2.3) with $v:=-\bar{u}_{\lambda}^{-}$we obtain

$$
\frac{1}{p}\left\|\nabla \bar{u}_{\lambda}^{-}\right\|_{p}^{p}+\mu\left\|\bar{u}_{\lambda}^{-}\right\|_{p}^{p}=-c_{\eta} \int_{\Omega} \bar{u}_{\lambda}^{-} d x \leq 0 .
$$

Consequently, $\bar{u}_{\lambda}^{-}=0$, which, on account of (2.3), means $\bar{u}_{\lambda} \geq 0$ in Ω and $\bar{u}_{\lambda} \neq 0$. Since, by (2.3) again,

$$
\begin{equation*}
-\Delta_{p} \bar{u}_{\lambda}+\eta \bar{u}_{\lambda}^{p-1}=\lambda_{0} \bar{u}_{\lambda}^{p-1}+c_{\eta} \quad \text { in } \Omega, \quad \frac{\partial \bar{u}_{\lambda}}{\partial n}=0 \quad \text { on } \partial \Omega, \tag{2.4}
\end{equation*}
$$

standard results from nonlinear regularity theory (see e.g. [10]) ensure that

$$
\bar{u}_{\lambda} \in C_{n}^{1}(\bar{\Omega})_{+} \backslash\{0\} .
$$

Thanks to [16, Theorem 5], the obvious inequality $\Delta_{p} \bar{u}_{\lambda} \leq \eta \bar{u}_{\lambda}^{p-1}$ yields

$$
\bar{u}_{\lambda} \in \operatorname{int}\left(C_{n}^{1}(\bar{\Omega})_{+}\right)
$$

Finally, gathering (2.4) and (2.2) together we have

$$
\begin{equation*}
-\Delta_{p} \bar{u}_{\lambda}=\lambda_{0} \bar{u}_{\lambda}^{p-1}-\left(\eta \bar{u}_{\lambda}^{p-1}-c_{\eta}\right) \geq \lambda_{0} \bar{u}_{\lambda}^{p-1}-f\left(x, \bar{u}_{\lambda}\right) . \tag{2.5}
\end{equation*}
$$

Hence, \bar{u}_{λ} turns out to be a super-solution of (1.1).
Now, pick $\varepsilon \in] 0, \lambda\left[\right.$. Due to $\left(\mathrm{f}_{2}\right)$, there exists a $\delta>0$ such that

$$
\begin{equation*}
f(x, t) \leq \varepsilon t^{p-1} \quad \text { for all }(x, t) \in \Omega \times[0, \delta] \tag{2.6}
\end{equation*}
$$

Suppose, as we allow,

$$
\begin{equation*}
\delta \leq \min _{x \in \bar{\Omega}} \bar{u}_{\lambda}(x) \tag{2.7}
\end{equation*}
$$

fix any $\xi \in] 0, \delta]$, and define

$$
\underline{u}_{\lambda}(x):=\xi \quad \text { for all } x \in \Omega .
$$

Obviously, $\underline{u}_{\lambda} \in \operatorname{int}\left(C_{n}^{1}(\bar{\Omega})_{+}\right)$. Using (2.6) we then see that \underline{u}_{λ} is a sub-solution of (1.1). Finally, (2.7) evidently gives $\underline{u}_{\lambda} \leq \bar{u}_{\lambda}$ in Ω, which completes the proof. \square

Likewise, one has
Lemma 2.3. Let $\left(\mathrm{f}_{1}\right)-\left(\mathrm{f}_{3}\right)$ be satisfied. Then, (1.1) possesses a sub-solution \underline{v}_{λ} and a super-solution \bar{v}_{λ} such that $\underline{v}_{\lambda} \leq \bar{v}_{\lambda}$ in Ω and $\underline{v}_{\lambda}, \bar{v}_{\lambda} \in-\operatorname{int}\left(C_{n}^{1}(\bar{\Omega})_{+}\right)$.

3. Constant-sign solutions

Let $\eta>0$, let $f_{\eta}^{+}: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be the Carathéodory function defined by setting, for every $(x, t) \in \Omega \times \mathbb{R}$,

$$
f_{\eta}^{+}(x, t):= \begin{cases}0 & \text { if } t \leq 0 \\ \eta t^{p-1}-f(x, t) & \text { otherwise }\end{cases}
$$

and let $F_{\eta}^{+}(x, \xi):=\int_{0}^{\xi} f_{\eta}^{+}(x, t) d t$. For $\mu>0$, write

$$
\varphi_{\mu}^{+}(u):=\frac{1}{p}\|\nabla u\|_{p}^{p}+\frac{\mu}{p}\|u\|_{p}^{p}-\int_{\Omega} F_{\lambda+\mu}^{+}(x, u(x)) d x \quad \text { for all } u \in W_{n}^{1, p}(\Omega)
$$

Since $f_{\lambda+\mu}^{+}$is of Carathéodory's type, one has $\varphi_{\mu}^{+} \in C^{1}\left(W_{n}^{1, p}(\Omega)\right)$.
Theorem 3.1. Suppose $\left(\mathrm{f}_{1}\right)-\left(\mathrm{f}_{4}\right)$ hold true. Then problem (1.1) possesses a solution $u_{0} \in \operatorname{int}\left(C_{n}^{1}(\bar{\Omega})_{+}\right) \cap\left[\underline{u}_{\lambda}, \bar{u}_{\lambda}\right]$, which is a local minimizer of φ_{μ}^{+}.

