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LOWER AND UPPER SOLUTIONS
TO SEMILINEAR BOUNDARY VALUE PROBLEMS:

AN ABSTRACT APPROACH

Alessandro Fonda — Rodica Toader

Abstract. We provide an abstract setting for the theory of lower and

upper solutions to some semilinear boundary value problems. In doing
so, we need to introduce an abstract formulation of the Strong Maximum

Principle. We thus obtain a general version of some existence results, both

in the case where the lower and upper solutions are well-ordered, and in the
case where they are not so. Applications are given, e.g. to boundary value

problems associated to parabolic equations, as well as to elliptic equations.

1. Introduction

In this paper, we investigate the existence of solutions to boundary value
problems of the type

(P)

{
Lu = F (x, t, u,∇xu,∇tu) in Q,

Bu = 0 on ∂Q,

where Q is a suitable bounded domain, L is a linear operator, B is a linear
boundary operator, and F is a Carathéodory function. Typically, in the appli-
cations we have in mind, L will be a linear differential operator. Notice however
that, according to the function space where u = u(x, t) belongs, either of the
gradients ∇xu or ∇tu might not appear in the equation.
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We provide an abstract setting to the method of lower and upper solutions,
which differs from previously proposed ones, like, e.g. the one by H. Amann [1],
[2], mainly by the fact that it is more directly related to the special structure of
problem (P). In our construction, we introduce an abstract version of the Strong
Maximum Principle, well fitting for our purposes, which, to our knowledge, has
not been considered in the previous literature.

As for the applications of our abstract theorems, we have in mind some
results of bifurcation type, on one hand, and some existence results in the case
when the lower and upper solutions are not well-ordered, on the other hand. We
will now explain how these two aims are pursued.

In order to simplify the exposition, in this section we will focus our attention
on the particular case of a parabolic problem of the type

(1.1)



Lu = F (x, t, u,∇xu) in Ω× ]0, T [ ,

u = 0 on Γ1 × ]0, T [ ,
N∑
i=1

bi(x, t)∂xi
u+ b0(x, t)u = 0 on Γ2 × ]0, T [ ,

u(x, 0) = u(x, T ) in Ω.

Here, Q = Ω × ]0, T [ , where Ω is a bounded regular domain in RN , and its
boundary ∂Ω is the disjoint union of two closed sets Γ1, Γ2 (the cases Γ1 = ∅ or
Γ2 = ∅ are admitted, of course). The parabolic differential operator is defined by

Lu = ∂tu−
N∑

i,j=1

aij(x, t)∂2
xixj

u+
N∑
i=1

ai(x, t)∂xi
u+ a0(x, t)u,

and standard assumptions are made on the coefficients aij , ai and bi (see Sec-
tion 7).

We denote by λ1 the principal eigenvalue of L, with the boundary conditions
in (1.1), and by ϕ1 the corresponding positive eigenfunction, with maxϕ1 = 1.

Let λ2 > λ1 be such that, for every function q ∈ Lr(Q) satisfying λ1 ≤
q(x, t) ≤ λ2, each of the inequalities being strict on a subset of positive measure,
the only solution of Lu = q(x, t)u, with the boundary conditions in (1.1), is the
trivial one, u = 0.

Consider the class of functions

F(I,Λ,K),

where I ⊆ R is an interval, and Λ, K are some nonnegative constants. Its
elements are the Carathéodory functions f :Q × I × RN → R which satisfy the
following Bernstein–Nagumo growth condition:

|f(x, t, u, ξ)| ≤ h(x, t) +K‖ξ‖2, for a.e. (x, t) ∈ Q and every (u, ξ) ∈ I × RN ,
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for some h ∈ Lr(Q), with r > N + 2 and ‖h‖Lr ≤ Λ.
For any open interval I ⊆ R, we will use the notation

Iϕ1 = {u ∈ C1,0(Q) : (inf I)ϕ1 < u < (sup I)ϕ1}.

Similarly if the interval is closed, with the strict inequalities replaced by non-
strict ones. Moreover, we will denote by Iϕ1(Q) the interval obtained as the
union of the images of the elements of Iϕ1. Notice that, if 0∈I, then Iϕ1(Q)=I.

We will prove the following.

Theorem 1.1. Let I ⊆ R be an open interval, and ζ ∈ Lr(Q) be a function
such that

λ1 ≤ ζ(x, t) ≤ λ2 for a.e. (x, t) ∈ Q,
the second inequality being strict on a subset of positive measure. Given a com-
pact interval [a, b], contained in I, let I be an open interval containing [a, b]ϕ1(Q).
Let

F (x, t, u, ξ) = g(x, t, u, ξ)u+ f(x, t, u, ξ).

There is a constant Λ > 0 such that, for every function g satisfying

λ1 ≤ g(x, t, u, ξ) ≤ ζ(x, t), for a.e. (x, t) ∈ Q and every (u, ξ) ∈ I × RN ,

and every function f ∈ F(I,Λ,Λ), if there are a lower solution α and an upper
solution β of (P) verifying

aϕ1 − Λ ≤ α ≤ bϕ1, aϕ1 ≤ β ≤ bϕ1 + Λ,

then problem (1.1) has a solution u ∈ Iϕ1. Moreover, if α 6≤ β, then

u ∈ {v ∈ C1,0(Q) : α 6≤ v and v 6≤ β}.

As a consequence of Theorem 1.1, concerning the Neumann-periodic problem

(1.2)


Lu = f(x, t, u,∇xu) in Ω× ]0, T [ ,

∂νu = 0 on ∂Ω× ]0, T [ ,

u(x, 0) = u(x, T ) in Ω.

we have the following result, obtained in [8].

Corollary 1.2. Let I ⊆ R be an open interval. Given a compact interval J ,
contained in I, there is a constant Λ > 0 such that, for every f ∈ F(I,Λ,Λ), if
there are two constants α, β in J for which

(1.3) f(x, t, β, 0) ≤ 0 ≤ f(x, t, α, 0) a.e. in Q,

then problem (1.2) has a solution u, with u(x, t) ∈ I for every (x, t) ∈ Q.