Proof. Put, for every $(x, t) \in \Omega \times \mathbb{R}$,

$$
f_{\lambda+\mu}(x, t):= \begin{cases}(\lambda+\mu) \underline{u}_{\lambda}(x)^{p-1}-f\left(x, \underline{u}_{\lambda}(x)\right) & \text { if } t<\underline{u}_{\lambda}(x) \tag{3.1}\\ (\lambda+\mu) t^{p-1}-f(x, t) & \text { if } \underline{u}_{\lambda}(x) \leq t \leq \bar{u}_{\lambda}(x) \\ (\lambda+\mu) \bar{u}_{\lambda}(x)^{p-1}-f\left(x, \bar{u}_{\lambda}(x)\right) & \text { if } t>\bar{u}_{\lambda}(x)\end{cases}
$$

where \underline{u}_{λ} and \bar{u}_{λ} are as in Lemma 2.2. Since the functional

$$
\varphi_{\mu}(u):=\frac{1}{p}\|\nabla u\|_{p}^{p}+\frac{\mu}{p}\|u\|_{p}^{p}-\int_{\Omega} F_{\lambda+\mu}(x, u(x)) d x, \quad u \in W_{n}^{1, p}(\Omega)
$$

with $F(x, \xi):=\int_{0}^{\xi} f_{\lambda+\mu}(x, t) d t$, is weakly sequentially lower semi-continuous and coercive, one has

$$
\begin{equation*}
\varphi_{\mu}\left(u_{0}\right)=\inf _{u \in W_{n}^{1, p}(\Omega)} \varphi_{\mu}(u) \tag{3.2}
\end{equation*}
$$

for some $u_{0} \in W_{n}^{1, p}(\Omega)$. This implies $\varphi_{\mu}^{\prime}\left(u_{0}\right)=0$, namely

$$
\begin{equation*}
A\left(u_{0}\right)+\mu\left|u_{0}\right|^{p-2} u_{0}=f_{\lambda+\mu}\left(\cdot, u_{0}\right) \quad \text { in }\left(W_{n}^{1, p}(\Omega)\right)^{*} . \tag{3.3}
\end{equation*}
$$

Acting on (3.3) with $v:=\left(\underline{u}_{\lambda}-u_{0}\right)^{+}$and using (2.6) we obtain

$$
\begin{aligned}
\left\langle A\left(u_{0}\right),\left(\underline{u}_{\lambda}-u_{0}\right)^{+}\right\rangle & +\mu \int_{\Omega}\left|u_{0}\right|^{p-2} u_{0}\left(\underline{u}_{\lambda}-u_{0}\right)^{+} d x \\
& =(\lambda+\mu) \int_{\Omega} \underline{u}_{\lambda}^{p-1}\left(\underline{u}_{\lambda}-u_{0}\right)^{+} d x-\int_{\Omega} f\left(x, \underline{u}_{\lambda}\right)\left(\underline{u}_{\lambda}-u_{0}\right)^{+} d x \\
\geq & \geq(\lambda+\mu-\varepsilon) \int_{\Omega} \underline{u}_{\lambda}^{p-1}\left(\underline{u}_{\lambda}-u_{0}\right)^{+} d x .
\end{aligned}
$$

Observe that $A\left(\underline{u}_{\lambda}\right)=0$. The choice of ε forces

$$
\left\langle A\left(u_{0}\right)-A\left(\underline{u}_{\lambda}\right),\left(\underline{u}_{\lambda}-u_{0}\right)^{+}\right\rangle+\mu \int_{\Omega}\left(\left|u_{0}\right|^{p-2} u_{0}-\underline{u}_{\lambda}^{p-1}\right)\left(\underline{u}_{\lambda}-u_{0}\right)^{+} d x \geq 0 .
$$

By monotonicity we thus have $m\left(\Omega\left(\underline{u}_{\lambda}>u_{0}\right)\right)=0$, that is $\underline{u}_{\lambda} \leq u_{0}$ in Ω. A similar reasoning then provides $u_{0} \leq \bar{u}_{\lambda}$. Therefore, on account of (3.1) and (3.3), the function u_{0} turns out to be a solution of (1.1). Through standard results from nonlinear regularity theory we finally get $u_{0} \in \operatorname{int}\left(C_{n}^{1}(\bar{\Omega})_{+}\right)$.

Next, pick $\sigma \in] 0, \xi\left[\right.$ and define $u_{\sigma}:=u_{0}-\sigma$. Obviously, $u_{\sigma} \in \operatorname{int}\left(C_{n}^{1}(\bar{\Omega})_{+}\right)$ because

$$
u_{\sigma}(x) \geq \underline{u}_{\lambda}(x)-\sigma=\xi-\sigma>0 \quad \text { for all } x \in \Omega
$$

Moreover,

$$
\begin{align*}
-\Delta_{p} u_{\sigma}(x)+\theta u_{\sigma}(x)^{r-1} & =-\Delta_{p} u_{0}(x)+\theta u_{0}(x)^{r-1}-h(\sigma) \tag{3.4}\\
& =\lambda u_{0}(x)^{p-1}-f\left(x, u_{0}(x)\right)+\theta u_{0}(x)^{r-1}-h(\sigma)
\end{align*}
$$

where θ, r come from $\left(\mathrm{f}_{4}\right)$ written for $\rho:=\left\|\bar{u}_{\lambda}\right\|_{\infty}$ and $\Lambda:=[\lambda, \lambda+1]$, while $h(\sigma) \rightarrow 0$ as $\sigma \rightarrow 0^{+}$. Combining (3.4) with (f_{4}) and (2.6) we achieve

$$
\begin{align*}
-\Delta_{p} u_{\sigma}(x)+\theta u_{\sigma}(x)^{r-1} & \geq \lambda \xi^{p-1}-f(x, \xi)+\theta \xi^{r-1}-h(\sigma) \tag{3.5}\\
& \geq(\lambda-\varepsilon) \xi^{p-1}+\theta \xi^{r-1}-h(\sigma)
\end{align*}
$$

Choose $\sigma>0$ so small that $h(\sigma)<(\lambda-\varepsilon) \xi^{p-1}$. Then (3.5) leads to

$$
-\Delta_{p} u_{\sigma}(x)+\theta u_{\sigma}(x)^{r-1} \geq \theta \xi^{r-1}=-\Delta_{p} \underline{u}_{\lambda}(x)+\theta \underline{u}_{\lambda}(x)^{r-1}
$$

which implies $u_{\sigma} \geq \underline{u}_{\lambda}$ in Ω. So, a fortiori,

$$
\begin{equation*}
u_{0}-\underline{u}_{\lambda} \in \operatorname{int}\left(C_{n}^{1}(\bar{\Omega})_{+}\right) . \tag{3.6}
\end{equation*}
$$