Indeed, in the setting of Corollary 1.2, we have that ϕ1 is constantly equal
to 1, so that Jϕ1(Q) = J , while α and β are constant lower and upper solutions.
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Hence, choosing I = I, it is readily seen that Corollary 1.2 is a consequence of
Theorem 1.1.

Since α and β belong to the kernel of the differential operator, Corollary 1.2
is related to some co-bifurcation theorems, cf. [9], [10], although we showed in [8]
that condition (1.3) cannot be replaced by the usual integral condition∫

Q

f(x, t, β, 0) dx dt < 0 <
∫
Q

f(x, t, α, 0) dx dt.

This is due to the fact that the constant Λ appearing in the theorem is uniform
with respect to a whole class of functions, while, in previous theorems available
in the literature, the nonlinearity was usually fixed at the beginning, and then
multiplied by a small parameter.

Besides from dealing with the more general problem (1.1), Theorem 1.1 gen-
eralizes the result proved in [8] in several directions. First of all, we are able to
deal with lower and upper solutions which do not belong to the kernel of the
differential operator. Also, more general nonlinear functions F are allowed. In
addition, we have a more precise information on the location of the solution.

As a further consequence of Theorem 1.1, after a suitable change of variables,
we obtain in Section 5 the following existence result, in the framework of non-
well-ordered lower and upper solutions.

Corollary 1.3. Let ζ ∈ Lr(Q) be a function such that

λ1 ≤ ζ(x, t) ≤ λ2 for a.e. (x, t) ∈ Q,

the second inequality being strict on a subset of positive measure. Assume that

F (x, t, u, ξ) = g(x, t, u, ξ)u+ f(x, t, u, ξ),

where the function g verifies

λ1 ≤ g(x, t, u, ξ) ≤ ζ(x, t), for a.e. (x, t) ∈ Q and every (u, ξ) ∈ R× RN ,

and the function f is Lr-bounded: there is an h ∈ Lr(Q) such that

|f(x, t, u, ξ)| ≤ h(x, t), for a.e. (x, t) ∈ Q and every (u, ξ) ∈ R× RN .

If (1.1) has a lower solution α and an upper solution β, then (1.1) has a solu-
tion u. Moreover, if α 6≤ β, then

u ∈ {v ∈ C1,0(Q) : α 6≤ v and v 6≤ β}.

Corollary 1.3 is due to C. De Coster and P. Omari [7], and extends to the
parabolic problem a similar result proved for an elliptic problem by C. De Coster
and M. Henrard in [5]. The main theorem in [5] is stated in a very general setting,
including the case of asymmetric nonlinearities, as well. It generalizes a series of
existence results in the presence of non-well-ordered lower and upper solutions,
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among which we mention those by H. Amann, A. Ambrosetti and G. Mancini [3],
P. Omari [13], J.-P. Gossez and P. Omari [11], and P. Habets and P. Omari [12].

Theorem 1.1 is indeed a particular case of a general existence result, which
we state and prove in Section 3. It is based on an abstract setting, which we
construct in Sections 2 and 3. There, we point out a set of assumptions needed for
our purposes, which will be shown to be satisfied, in particular, by the parabolic
problem (1.1) considered above (see Section 7), or by some elliptic problem, with
Neumann, Dirichlet, or more general boundary conditions (see Section 8).

In using lower and upper solutions techniques, in their various forms, one of
the main tools always needed is the Maximum Principle, in some of its formula-
tions. Needless to say, we find it unavoidable in our abstract setting, too. So, in
Section 2, we introduce an assumption, which can be interpreted as an abstract
version of the Strong Maximum Principle, and could be of some independent
interest by its own.

We will provide in Section 5 examples of applications of Theorem 1.1 to some
equations with superlinear, or one-sided superlinear nonlinearities.

In Section 6, we will show how the case of asymmetric nonlinearities can be
treated in our abstract setting, as well.

We conclude in Section 9 with some remarks on possible extensions of the
theory and its applications.

2. The abstract setting

Let Ω be a bounded regular domain in RN , and Σ be a bounded regular
domain in RM . Here, N and M are natural numbers, not both equal to zero.
Set Q = Ω × Σ. The points in Q will be denoted by z = (x, t), where x ∈ Ω
and t ∈ Σ. If M = 0, we identify Q with Ω and write z = x. Symmetrically, if
N = 0, we identify Q with Σ and write z = t.

We denote by C](Q) the space Ci,j(Q), where i, j are two numbers in the
set {0, 1}. Let us clarify this notation. If i = j = 0, then C](Q) is the space of
continuous functions u:Q → R. If i = j = 1, those functions are of class C1.
In the case i = 1, j = 0, the elements of C](Q) are the continuous functions
u(x, t) such that ∇xu(x, t) is continuous on Q, as well. Symmetrically, if i = 0,
j = 1, the elements of C](Q) are those continuous functions such that ∇tu(x, t)
is continuous.

Notice that, if M = 0, the space C](Q) is identified with Ci(Ω). Similarly, if
N = 0, we identify C](Q) with Cj(Σ).

Moreover, in order to simplify the notation, we write R] = RiN+jM and set

∇]u = (∇xu,∇tu) ∈ R],



64 A. Fonda — R. Toader

with the convention that, if j = 0 or M = 0, then ∇]u = ∇xu, and if i = 0 or
N = 0, then ∇]u = ∇tu. Clearly enough, if both these cases occur, then ∇]u
will simply not be considered.

Let W (Q) be a Banach space of functions which is continuously and com-
pactly imbedded in C](Q). Assume that L:W (Q) → Lr(Q) is a linear op-
erator, with r > 1, F :Q × R × R] → R is a Lr-Carathéodory function, and
B:C](Q) → C(∂Q) is a linear and continuous operator.

We are concerned with the boundary value problem (P), as stated at the
beginning of the paper, which we can write, equivalently, as

(P)

{
Lu = F (z, u,∇]u) in Q,

Bu = 0 on ∂Q,

Recall that F is Lr-Carathéodory if:

(i) F ( · , u, ξ) is measurable in Q, for every (u, ξ) ∈ R× R];
(ii) F (z, · , · ) is continuous in R× R], for almost every z ∈ Q;
(iii) for every ρ > 0 there is a hρ ∈ Lr(Q) such that, if |u|+ ‖ξ‖ ≤ ρ, then

|F (z, u, ξ)| ≤ hρ(z) for a.e. z ∈ Q.