Likewise, if $\eta>0$ and $u_{\eta}:=u_{0}+\eta$ then, by (2.5),

$$
\begin{align*}
& -\Delta_{p} u_{\eta}(x)+\theta u_{\eta}(x)^{r-1}=-\Delta_{p} u_{0}(x)+\theta u_{0}(x)^{r-1}+h(\eta) \tag{3.7}\\
& \quad=\lambda u_{0}(x)^{p-1}-f\left(x, u_{0}(x)\right)+\theta u_{0}(x)^{r-1}+h(\eta) \\
& \quad \leq \lambda \bar{u}_{\lambda}(x)^{p-1}-f\left(x, \bar{u}_{\lambda}(x)\right)+\theta \bar{u}_{\lambda}(x)^{r-1}+h(\eta) \\
& \quad \leq\left(\lambda-\lambda_{0}\right) \bar{m}_{\lambda}+\lambda_{0} \bar{u}_{\lambda}(x)^{p-1}-f\left(x, \bar{u}_{\lambda}(x)\right)+\theta \bar{u}_{\lambda}(x)^{r-1}+h(\eta) \\
& \quad \leq\left(\lambda-\lambda_{0}\right) \bar{m}_{\lambda}-\Delta_{p} \bar{u}_{\lambda}(x)+\theta \bar{u}_{\lambda}(x)^{r-1}+h(\eta)
\end{align*}
$$

where $\lim _{\eta \rightarrow 0^{+}} h(\eta)=0$ while $\bar{m}_{\lambda}=\min _{x \in \bar{\Omega}} \bar{u}_{\lambda}(x)$. Choosing η in (3.7) so small that $h(\eta)<\left(\lambda_{0}-\lambda\right) \bar{m}_{\lambda}$ and arguing as before provides

$$
\begin{equation*}
\bar{u}_{\lambda}-u_{0} \in \operatorname{int}\left(C_{n}^{1}(\bar{\Omega})_{+}\right) . \tag{3.8}
\end{equation*}
$$

Write, for $\widehat{\delta}>0, \widehat{u} \in C_{n}^{1}(\bar{\Omega})$,

$$
B_{\widehat{\delta}}(\widehat{u}):=\left\{u \in C_{n}^{1}(\bar{\Omega}):\|u-\widehat{u}\|_{C^{1}(\bar{\Omega})} \leq \widehat{\delta}\right\}
$$

Due to (3.6), (3.8) we can find a $\delta_{0}>0$ such that $B_{\delta_{0}}\left(u_{0}\right) \subseteq\left[\underline{u}_{\lambda}, \bar{u}_{\lambda}\right]$. Fix any $v \in B_{\delta_{0}}(0)$. By the above inclusion and (3.1) one has

$$
\left(\varphi_{\mu}^{+}\right)^{\prime}\left(u_{0}+t v\right)=\varphi_{\mu}^{\prime}\left(u_{0}+t v\right) \quad \text { for all } t \in[0,1]
$$

Thus, on account of (3.2),

$$
\begin{aligned}
\varphi_{\mu}^{+}\left(u_{0}+v\right)-\varphi_{\mu}^{+}\left(u_{0}\right) & =\int_{0}^{1} \frac{d}{d t} \varphi_{\mu}^{+}\left(u_{0}+t v\right) d t
\end{aligned}=\int_{0}^{1}\left\langle\left(\varphi_{\mu}^{+}\right)^{\prime}\left(u_{0}+t v\right), v\right\rangle d t, ~=\int_{0}^{1} \frac{d}{d t} \varphi_{\mu}\left(u_{0}+t v\right) d t=\varphi_{\mu}\left(u_{0}+v\right)-\varphi_{\mu}\left(u_{0}\right) \geq 0 .
$$

As $v \in B_{\delta_{0}}(0)$ was arbitrary, the function u_{0} turns out to be a $C_{n}^{1}(\bar{\Omega})$-local minimizer of φ_{μ}^{+}. Bearing in mind Proposition 2.1, the conclusion follows.

Now, let $\eta>0$, let $f_{\eta}^{-}: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be the Carathéodory function defined by setting, for every $(x, t) \in \Omega \times \mathbb{R}$,

$$
f_{\eta}^{-}(x, t):= \begin{cases}\eta|t|^{p-2} t-f(x, t) & \text { if } t \leq 0 \\ 0 & \text { otherwise }\end{cases}
$$

and let $F_{\eta}^{-}(x, \xi):=\int_{0}^{\xi} f_{\eta}^{-}(x, t) d t$. If $\mu>0$, put

$$
\varphi_{\mu}^{-}(u):=\frac{1}{p}\|\nabla u\|_{p}^{p}+\frac{\mu}{p}\|u\|_{p}^{p}-\int_{\Omega} F_{\lambda+\mu}^{-}(x, u(x)) d x \quad \text { for all } u \in W_{n}^{1, p}(\Omega)
$$

Since $f_{\lambda+\mu}^{-}$is of Carathéodory's type, one has $\varphi_{\mu}^{-} \in C^{1}\left(W_{n}^{1, p}(\Omega)\right)$. The next result can be established through arguments analogous to those adopted in proving Theorem 3.1.

TheOrem 3.2. Suppose $\left(\mathrm{f}_{1}\right)-\left(\mathrm{f}_{4}\right)$ hold true. Then problem (1.1) possesses a solution $v_{0} \in-\operatorname{int}\left(C_{n}^{1}(\bar{\Omega})_{+}\right) \cap\left[\underline{v}_{\lambda}, \bar{v}_{\lambda}\right]$, which is a local minimizer of φ_{μ}^{-}.

THEOREM 3.3. If assumptions $\left(\mathrm{f}_{1}\right)-\left(\mathrm{f}_{4}\right)$ are satisfied then (1.1) has the smallest solution $u_{*} \in \operatorname{int}\left(C_{n}^{1}(\bar{\Omega})_{+}\right)$in the order interval $\left[\underline{u}_{\lambda}, \bar{u}_{\lambda}\right]$.

Proof. Define $S_{\lambda}^{+}:=\left\{u \in\left[\underline{u}_{\lambda}, \bar{u}_{\lambda}\right]: u\right.$ is a solution to (1.1) $\}$. Theorem 3.1 yields $S_{\lambda}^{+} \neq \emptyset$ while standard results from nonlinear regularity theory (cf. e.g. [10]) combined with Lemma 2.2 give $S_{\lambda}^{+} \subseteq \operatorname{int}\left(C_{n}^{1}(\bar{\Omega})_{+}\right)$. We claim that S_{λ}^{+}turns out to be downward directed. Indeed, pick $u_{1}, u_{2} \in S_{\lambda}^{+}$and put $\bar{u}:=\min \left\{u_{1}, u_{2}\right\}$. The same reasoning exploited in the proof of [1, Lemma 1] ensures here that \bar{u} is a super-solution to (1.1). Hence, as before (see Theorem 3.1), one can find a solution $u_{3} \in \operatorname{int}\left(C_{n}^{1}(\bar{\Omega})_{+}\right) \cap\left[\underline{u}_{\lambda}, \bar{u}\right]$ of problem (1.1). Since $u_{3} \in S_{\lambda}^{+}, u_{3} \leq u_{1}$, and $u_{3} \leq u_{2}$, the assertion follows.

Our next goal is to show that S_{λ}^{+}possesses a minimal element. So, let $C \subseteq S_{\lambda}^{+}$be a chain. By [6, p. 336] we have

$$
\begin{equation*}
\inf C=\inf \left\{u_{k}: k \in \mathbb{N}\right\} \tag{3.9}
\end{equation*}
$$

for some $\left\{u_{k}\right\} \subseteq C$, while Lemma 1.1.5 of [8] allows this sequence to be decreasing. Moreover, $\left\{u_{k}\right\}$ is bounded in $W_{n}^{1, p}(\Omega)$, because
(3.10) $u_{k} \in\left[\underline{u}_{\lambda}, \bar{u}_{\lambda}\right]$ and $A\left(u_{k}\right)=\lambda u_{k}^{p-1}-f\left(\cdot, u_{k}\right)$ in $\left(W_{n}^{1, p}(\Omega)\right)^{*}$ for all $k \in \mathbb{N}$.

Passing to a subsequence when necessary, we may thus suppose $u_{k} \rightharpoonup u$ in $W_{n}^{1, p}(\Omega)$ as well as $u_{k} \rightarrow u$ in $L^{q}(\Omega)$, with

$$
\begin{equation*}
u=\inf \left\{u_{k}: k \in \mathbb{N}\right\} \tag{3.11}
\end{equation*}
$$

Hypothesis (f_{1}) forces

$$
\lim _{k \rightarrow \infty} \int_{\Omega} f\left(x, u_{k}(x)\right)\left(u_{k}(x)-u(x)\right) d x=0
$$

Therefore, on account of (3.10),

$$
\lim _{k \rightarrow \infty}\left\langle A\left(u_{k}\right), u_{k}-u\right\rangle=0
$$

Property $\left(\mathrm{p}_{4}\right)$ ensures that $u_{k} \rightarrow u$ in $W_{n}^{1, p}(\Omega)$. From (3.10) it follows, letting $k \rightarrow \infty$,

$$
u \in\left[\underline{u}_{\lambda}, \bar{u}_{\lambda}\right], \quad A(u)=\lambda u^{p-1}-f(\cdot, u) \quad \text { in }\left(W_{n}^{1, p}(\Omega)\right)^{*},
$$

i.e. $u \in S_{\lambda}^{+}$. Now, (3.9) and (3.11) lead to $\inf C \in S_{\lambda}^{+}$, as desired.

By Zorn's lemma the set S_{λ}^{+}possesses a minimal element, say u_{*}. If $u \in S_{\lambda}^{+}$ then there exists $\widetilde{u} \in S_{\lambda}^{+}$such that $\widetilde{u} \leq \min \left\{u_{*}, u\right\}$, because S_{λ}^{+}is downward directed. The minimality of u_{*} gives $u_{*}=\widetilde{u}$. Hence, $u_{*} \leq u$ in Ω, and the proof is complete.

Using Lemma 2.3 instead of Lemma 2.2 and arguing as before provides the next result.

Theorem 3.4. If assumptions $\left(\mathrm{f}_{1}\right)-\left(\mathrm{f}_{4}\right)$ are satisfied then problem (1.1) has the greatest solution $v_{*} \in-\operatorname{int}\left(C_{n}^{1}(\bar{\Omega})_{+}\right)$in the order interval $\left[\underline{v}_{\lambda}, \bar{v}_{\lambda}\right]$.

Theorems 3.3 and 3.4 lead to the existence of extremal constant sign solutions.

Theorem 3.5. Suppose $\left(\mathrm{f}_{1}\right)-\left(\mathrm{f}_{4}\right)$ hold true. Then (1.1) possesses a smallest positive solution $u_{+} \in \operatorname{int}\left(C_{n}^{1}(\bar{\Omega})_{+}\right)$.

Proof. Pick $\left.\left\{t_{k}\right\} \subseteq\right] 0,1\left[\right.$ fulfilling $t_{k} \rightarrow 0$ and define $\underline{u}_{\lambda, k}:=t_{k} \underline{u}_{\lambda}$. For each $k \in \mathbb{N}$, Theorem 3.3 provides a function $u_{*, k} \in \operatorname{int}\left(C_{n}^{1}(\bar{\Omega})_{+}\right) \cap\left[\underline{u}_{\lambda, k}, \bar{u}_{\lambda}\right]$ such that

$$
\begin{equation*}
A\left(u_{*, k}\right)=\lambda\left(u_{*, k}\right)^{p-1}-f\left(\cdot, u_{*, k}\right) \quad \text { in }\left(W_{n}^{1, p}(\Omega)\right)^{*} \tag{3.12}
\end{equation*}
$$

Through the same arguments exploited in the proof of this result we then obtain a solution $u_{+} \in C_{n}^{1}(\bar{\Omega})_{+}$to (1.1) enjoying the property

$$
\begin{equation*}
u_{*, k} \rightarrow u_{+} \quad \text { in } W_{n}^{1, p}(\Omega) \tag{3.13}
\end{equation*}
$$