Here, and in the sequel, ‖ · ‖ denotes the euclidean norm in R].
The following assumption will be related to the Strong Maximum Principle.

Assumption A1. If u ∈W (Q) is such that

min
Q

u < 0 and Bu ≥ 0,

then there is a point z0 ∈ Q with the following properties:

(a) u(z0) < 0,
(b) there is no neighbourhood U of z0 such that Lu > 0, almost everywhere

on U ∩Q.

Let us introduce the subspaces

C]B(Q) = {u ∈ C](Q) : Bu = 0}, WB(Q) = {u ∈W (Q) : Bu = 0},

endowed with the norms in C](Q) and W (Q), respectively. These are Banach
spaces, since the operator B is assumed to be linear and continuous. We will
denote by L:WB(Q) → Lr(Q) the restriction of L to WB(Q). The following is
a standard invertibility assumption.

Assumption A2. There is a σ < 0 such that L − σI:WB(Q) → Lr(Q) is
invertible and the operator (L− σI)−1:Lr(Q) → WB(Q) is continuous. Here, I
denotes the identity operator.
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In order to have a control on the growth of F (z, u, ξ) in the variable ξ, we
need to introduce a suitable increasing function

G: [0,∞[ → [0,∞[ .

The following assumption will be related to the well-known Bernstein–Nagumo
condition.

Assumption A3. Given two constants M,Λ > 0, there is a constant C > 0
such that, if u ∈WB(Q) verifies{

|Lu(z)| ≤ h(z) + G(‖∇]u(z)‖) for a.e. z ∈ Q,
|u(z)| ≤M for every z ∈ Q,

for some h ∈ Lr(Q) with ‖h‖Lr ≤ Λ, then ‖u‖W ≤ C.

Remark 2.1. A typical choice in the applications is the function G(y) =
cy2, first proposed by Bernstein. Notice that, whenever G can be taken to
be identically equal to 0, it is not difficult to prove that Assumption A3 is
a consequence of Assumption A2.

Let us introduce the nonlinear operator N :C]B(Q) → Lr(Q) defined by

(Nu)(z) = F (z, u(z),∇]u(z)).

It is readily seen that N is continuous and maps bounded sets into bounded sets.
Problem (P) can then be more rigorously stated as

(2.1) Lu = Nu.

A solution of problem (P) will be a function u ∈WB(Q) which satisfies equation
(2.1), almost everywhere in Q.

If σ is the number given by Assumption A2, equation (2.1) is equivalent to
the fixed point problem

u = Su,
where the operator S:C]B(Q) → C]B(Q) is defined by

Su = (L− σI)−1(Nu− σu).

By Assumption A2, and the fact that W (Q) is compactly imbedded in C](Q),
we have that S is completely continuous, so that we can use Leray–Schauder
degree theory.

Given two continuous functions u, v:Q→ R, we use the following notations:

u ≤ v ⇔ u(z) ≤ v(z) for every z ∈ Q,
u < v ⇔ u(z) < v(z) for every z ∈ Q.
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Let us consider the sets

C]B−(Q) = {u ∈ C](Q) : Bu ≤ 0}, C]B+(Q) = {u ∈ C](Q) : Bu ≥ 0},

endowed with the norm in C](Q). Notice that C]B = C]B− ∩ C
]
B+ .

We now introduce a further assumption.

Assumption A4. A relation u � v is defined in C](Q), with the following
properties:

(2.2)

u < v ⇒ u� v,

u� v ⇒ u ≤ v,

[u ≤ v and v � w] ⇒ u� w,

[u� v and v ≤ w] ⇒ u� w,

u� v ⇒ u+ w � v + w,

[c > 0 and u� v] ⇒ cu� cv,

for every u, v, w ∈ C](Q) and every constant c ∈ R. Sometimes, we will write
v � u instead of u� v. Moreover, the set

{u ∈ C]B−(Q) : u� 0}

is open in C]B−(Q). Equivalently, the set {u ∈ C]B+(Q) : u � 0} is open
in C]B+(Q).

Notice indeed that u� 0 if and only if −u� 0. Moreover, as a consequence
of Assumption A4, one can easily see that the sets

{u ∈ C]B(Q) : u� 0} and {u ∈ C]B(Q) : u� 0}

are open in C]B(Q). These facts will be frequently used in the sequel, by just
mentioning Assumption A4.

Definition 2.2. A pair of functions (α, β) ∈ C](Q) × C](Q) is said to be
degree-admissible for (P) if α � β, and there is a constant Rα,β > 0 with the
following property: any solution u of (P) satisfying α ≤ u ≤ β is such that

α� u� β and ‖u‖C] < Rα,β .

In the following, it will be convenient to use the notation

[α, β] = {u ∈ C](Q) : α ≤ u ≤ β},

and correspondingly

[α, β]B = {u ∈ C]B(Q) : α ≤ u ≤ β}.
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If (α, β) is a degree-admissible pair, then the set

U(α,β) = {u ∈ C]B(Q) : α� u� β}

is open in C]B(Q). Indeed, by Assumption A4, the sets

A = {u ∈ C]B+(Q) : u� α}, B = {u ∈ C]B−(Q) : u� β},

are open in C]B+(Q) and C]B−(Q), respectively, and

U(α,β) = (A ∩ C]B(Q)) ∩ (B ∩ C]B(Q)).

Moreover, since the closure of U(α,β) satisfies

U (α,β) ⊆ [α, β]B,

the fixed points of S in U (α,β) belong to U(α,β), and to the ball B(0, Rα,β) in
C]B(Q). Hence, we can define

deg(I − S, U(α,β)) = dLS(I − S, U(α,β) ∩B(0, Rα,β)),

where dLS denotes the Leray–Schauder degree.
The degree-admissible pairs considered in the sequel will often be made of

lower and upper solutions, a concept that we precise now.