One has $u_{+} \neq 0$. Indeed, if $w_{k}:=u_{*, k} /\left\|u_{*, k}\right\|$ then

$$
\begin{equation*}
w_{k} \rightharpoonup w \quad \text { in } W_{n}^{1, p}(\Omega) \quad \text { and } \quad w_{k} \rightarrow w \quad \text { in } L^{p}(\Omega) \tag{3.14}
\end{equation*}
$$

for some $w \in W_{n}^{1, p}(\Omega)$. Moreover, on account of (3.12),

$$
\begin{equation*}
A\left(w_{k}\right)=\lambda w_{k}^{p-1}-\frac{f\left(\cdot, u_{*, k}\right)}{\left\|u_{*, k}\right\|^{p-1}} \quad \text { in }\left(W_{n}^{1, p}(\Omega)\right)^{*} \text { for all } k \in \mathbb{N} . \tag{3.15}
\end{equation*}
$$

Suppose, contrary to our claim, that $u_{+}=0$. Acting on (3.15) with $v:=w_{k}-w$ and using (3.14), besides (f_{2}), it results in

$$
\lim _{k \rightarrow \infty}\left\langle A\left(w_{k}\right), w_{k}-w\right\rangle=0
$$

Hence, by $\left(p_{4}\right)$,

$$
\begin{equation*}
w_{k} \rightarrow w \text { in } W_{n}^{1, p}(\Omega), \text { which forces }\|w\|=1 \tag{3.16}
\end{equation*}
$$

Due to (3.13) we get

$$
\begin{equation*}
\frac{f\left(\cdot, u_{*, k}\right)}{\left\|u_{*, k}\right\|^{p-1}} \rightharpoonup 0 \quad \text { in } L^{p}(\Omega) \tag{3.17}
\end{equation*}
$$

Gathering (3.15)-(3.17) together directly yields $A(w)=\lambda w^{p-1}$, namely w turns out to be an eigenfunction of (2.1) corresponding to the eigenvalue λ. Since $w(x)>0$ for all $x \in \Omega$, Property $\left(\mathrm{p}_{3}\right)$ forces $\lambda=0$, against the choice of λ. Therefore, $u_{+} \in C_{n}^{1}(\bar{\Omega})_{+} \backslash\{0\}$.

Next, pick any $\rho \geq \max _{x \in \bar{\Omega}} u_{+}(x)$. Assumption (f_{4}) provides $r>p, \theta>0$ such that

$$
-\Delta_{p} u_{+}(x)+\theta u_{+}(x)^{r-1}=\lambda u_{+}(x)^{p-1}-f\left(x, u_{+}(x)\right)+\theta u_{+}(x)^{r-1} \geq 0
$$

almost everywhere in Ω. Thus, $\Delta_{p} u_{+} \leq \theta u_{+}^{r-1}$ and so, on account of [16, Theorem 5], $u_{+} \in \operatorname{int}\left(C_{n}^{1}(\bar{\Omega})_{+}\right)$. It remains to verify that u_{+}is the smallest solution of (1.1) inside $\operatorname{int}\left(C_{n}^{1}(\bar{\Omega})_{+}\right)$. If u belongs to $\operatorname{int}\left(C_{n}^{1}(\bar{\Omega})_{+}\right)$and solves (1.1) then $\underline{u}_{\lambda, k} \leq u$ for any k large enough. By the minimality of $u_{*, k}$ we get $u_{*, k} \leq u$. Via (3.13), letting $k \rightarrow \infty$ yields $u_{+} \leq u$.

A similar argument, with Theorem 3.4, \underline{v}_{λ}, and $\bar{v}_{\lambda, k}:=t_{k} \bar{v}_{\lambda}$ in place of Theorem 3.3, $\underline{u}_{\lambda, k}$, and \bar{u}_{λ}, respectively, produces the next result.

Theorem 3.6. If $\left(\mathrm{f}_{1}\right)-\left(\mathrm{f}_{4}\right)$ are satisfied then problem (1.1) has a biggest negative solution $v_{-} \in-\operatorname{int}\left(C_{n}^{1}(\bar{\Omega})_{+}\right)$.

Gathering Theorems 3.5 and 3.6 together we obtain
Theorem 3.7. Suppose $\left(\mathrm{f}_{1}\right)-\left(\mathrm{f}_{4}\right)$ hold true. Then (1.1) possesses a biggest negative solution $v_{-} \in-\operatorname{int}\left(C_{n}^{1}(\bar{\Omega})_{+}\right)$and a smallest positive solution $u_{+} \in$ $\operatorname{int}\left(C_{n}^{1}(\bar{\Omega})_{+}\right)$.

Finally, when $f(x, t):=|t|^{q-2} t,(x, t) \in \Omega \times \mathbb{R}$, the positive solution given by Theorem 3.5 is unique, as the next result shows.

Theorem 3.8. Let $q \in] p, p^{*}[$ and let $\lambda>0$. Then the Neumann problem

$$
\begin{equation*}
-\Delta_{p} u=\lambda u^{p-1}-u^{q-1} \quad \text { in } \Omega, \quad u>0 \quad \text { in } \Omega, \quad \frac{\partial u}{\partial n}=0 \quad \text { on } \partial \Omega \tag{3.18}
\end{equation*}
$$

has only one solution $\operatorname{int}\left(C_{n}^{1}(\bar{\Omega})_{+}\right)$.
Proof. If $u, v \in W_{n}^{1, p}(\Omega)$ are two solutions of (3.18) then standard results from nonlinear regularity theory (vide for instance [10]) and [16, Theorem 5] guarantee that $u, v \in \operatorname{int}\left(C_{n}^{1}(\bar{\Omega})_{+}\right)$. Thus, thanks to [2, Theorem 1.1],

$$
\begin{aligned}
0 & \leq \int_{\Omega}\left(|\nabla u|^{p}-\nabla\left(\frac{u^{p}}{v^{p-1}}\right) \cdot|\nabla v|^{p-2} \nabla v\right) d x \\
& =\int_{\Omega}\left(|\nabla u|^{p}-\frac{u^{p}}{v^{p-1}}\left(-\Delta_{p} v\right)\right) d x=\int_{\Omega}\left(|\nabla u|^{p}-\lambda u^{p}+u^{p} v^{q-p}\right) d x \\
& =\int_{\Omega}\left(-u^{q}+u^{p} v^{q-p}\right) d x=\int_{\Omega} u^{p}\left(v^{q-p}-u^{q-p}\right) d x .
\end{aligned}
$$

Interchanging the role of u and v provides

$$
\int_{\Omega} v^{p}\left(u^{q-p}-v^{q-p}\right) d x \geq 0
$$

Consequently,

$$
\begin{equation*}
\int_{\Omega}\left(u^{p}-v^{p}\right)\left(u^{q-p}-v^{q-p}\right) d x \leq 0 \tag{3.19}
\end{equation*}
$$

Since the function $t \mapsto t^{q / p-1}, t \in \mathbb{R}^{+}$, is strictly monotone because $q>p$, inequality (3.19) forces $u=v$.

4. Nodal solutions

A third non-zero, sign-changing (i.e. nodal) solution can be obtained provided $\lambda \in] \lambda_{2}, \infty\left[\backslash \sigma\left(-\Delta_{p}\right)\right.$, as the result below shows. Let v_{-}and u_{+}the solutions of problem (1.1) given by Theorem 3.7. Define, for every $\eta>0,(x, t) \in \Omega \times \mathbb{R}$,

$$
\begin{align*}
& f_{\eta}(x, t):= \begin{cases}\eta\left|v_{-}(x)\right|^{p-2} v_{-}(x)-f\left(x, v_{-}(x)\right) & \text { if } t<v_{-}(x), \\
\eta|t|^{p-2} t-f(x, t) & \text { if } v_{-}(x) \leq t \leq u_{+}(x), \\
\eta u_{+}(x)^{p-1}-f\left(x, u_{+}(x)\right) & \text { if } t>u_{+}(x),\end{cases} \\
& f_{\eta}^{-}(x, t):= \begin{cases}\eta\left|v_{-}(x)\right|^{p-2} v_{-}(x)-f\left(x, v_{-}(x)\right) & \text { if } t<v_{-}(x), \\
\eta|t|^{p-2} t-f(x, t) & \text { if } v_{-}(x) \leq t \leq 0 \\
0 & \text { if } t>0,\end{cases} \\
& f_{\eta}^{+}(x, t):= \begin{cases}0 & \text { if } t<0 \\
\eta t^{p-1}-f(x, t) & \text { if } t>u_{+}(x) \\
\eta u_{+}(x)^{p-1}-f\left(x, u_{+}(x)\right.\end{cases} \tag{4.1}
\end{align*}
$$

Obviously, $f_{\eta}, f_{\eta}^{-}, f_{\eta}^{+}: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ are Carathéodory functions. Moreover, set

$$
F_{\eta}(x, \xi):=\int_{0}^{\xi} f_{\eta}(x, t) d t, \quad F_{\eta}^{ \pm}(x, \xi):=\int_{0}^{\xi} f_{\eta}^{ \pm}(x, t) d t, \quad(x, \xi) \in \Omega \times \mathbb{R}
$$

Theorem 4.1. If $\lambda \in] \lambda_{2}, \infty\left[\backslash \sigma\left(-\Delta_{p}\right)\right.$ and $\left(\mathrm{f}_{1}\right)-\left(\mathrm{f}_{4}\right)$ are satisfied then (1.1) possesses a nodal solution $\bar{u} \in C_{n}^{1}(\bar{\Omega})$.

Proof. Write, for $\mu>0$,

$$
\varphi_{\mu}^{+}(u):=\frac{1}{p}\|\nabla u\|_{p}^{p}+\frac{\mu}{p}\|u\|_{p}^{p}-\int_{\Omega} F_{\lambda+\mu}^{+}(x, u(x)) d x \quad \text { for all } u \in W_{n}^{1, p}(\Omega)
$$

By (4.1) the functional φ_{μ}^{+}belongs to $C^{1}\left(W_{n}^{1, p}(\Omega)\right)$, is coercive and sequentially weakly lower semi-continuous. Hence, there exists $\widehat{u} \in W_{n}^{1, p}(\Omega)$ such that

$$
\begin{equation*}
\varphi_{\mu}^{+}(\widehat{u})=\inf _{u \in W_{n}^{1, p}(\Omega)} \varphi_{\mu}^{+}(u) \tag{4.2}
\end{equation*}
$$

One clearly has $\widehat{u} \in K\left(\varphi_{\mu}^{+}\right)$. Moreover, $\widehat{u} \neq 0$. Indeed, pick $\left.\varepsilon \in\right] 0, \lambda[$. Since

$$
\min _{x \in \bar{\Omega}} u_{+}(x)>0
$$

on account of $\left(\mathrm{f}_{2}\right)$ for any $\xi>0$ sufficiently small we get

$$
\varphi_{\mu}^{+}(\xi)=-\frac{\lambda}{p} \xi^{p} m(\Omega)+\int_{\Omega}\left(\int_{0}^{\xi} f(x, t) d t\right) d x \leq-\frac{\lambda-\varepsilon}{p} \xi^{p} m(\Omega)<0
$$

which forces

$$
\varphi_{\mu}^{+}(\widehat{u})<0=\varphi_{\mu}^{+}(0),
$$

and the assertion follows. The next goal is to prove that

$$
\begin{equation*}
\widehat{u}=u_{+} . \tag{4.3}
\end{equation*}
$$

If $u \in K\left(\varphi_{\mu}^{+}\right) \backslash\{0\}$ then

$$
\begin{equation*}
A(u)+\mu|u|^{p-2} u=f_{\lambda+\mu}^{+}(\cdot, u) \quad \text { in }\left(W_{n}^{1, p}(\Omega)\right)^{*} . \tag{4.4}
\end{equation*}
$$