Definition 2.3. A function α ∈W (Q) is a lower solution of (P) if{
Lα ≤ F (z, α,∇]α) a.e. in Q,

Bα ≤ 0 on ∂Q.

The function α is a strict lower solution if it is a lower solution and, for every
solution u of (P) with u ≥ α, one has that u� α.

Analogously, a function β ∈W (Q) is an upper solution of (P) if{
Lβ ≥ F (z, β,∇]β) a.e. in Q,

Bβ ≥ 0 on ∂Q.

The function β is a strict upper solution if it is an upper solution and, for every
solution u of (P) with u ≤ β, one has that u� β.

3. Well-ordered lower and upper solutions

The following is a classical result on lower and upper solutions. It has been
proved for different types of boundary value problems, with various kinds of
differential operators. See [4] for a comprehensive review. We prove it here in
our abstract setting.
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Theorem 3.1. Let Assumptions A1–A3 hold true, and let α be a lower
solution and β be an upper solution of (P) satisfying α ≤ β. Assume that there
is a function η ∈ Lr(Q) for which

|F (z, u, ξ)| ≤ η(z) + G(‖ξ‖), for a.e. z ∈ Q,
every u ∈ [α(z), β(z)] and every ξ ∈ R].

Then, problem (P) has a solution u such that α ≤ u ≤ β. If, moreover, Assump-
tion A4 holds and (α, β) is a degree-admissible pair, then

deg(I − S,U(α,β)) = 1.

Remark 3.2. Recall from Remark 2.1 that, in the case when the function
G is identically equal to 0, Assumption A3 is not explicitely needed, since it
is a consequence of Assumption A2. This is the case, e.g. when there is no
dependence on ∇]u in problem (P), i.e. F (z, u, ξ) does not depend on ξ.

Proof. We follow closely the proof in [5]. Set M = max{‖α‖L∞ , ‖β‖L∞}
and Λ = ‖h‖Lr , where

h(z) := η(z) + G(max{‖∇]α‖L∞ , ‖∇]β‖L∞}).

Let C > 0 be the constant given by Assumption A3. As W (Q) is continuously
imbedded in C](Q), there exists a positive constant κ such that ‖u‖C] ≤ κ‖u‖W
for every u ∈ W (Q). Let R = κC. We can assume R > max{‖∇]α‖L∞ ,
‖∇]β‖L∞}. Let F :Q× R× R] → R be defined by

F (z, u, ξ) =



F (z, u, ξ) if α(z) ≤ u ≤ β(z) and ‖ξ‖ ≤ R,

F

(
z, u,R

ξ

‖ξ‖

)
if α(z) ≤ u ≤ β(z) and ‖ξ‖ > R,

F (z, α(z),∇]α(z)) if u < α(z),

F (z, β(z),∇]β(z)) if u > β(z).

Notice that F satisfies

(3.1) |F (z, u, ξ)| ≤ h(z) + min{G(‖ξ‖),G(R)},
for a.e. z ∈ Q, every u ∈ R and every ξ ∈ R].

Let us define

γ(z, u) =


α(z) if u ≤ α(z),

u if α(z) < u < β(z),

β(z) if u ≥ β(z),
and consider the modified problem

(P)

{
Lu− σu = F (z, u,∇]u)− σγ(z, u) in Q,

Bu = 0 on ∂Q,
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where σ < 0 is the number given by Assumption A2. The remaining part of the
proof will be divided into four steps.

Step 1. Every solution u of (P) is such that α ≤ u ≤ β.
Let us prove that α ≤ u. Set v = u − α, and assume by contradiction that

min v < 0. Since Bv = Bu−Bα = −Bα ≥ 0, by Assumption A1 there is a point
z0 ∈ Q such that v(z0) < 0, and there is no neighbourhood U of z0 such that
Lv > 0, almost everywhere on U ∩Q. On the other hand, as v(z0) < 0, there is
a neighbourhood V of z0 such that v < 0 on V ∩Q, i.e., u < α on V ∩Q. Hence

Lv = Lu− Lα = F (z, u,∇]u)− σ(γ(z, u)− u)− Lα
= F (z, α,∇]α)− σ(α− u)− Lα ≥ σv > 0,

almost everywhere on V ∩Q, a contradiction. In a similar way it can be shown
that u ≤ β.

Step 2. Every solution u of (P) solves (P).
Let u be a solution of (P). As, by Step 1, α ≤ u ≤ β, we have γ(z, u) = u

and, by (3.1),

|(Lu)(z)| = |F (z, u(z),∇]u(z))| ≤ h(z) + G(‖∇]u(z)‖).

By Assumption A3,
‖u‖C] ≤ κ‖u‖W ≤ κC = R,

and therefore F (z, u,∇]u) = F (z, u,∇]u).

Step 3. Problem (P) admits a solution.
Let us introduce the operators Γ, N :C]B(Q) → Lr(Q) defined by

(Γu)(z) = γ(z, u(z)), (Nu)(z) = F (z, u(z),∇]u(z)).

Clearly, Γ is continuous, and, despite the fact that the function F might not be
continuous, one can see that the operator N is continuous. Moreover, by (3.1),
for every u ∈ C]B(Q),

|F (z, u,∇]u)| ≤ h(z) + G(R) for a.e. z ∈ Q,

so that, for some positive constant C1,

(3.2) ‖Nu− σΓu‖Lr ≤ C1 for every u ∈ C]B(Q).

Problem (P) is equivalent to the fixed point problem

u = Su,

where the operator S:C]B(Q) → C]B(Q) is defined by

Su = (L− σI)−1(Nu− σΓu).
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By Assumption A2, the fact that W (Q) is compactly imbedded in C](Q),
and (3.2), we have that S is completely continuous and its image is bounded,
hence contained in an open ball B(0,K) in C]B(Q). Therefore, by classical degree
theory,

dLS(I − S, B(0,K)) = 1,

and problem (P) has a solution u ∈ B(0,K).