Acting on (4.4) with $-u^{-} \in W_{n}^{1, p}(\Omega)$ we obtain $\min \{1, \mu\}\left\|u^{-}\right\|^{p} \leq 0$. Therefore, $u \geq 0$. Through (4.4) again it results in

$$
\begin{aligned}
\left\langle A(u),\left(u-u_{+}\right)^{+}\right\rangle+ & \mu \int_{\Omega} u^{p-1}\left(u-u_{+}\right)^{+} d x \\
& =\int_{\Omega}\left[(\lambda+\mu) u_{+}^{p-1}-f\left(x, u_{+}\right)\right]\left(u-u_{+}\right)^{+} d x \\
& =\left\langle A\left(u_{+}\right),\left(u-u_{+}\right)^{+}\right\rangle+\mu \int_{\Omega} u_{+}^{p-1}\left(u-u_{+}\right)^{+} d x
\end{aligned}
$$

By the strict monotonicity of $t \mapsto|t|^{p-2} t, t \in \mathbb{R}$, this implies $u \leq u_{+}$. Consequently, $u \in\left[0, u_{+}\right] \backslash\{0\}$, and (4.4) becomes

$$
A(u)=\lambda u^{p-1}-f(\cdot, u) \quad \text { in }\left(W_{n}^{1, p}(\Omega)\right)^{*}
$$

namely u turns out to be a solution of (1.1), $u \in \operatorname{int}\left(C_{n}^{1}(\bar{\Omega})_{+}\right)$, besides $u \leq u_{+}$. Thanks to Theorem 3.7 we thus have $u=u_{+}$. So, $K\left(\varphi_{\mu}^{+}\right) \backslash\{0\}=\left\{u_{+}\right\}$. Now, (4.3) comes at once from $\widehat{u} \in K\left(\varphi_{\mu}^{+}\right) \backslash\{0\}$. Define

$$
\varphi_{\mu}(u):=\frac{1}{p}\|\nabla u\|_{p}^{p}+\frac{\mu}{p}\|u\|_{p}^{p}-\int_{\Omega} F_{\lambda+\mu}(x, u(x)) d x
$$

for all $u \in W_{n}^{1, p}(\Omega)$. Since

$$
\left.\varphi_{\mu}^{+}\right|_{C_{n}^{1}(\bar{\Omega})_{+}}=\left.\varphi_{\mu}\right|_{C_{n}^{1}(\bar{\Omega})_{+}}
$$

and $u_{+} \in \operatorname{int}\left(C_{n}^{1}(\bar{\Omega})_{+}\right)$, combining (4.2), (4.3) with Proposition 2.1 ensures that u_{+}is a $W_{n}^{1, p}(\Omega)$-local minimizer of φ_{μ}.

Similarly, the function v_{-}turns out a $W_{n}^{1, p}(\Omega)$-local minimizer of φ_{μ}. This can be verified as before, but with φ_{μ}^{+}replaced by

$$
\varphi_{\mu}^{-}(u):=\frac{1}{p}\|\nabla u\|_{p}^{p}+\frac{\mu}{p}\|u\|_{p}^{p}-\int_{\Omega} F_{\lambda+\mu}^{-}(x, u(x)) d x \quad \text { for all } u \in W_{n}^{1, p}(\Omega) .
$$

Without loss of generality we may assume that

$$
\begin{equation*}
\varphi_{\mu}\left(v_{-}\right) \leq \varphi_{\mu}\left(u^{+}\right) \tag{4.5}
\end{equation*}
$$

If u_{+}is not an isolated critical point of φ_{μ} then there exists a sequence $\left\{u_{k}\right\} \subseteq$ $W_{n}^{1, p}(\Omega)$ of pairwise distinct critical points for φ_{μ} converging to u_{+}. Since an argument analogous to that involving φ_{μ}^{+}yields here

$$
\begin{equation*}
K\left(\varphi_{\mu}\right) \subseteq\left[v_{-}, u_{+}\right] \tag{4.6}
\end{equation*}
$$

by the properties of v_{-}and u_{+}, each u_{k} turns out a nodal solution of (1.1), and the conclusion follows. Suppose now u_{+}is isolated. The same reasoning exploited in the proof of [14, Proposition 6] provides $r>0$ fulfilling

$$
\begin{equation*}
r<\left\|u_{+}-v_{-}\right\|, \quad \varphi_{\mu}\left(u_{+}\right)<\inf _{u \in \partial B_{r}\left(u_{+}\right)} \varphi_{\mu}(u) \tag{4.7}
\end{equation*}
$$

Moreover, the functional φ_{μ} satisfies the Palais-Smale condition, because it evidently is coercive. By (4.5) and (4.7), the classical Mountain pass Theorem can be applied. Thus, there exists $\bar{u} \in W_{n}^{1, p}(\Omega)$ such that

$$
\varphi_{\mu}^{\prime}(\bar{u})=0, \quad \inf _{u \in \partial B_{r}\left(u_{+}\right)} \varphi_{\mu}(u) \leq \varphi_{\mu}(\bar{u})
$$

On account of (4.5) and (4.7) again, the above inequality forces $\bar{u} \notin\left\{v_{-}, u_{+}\right\}$. Due to (4.6) we then get

$$
A(\bar{u})=\lambda|\bar{u}|^{p-2} \bar{u}-f(\cdot, \bar{u}) \quad \text { in }\left(W_{n}^{1, p}(\Omega)\right)^{*}
$$

i.e. the function \bar{u} solves problem (1.1). Standard results from nonlinear regularity theory (cf. [10]) finally give $\bar{u} \in C_{n}^{1}(\bar{\Omega})$. Bearing in mind Theorem 3.7, besides (4.6), the conclusion is achieved once we show that $\bar{u} \neq 0$. Define, for every $(t, u) \in[0,1] \times W_{n}^{1, p}(\Omega)$,

$$
h(t, u):=t \varphi_{\mu}(u)+(1-t) \psi(u), \quad \text { where } \psi(u):=\frac{1}{p}\left(\|\nabla u\|_{p}^{p}-\lambda\|u\|_{p}^{p}\right)
$$