Step 4. Computation of the degree.
If (α, β) is a degree-admissible pair, all fixed points of S belonging to [α, β]B

are in U(α,β) ∩ B(0, Rα,β). Taking R > Rα,β from the beginning of the proof,
we have that all fixed points of S are in [α, β]B (by Step 1), and they are fixed
points of S (by Step 2). Hence, all fixed points of S belong to U(α,β)∩B(0, Rα,β),
and since S and S coincide on U(α,β) ∩B(0, Rα,β), we have

deg(I − S,U(α,β)) = deg(I − S,U(α,β)).

Taking K ≥ Rα,β in Step 3, by the excision property of the degree we have

dLS(I − S,U(α,β) ∩B(0, Rα,β)) = dLS(I − S, B(0,K)) = 1,

thus ending the proof. �

4. Non-well-ordered lower and upper solutions

In this section, the problem we consider will be written in the form

(P)

{
Lu = g(z, u,∇]u)u+ f(z, u,∇]u) in Q,

Bu = 0 on ∂Q,

where f, g:Q × R × R] → R are Lr-Carathéodory functions. We introduce the
following assumption on the existence of a “first” eigenvalue.

Assumption A5. There is a number λ1 ≥ 0 and a function ϕ1 ∈ WB(Q),
with ϕ1 � 0, such that ker(L − λ1I) = {cϕ1 : c ∈ R}. We will assume that
maxϕ1 = 1.

Lemma 4.1. Let Assumptions A4 and A5 hold. Given a bounded set A in
W (Q), there is a constant CA ≥ 0 such that, if w ∈ A satisfies Bw ≤ 0, then
w ≤ CAϕ1, and if w ∈ A satisfies Bw ≥ 0, then w ≥ −CAϕ1.

Proof. We prove the first inequality, the second one being analogous. By
contradiction, assume that, for every n ∈ N, there is a wn ∈ A with Bwn ≤ 0,
and wn 6≤ nϕ1. Since A is bounded and W (Q) is compactly imbedded in C](Q),
there is a subsequence, still denoted (wn)n, and a function w ∈ C](Q), such
that wn → w in C](Q). Since B is continuous, Bw ≤ 0. Hence, wn and w are
in C]B−(Q). By Assumptions A4 and A5, there is a ε > 0 such that ϕ1−εw � 0.
By Assumption A4, it has to be wn � ϕ1/ε for n large enough, a contradiction.�
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The following concept has been introduced in [12], in the framework of an
elliptic problem.

Definition 4.2. A pair of functions (ψ1, ψ2) ∈ Lr(Q)×Lr(Q) is said to be
admissible if it satisfies ψ1 ≤ λ1 ≤ ψ2 almost everywhere in Q and, for every
q ∈ Lr(Q), with ψ1 ≤ q ≤ ψ2 almost everywhere in Q, if u is a solution of

(4.1)

{
Lu = q(z)u in Q,

Bu = 0 on ∂Q,

then, either u = 0, or u� 0, or u� 0.

The set of admissible pairs is not empty, since it contains the pair of constant
functions (λ1, λ1). In the applications, one usually relates the admissibility of
the pair (ψ1, ψ2) to the non-interaction of ψ2 with the higher eigenvalues of the
operator L.

Lemma 4.3. Let Assumptions A2, A4 and A5 hold. Given an admissible
pair of functions (ψ1, ψ2), there are two positive constants cψ1,ψ2 and Cψ1,ψ2

such that, for every q ∈ Lr(Q), with ψ1 ≤ q ≤ ψ2 almost everywhere in Q, if u
is a solution of (4.1), then

cψ1,ψ2‖u‖L∞ϕ1 ≤ |u| ≤ Cψ1,ψ2‖u‖L∞ϕ1.

Proof. The inequalities clearly hold when u = 0. Assume u 6= 0, and let
v = u/‖u‖L∞ . Then, v solves (4.1), and since the pair (ψ1, ψ2) is admissible, it
has to be either v � 0, or v � 0. Assume v � 0, the other case being treated
similarly. We want to prove that

cψ1,ψ2ϕ1 ≤ v ≤ Cψ1,ψ2ϕ1.

By contradiction, assume that for every n ∈ N there is a function vn ∈ WB(Q)
satisfying the following properties: ‖vn‖L∞ = 1, vn � 0, Lvn = qn vn for some
function qn ∈ Lr(Q) with ψ1 ≤ qn ≤ ψ2 almost everywhere in Q, Bvn = 0 and
either vn 6≥ ϕ1/n, or vn 6≤ nϕ1.

Let Nn:L∞(Q) → Lr(Q) be defined as

(Nnu)(z) = qn(z)u(z).

It is a continuous operator, which transforms bounded subsets of L∞(Q) into
bounded subsets of Lr(Q). Let σ ∈ R be the number given by Assumption A2.
Then,

vn = (L− σI)−1(Nnvn − σvn).

By Assumption A2, as ‖vn‖L∞ = 1, there is a constant C > 0 such that
‖vn‖W ≤ C. By Lemma 4.1, vn ≤ nϕ1, for n large enough. So, it has to be vn 6≥
ϕ1/n. Since W (Q) is compactly imbedded in C](Q), there are a subsequence,
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still denoted by (vn)n, and a function v ∈ C](Q) such that vn → v in C](Q).
Moreover, passing to a further subsequence, we may assume that there is a q ∈
Lr(Q) for which qn ⇀ q (weakly) in Lr(Q). Since the set of functions

{p ∈ Lr(Q) : ψ1(z) ≤ p(z) ≤ ψ2(z), for a.e. z ∈ Q}

is closed and convex, it is weakly closed, so that

ψ1(z) ≤ q(z) ≤ ψ2(z), for a.e. z ∈ Q.

Then, by compactness, v = (L− σI)−1(q( · )v − σv), i.e. v ∈WB(Q) and

Lv = q( · )v.

Since the pair (ψ1, ψ2) is admissible, either v = 0, or v � 0, or v � 0. As
vn � 0, by Assumption A4 the third possibility is excluded. Since ‖vn‖∞ = 1,
also ‖v‖∞ = 1, so that v 6= 0. Therefore it has to be v � 0. By Assumption A4,
there is ε > 0 such that v − εϕ1 � 0. Using Assumption A4 again, it has to be
vn � εϕ1 for n large enough, a contradiction. �

Let cψ1,ψ2 and Cψ1,ψ2 be the two positive constants given by Lemma 4.3.
Given two numbers a, b, set

(4.2) ιa =


Cψ1,ψ2

cψ1,ψ2

a if a ≤ 0,

cψ1,ψ2

Cψ1,ψ2

a if a ≥ 0,
κb =


cψ1,ψ2

Cψ1,ψ2

b if b ≤ 0,

Cψ1,ψ2

cψ1,ψ2

b if b ≥ 0.

Notice that

(4.3) ιa ≤ a and κb ≥ b.

We will also need the following assumption, which in the applications will be
satisfied by the positive constant functions.

Assumption A6. There is a function ϕ0 ∈W (Q) such that

ϕ0 > 0, Lϕ0 ≥ 0 and Bϕ0 ≥ 0.

We will assume that maxϕ0 = 1.

We define the set
F(I,Λ,K),

where I ⊆ R is an interval, and Λ,K are some nonnegative constants. Its
elements are the Carathéodory functions f :Q × I × R] → R which satisfy the
following Bernstein–Nagumo growth condition:

|f(z, u, ξ)| ≤ h(z) +KG(‖ξ‖), for a.e. z ∈ Q and every (u, ξ) ∈ I × R],

for some h ∈ Lr(Q), with ‖h‖Lr ≤ Λ.
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For an open interval I ⊆ R, we use the notation

Iϕ1 = {u ∈ C](Q) : (inf I)ϕ1 < u < (sup I)ϕ1}.

Similarly if the interval is closed, with the strict inequalities replaced by non-
strict ones. Moreover, we will denote by Iϕ1(Q) the interval obtained as the
union of the images of the elements of Iϕ1.

We are now in a position to state our main result.

Theorem 4.4. Let Assumptions A1–A6 hold true. Let (ψ1, ψ2) be an ad-
missible pair of functions, and a, b be two real numbers, with a ≤ b. Let I ⊆ R
be an open interval containing [ιa, κb], and I ⊆ R be an open interval containing
[ιa, κb]ϕ1(Q), where ιa and κb are given by (4.2). There is a constant Λ > 0 such
that, for every function g satisfying

ψ1(z) ≤ g(z, u, ξ) ≤ ψ2(z), for a.e. z ∈ Q and every (u, ξ) ∈ I × R],

and every function f ∈ F(I,Λ,Λ), if there are a lower solution α and an upper
solution β of (P) verifying

aϕ1 − Λ ≤ α ≤ bϕ1, aϕ1 ≤ β ≤ bϕ1 + Λ,

then problem (P) has a solution u ∈ Iϕ1. Moreover, if α 6≤ β, then

(4.4) u ∈ {v ∈ C]B(Q) : α 6≤ v and v 6≤ β}.

Remark 4.5. It can be seen that (4.4) implies

α 6� u and u 6� β.

Indeed, let u satisfy (4.4) and assume by contradiction that α � u. Let (vn)n
be a sequence in C]B(Q) such that α 6≤ vn, vn 6≤ β, and vn → u in C](Q). By
Assumption A4, α � vn, for n sufficiently large, contradicting α 6≤ vn. Hence,
(4.4) implies α 6� u. In the same way one can see that (4.4) implies u 6� β, as
well.

Proof. If the lower solution α and the upper solution β are well-ordered,
the result follows from Theorem 3.1, independently of the choice of Λ. So, we
will focus our attention on the case where α 6≤ β.

Let µ := minϕ0. Recall that, by Assumption A6, it is µ > 0. Fix ε > 0 and
a positive integer m0 such that[

ιa − ε− 2
m0µ

, κb + ε+
2

m0µ

]
⊆ I

and

[ιa − ε, κb + ε]ϕ1(Q) +
[
− 2
m0µ

,
2

m0µ

]
⊆ I.
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We will prove the statement by taking Λ = 1/m, with m ≥ m0 a sufficiently large
integer. By contradiction, assume that for every m ≥ m0 there are functions fm
and gm, with

ψ1(z) ≤ gm(z, u, ξ) ≤ ψ2(z), for a.e. z ∈ Q and every (u, ξ) ∈ I × R],

fm ∈ F(I, 1/m, 1/m), and there are a lower solution αm and an upper solution
βm of the problem

(Pm)

{
Lu = gm(z, u,∇]u)u+ fm(z, u,∇]u) in Q,

Bu = 0 on ∂Q,

with

(4.5) aϕ1 −
1
m
≤ αm ≤ bϕ1, aϕ1 ≤ βm ≤ bϕ1 +

1
m
,

and αm 6≤ βm, for which (Pm) has no solution u with u ∈ Iϕ1, or (Pm) has
no solution u in the closure of the set {v ∈ C]B(Q) : αm 6≤ v and v 6≤ βm}. In
particular, we are assuming a < b, since otherwise αm ≤ βm.

The strategy of the proof is to modify the functions fm and gm in order
to create a new pair of lower and upper solutions, which are well-ordered with
respect to αm and βm. By the use of degree arguments, we will then be able to
prove the existence of a solution um of the modified problem which remains in
the region where the functions have not been modified, so that um will indeed
be a solution of (Pm), and we will see how this leads to a contradiction with the
above.

Define the modified function f̃m:Q× R× R] → R as

f̃m(z, u, ξ) =

3λ1 + 1
mµ

if u ≤ (ιa − ε)ϕ1(z)−
2
mµ

ϕ0(z),

3λ1 + 1
mµ

+
mµfm(z, u, ξ)− 3λ1 − 1

ϕ0(z)

(
u− (ιa − ε)ϕ1(z)+

2
mµ

ϕ0(z)
)

if (ιa − ε)ϕ1(z)−
2
mµ

ϕ0(z) ≤u≤ (ιa − ε)ϕ1(z)−
1
mµ

ϕ0(z),

fm(z, u, ξ) if (ιa − ε)ϕ1(z)−
1
mµ

ϕ0(z) ≤u≤ (κb + ε)ϕ1(z)+
1
mµ

ϕ0(z),

− 3λ1 + 1
mµ

+
mµfm(z, u, ξ) + 3λ1 + 1

ϕ0(z)