Since φ_{μ} is coercive and $\lambda \notin \sigma\left(-\Delta_{p}\right)$, the function $h(t, \cdot), t \in[0,1]$, satisfies the Palais-Smale condition. We claim that zero turns out an isolated critical point of $h(t, \cdot)$ uniformly in $t \in[0,1]$. If, on the contrary, $h_{u}^{\prime}\left(t_{k}, u_{k}\right)=0$ for some $\left\{\left(t_{k}, u_{k}\right)\right\} \subseteq[0,1] \times W_{n}^{1, p}(\Omega)$ with $\left(t_{k}, u_{k}\right) \rightarrow(t, 0)$ in $[0,1] \times W_{n}^{1, p}(\Omega)$, then

$$
\begin{align*}
-\Delta_{p} u_{k}+t_{k} \mu\left|u_{k}\right|^{p-2} u_{k} & =t_{k} f_{\lambda+\mu}\left(x, u_{k}\right)+\left(1-t_{k}\right) \lambda\left|u_{k}\right|^{p-2} u_{k} \quad \text { in } \Omega \\
\frac{\partial u_{k}}{\partial n} & =0 \quad \text { on } \partial \Omega \tag{4.8}
\end{align*}
$$

Theorem 2 of [12] provides $\alpha \in] 0,1[, M>0$ fulfilling

$$
\left\{u_{k}\right\} \subseteq C_{n}^{1, \alpha}(\bar{\Omega}) \quad \text { and } \quad\left\|u_{k}\right\|_{C_{n}^{1, \alpha}(\bar{\Omega})} \leq M \quad \text { for all } k \in \mathbb{N}
$$

By compactness of the embedding $C_{n}^{1, \alpha}(\bar{\Omega}) \subseteq C_{n}^{1}(\bar{\Omega})$ this forces $u_{k} \rightarrow 0$ in $C_{n}^{1}(\bar{\Omega})$, where a subsequence is considered when necessary. Consequently, $u_{k} \in\left[v_{-}, u_{+}\right]$ for any sufficiently large k. Due to (4.8) we thus obtain

$$
A\left(u_{k}\right)=\lambda\left|u_{k}\right|^{p-2} u_{k}-t_{k} f\left(\cdot, u_{k}\right) \quad \text { in }\left(W_{n}^{1, p}(\Omega)\right)^{*}
$$

Now, arguing exactly as in the proof of Theorem 3.5 yields $\lambda \in \sigma\left(-\Delta_{p}\right)$, which is impossible.

Through the homotopy invariance property of critical groups [5, p. 334] one has

$$
C_{k}\left(\varphi_{\mu}, 0\right)=C_{k}(h(1, \cdot), 0)=C_{k}(h(0, \cdot), 0)=C_{k}(\psi, 0) \quad \text { for all } k \in \mathbb{N}_{0}
$$

From Proposition 2.6 in [13] it follows

$$
\begin{equation*}
C_{0}\left(\varphi_{\mu}, 0\right)=C_{1}\left(\varphi_{\mu}, 0\right)=0 \tag{4.9}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
C_{1}\left(\varphi_{\mu}, \bar{u}\right) \neq 0 \tag{4.10}
\end{equation*}
$$

because \bar{u} is a mountain pass point [5, Corollary 5.2.5]. Comparing (4.9) with (4.10) finally leads to $\bar{u} \neq 0$.

References

[1] S. Aizicovici, N. S. Papageorgiou and V. Staicu, Existence of multiple solutions with precise sign information for superlinear Neumann problems, Ann. Mat. Pura Appl. (4) $\mathbf{1 8 8}$ (2009), 679-719.
[2] W. Allegretto and Y. X. Huang, A Picone's identity for the p-Laplacian and applications, Nonlinear Anal. 32 (1998), 819-830.
[3] A. Ambrosetti and A. Malchiodi, Nonlinear Analysis and Semilinear Elliptic Problems, Cambridge Stud. Adv. Math., vol. 104, Cambridge Univ. Press, Cambridge, 2007.
[4] H. Brézis and L. Nirenberg, H^{1} versus C^{1} local minimizers, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 465-472.
[5] K.-C. Chang, Methods in Nonlinear Analysis, Springer-Verlag, Berlin, 2005.
[6] N. Dunford and J. T. Shwartz, Linear Operators. I. General Theory, Interscience Publ., New York, 1958.
[7] M. Guedda and L. Veron, Bifurcation phenomena associated to the p-Laplace operator, Trans. Amer. Math. Soc. 310 (1988), 419-431.
[8] S. Heikkilä and V. Lakshmikantham, Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations, Marcel Dekker, New York, 1994.
[9] S. Kamin and L. Veron, Flat core property associated to the p-Laplace operator, Proc. Amer. Math. Soc. 118 (1993), 1079-1085.
[10] A. Kristály and N. S. Papageorgiou, Multiple nontrivial solutions for Neumann problems involving the p-Laplacian: a Morse theoretical approach, Adv. Nonlinear Stud. 10 (2010), 83-108.
[11] An Lê, Eigenvalue problems for the p-Laplacian, Nonlinear Anal. 64 (2006), 1057-1099.
[12] G. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988), 1203-1219.
[13] S. A. Marano and N. S. Papageorgiou, On a Neumann problem with p-Laplacian and non-coercive resonant nonlinearity, submitted for publication.
[14] D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, A degree theoretic approach for multiple solutions of constant sign for nonlinear elliptic equations, Manuscripta Math. 124 (2007), 507-531.
[15] , Nonlinear Neumann problems near resonance, Indiana Univ. Math. J. 58 (2009), 1257-1280.
[16] J. L. VÁzquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191-202.

Manuscript received December 13, 2010
Salvatore A. Marano
Dipartimento di Matematica e Informatica
Università degli Studi di Catania
Viale A. Doria 6
95125 Catania, ITALY
E-mail address: marano@dmi.unict.it
Nicolaos S. Papageorgiou
Department of Mathematics
National Technical University of Athens
Zografou Campus
Athens 15780, GREECE
E-mail address: npapg@math.ntua.gr

[^0]: 2010 Mathematics Subject Classification. 35J25, 35J70, 58E05.
 Key words and phrases. p-Laplacian, Neumann problem, constant-sign solutions, nodal solutions, truncations, sub- and super-solutions, critical groups.