(
(κb + ε)ϕ1(z) +

2
mµ

ϕ0(z)− u

)
if (κb + ε)ϕ1(z) +

1
mµ

ϕ0(z) ≤u≤ (κb + ε)ϕ1(z)+
2
mµ

ϕ0(z),

− 3λ1 + 1
mµ

if u ≥ (κb + ε)ϕ1(z) +
2
mµ

ϕ0(z),
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define the modified function g̃m:Q× R× R] → R as

g̃m(z, u, ξ) =

λ1 if u ≤ (ιa − ε)ϕ1(z)−
2
mµ

ϕ0(z),

λ1 +mµ
gm(z, u, ξ)− λ1

ϕ0(z)

(
u− (ιa − ε)ϕ1(z) +

2
mµ

ϕ0(z)
)

if (ιa − ε)ϕ1(z)−
2
mµ

ϕ0(z) ≤u≤ (ιa − ε)ϕ1(z)−
1
mµ

ϕ0(z),

gm(z, u, ξ) if (ιa − ε)ϕ1(z)−
1
mµ

ϕ0(z) ≤u≤ (κb + ε)ϕ1(z)+
1
mµ

ϕ0(z),

λ1 +mµ
gm(z, u, ξ)− λ1

ϕ0(z)

(
(κb + ε)ϕ1(z) +

2
mµ

ϕ0(z)− u

)
if (κb+ε)ϕ1(z)+

1
mµ

ϕ0(z) ≤u≤ (κb+ε)ϕ1(z)+
2
mµ

ϕ0(z),

λ1 if u ≥ (κb + ε)ϕ1(z) +
2
mµ

ϕ0(z),

and consider the modified problem

(P̃m)

{
Lu = g̃m(z, u,∇]u)u+ f̃m(z, u,∇]u) in Q,

Bu = 0 on ∂Q.

Notice that g̃m is a Lr-Carathéodory function,

(4.6) ψ1(z) ≤ g̃m(z, u, ξ) ≤ ψ2(z) for a.e. z ∈ Q and every (u, ξ) ∈ R× R],

and, for m sufficiently large,

(4.7) f̃m ∈ F
(

R,
3λ1 + 1
mµ

(1 + |Q|1/r), 1
m

)
.

Let Ñm:C]B(Q) → Lr(Q), be defined as

(Ñmu)(z) = g̃m(z, u(z),∇]u(z))u(z) + f̃m(z, u(z),∇]u(z)).

Let σ ∈ R be the number given by Assumption A2, and let S̃m:C]B(Q) → C]B(Q)
be defined as

S̃mu = (L− σI)−1(Ñmu− σu).

Recall that solving problem (P̃m) is equivalent to finding a fixed point of S̃m.
Define the functions α̃m and β̃m as follows:

α̃m(z) = (ιa − ε)ϕ1(z)−
3
mµ

ϕ0(z), β̃m(z) = (κb + ε)ϕ1(z) +
3
mµ

ϕ0(z).

Notice that, by (4.3), (4.5), and Assumptions A5 and A6,

(4.8) α̃m � αm � β̃m, α̃m � βm � β̃m.
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Let us prove that, for the modified problem (P̃m),

α̃m is a strict lower solution.

Indeed, we have

f̃m(z, α̃m,∇]α̃m) =
3λ1 + 1
mµ

and g̃m(z, α̃m,∇]α̃m) = λ1,

so that, by Assumption A6,

Lα̃m = λ1α̃m +
3λ1

mµ
ϕ0 −

3
mµ

L(ϕ0) ≤ λ1α̃m +
3λ1 + 1
mµ

= g̃m(z, α̃m,∇]α̃m)α̃m + f̃m(z, α̃m,∇]α̃m).

Moreover, by Assumption A6,

Bα̃m = − 3
mµ

B(ϕ0) ≤ 0,

so that α̃m is a lower solution. In order to show that it is a strict lower solution,
let u be a solution of (P̃m) with u ≥ α̃m. We will prove that u > α̃m. By
contradiction, assume that min(u − α̃m) = 0. Set v = u − α̃m − (1/(mµ))ϕ0.
Then, min v < 0 and, by Assumption A6, Bv = (2/(mµ))B(ϕ0) ≥ 0. By As-
sumption A1, there is a point z0 ∈ Q such that v(z0) < 0, and there is no
neighbourhood U of z0 such that Lv > 0, almost everywhere on U ∩Q.

Being v(z0) < 0, there is a neighbourhood V of z0 such that u < (ιa−ε)ϕ1−
(2/(mµ))ϕ0 in V ∩Q. By Assumption A6,

Lv = Lu− L(α̃m +
1
mµ

ϕ0) = λ1u+
3λ1 + 1
mµ

− L(α̃m +
1
mµ

ϕ0)

≥ λ1α̃m +
3λ1 + 1
mµ

− L(α̃m +
1
mµ

ϕ0) =
3λ1 + 1
mµ

− 3λ1

mµ
ϕ0 +

2
mµ

L(ϕ0) > 0,

almost everywhere in V ∩Q, a contradiction.
In the same way we can show that

β̃m is a strict upper solution.

The pair (α̃m, β̃m) is degree-admissible for (P̃m): by (4.6), (4.7), and Assump-
tion A3 (or A2), since W (Q) is continuously imbedded in C](Q), there is a con-
stant R > 0 such that ‖u‖C] < R for every solution u of (P̃m) with α̃m ≤ u ≤ β̃m.
Since α̃m and β̃m are strict, for such a solution we also have that α̃m � u� β̃m.

The following Claim will give us a solution um of (P̃m) with some localization
properties, which will permit us to show, passing to subsequences, that um lies
in the region where fm and gm have not been modified.

Claim. There is a solution um of (P̃m) such that

α̃m � um � β̃m,(4.9)
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and

um ∈ {v ∈ C]B(Q) : αm 6≤ v and v 6≤ βm}.(4.10)

For the proof, we distinguish three cases.

Case 1. The pairs (α̃m, βm) and (αm, β̃m) are degree-admissible for (P̃m).
By Theorem 3.1, we have

deg(I − S̃m, U(eαm,βm)) = 1,

deg(I − S̃m, U(αm,eβm)) = 1,

deg(I − S̃m, U(eαm,eβm)) = 1.

Since αm 6≤ βm, the sets U(eαm,βm) and U(αm,eβm) are disjoint. Moreover, they are
both contained in U(eαm,eβm) and

deg(I − S̃m,U(eαm,eβm)) 6= deg(I − S̃m, U(eαm,βm)) + deg(I − S̃m, U(αm,eβm)).

By the additivity property of the degree, there is a solution um of (P̃m) such
that um ∈ U(eαm,eβm) and

um 6∈ U (eαm,βm) ∪ U (αm,eβm).

Since α̃m and β̃m are strict, we have (4.9). Let us see that, in this case, αm 6≤ um
and um 6≤ βm. By contradiction, assume αm ≤ um. Let (vm,k)k be the sequence
in C]B(Q) defined by

vm,k = um +
1
k
ϕ1.

By Assumption A5, vm,k � αm. Since um � β̃m and, by Assumption A4 the
set {v ∈ C]B(Q) : v � β̃m} is open in C]B(Q), for k large enough we have that
vm,k � β̃m. Therefore, vm,k ∈ U(αm,eβm). Since vm,k → um in C](Q), it has to
be um ∈ U (αm,eβm), a contradiction. In the same way one proves that um 6≤ βm.

Case 2. The pair (α̃m, βm) is not degree-admissible for (P̃m). Then, for every
R > 0 there is a solution um of (P̃m) with

(4.11) α̃m ≤ um ≤ βm,

such that, either α̃m 6� um, or um 6� βm, or ‖um‖C] ≥ R. By (4.6), (4.7) and
Assumption A3 (or A2), we see that, for R large enough, the third possibility is
excluded. Recalling that α̃m is strict, we have that α̃m � um, and we deduce
that it has to be um 6� βm. On the other hand, it cannot be αm ≤ um, because
this would imply that αm ≤ βm. Moreover, by (4.8) and the fact that α̃m is
strict, (4.11) implies that (4.9) holds.

Considering again the sequence vm,k = um + (1/k)ϕ1, since αm 6≤ um, for
k large enough we have that αm 6≤ vm,k. Let us see that vm,k 6≤ βm. By
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contradiction, assume vm,k ≤ βm. Then, βm − um ≥ (1/k)ϕ1 � 0, so that
um � βm, a contradiction. Hence, for k large enough, vm,k ∈ {v ∈ C]B(Q) :
αm 6≤ v and v 6≤ βm}, so that, since vm,k → um in C](Q), we have (4.10).

Case 3. The pair (αm, β̃m) is not degree-admissible for (P̃m). This case is
analogous to Case 2. The proof of the Claim is thus completed.

Let (um)m be the sequence provided by the above Claim. Recall that, as
seen in Remark 4.5, (4.10) implies

(4.12) αm 6� um and um 6� βm.

By a compactness argument, we will now show that, for a subsequence, um is
indeed a solution of (Pm) and belongs to Iϕ1. Having proved (4.10), this will
give us the required contradiction.

By (4.6), (4.7), (4.9), and Assumption A3, there is a constant C > 0 such
that

‖um‖W ≤ C, for every m.

Being W (Q) compactly imbedded in C](Q), there are a subsequence, still de-
noted by (um)m, and a function u ∈ C]B(Q) such that um → u in C](Q). In
particular, for every z ∈ Q we have ‖∇]um(z)‖ ≤ c, for some constant c > 0.
Hence, by (4.7),

|f̃m(z, um(z),∇]um(z))| ≤ hm(z) +
1
m
G(c),

for some hm ∈ Lr(Q) such that

‖hm‖Lr ≤ 3λ1 + 1
mµ

(1 + |Q|1/r),

so that
f̃m( · , um( · ),∇]um( · )) → 0 in Lr(Q).

Moreover, by (4.6), there is a q ∈ Lr(Q) such that, for a subsequence,

(4.13) g̃m( · , um( · ),∇]um( · )) ⇀ q( · ) (weakly) in Lr(Q).

Then, by compactness,

S̃mum = (L− σI)−1(Ñmum − σum) → (L− σI)−1(q( · )u− σu) in C](Q).

As um = S̃mum, we get u = (L − σI)−1(q( · )u − σu), i.e. u ∈ WB(Q) and
Lu = q( · )u. Since the set of functions

{p ∈ Lr(Q) : ψ1(z) ≤ p(z) ≤ ψ2(z), for a.e. z ∈ Q}

is closed and convex, it is weakly closed, so that, by (4.6) and (4.13),

ψ1(z) ≤ q(z) ≤ ψ2(z), for a.e. z ∈ Q.
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Recalling that the pair (ψ1, ψ2) is admissible, it has to be either u = 0, or u� 0,
or u� 0. We want to show that

(4.14) ιaϕ1 ≤ u ≤ κbϕ1.

We consider three different cases.

Case 1. 0 ≤ a < b.
Assume by contradiction that u 6≤ κbϕ1. Then, u� 0 and, by Lemma 4.3, we

have that u ≤ Cψ1,ψ2‖u‖L∞ϕ1. Being u 6≤ κbϕ1, it has to be Cψ1,ψ2‖u‖L∞ > κb.
Again by the same lemma and Assumption A5,

u ≥ cψ1,ψ2‖u‖L∞ϕ1 �
cψ1,ψ2

Cψ1,ψ2

κbϕ1 = bϕ1.

Hence, u� bϕ1 so that, since um → u in C](Q), by Assumption A4, um � bϕ1,
for m sufficiently large. Since αm ≤ bϕ1, we get αm � um, in contradiction
with (4.12).

Assume now by contradiction that ιaϕ1 6≤ u. If a = 0, then ιa = 0 and
u 6≥ 0, so that u � 0. By Assumption A4, um � 0 for m large enough, and
since βm ≥ 0, we have um � βm, in contradiction with (4.12). If a > 0, we get
a similar contradiction if u ≤ 0. Hence, it has to be u � 0. By Lemma 4.3,
since ιaϕ1 6≤ u, we have that cψ1,ψ2‖u‖L∞ < ιa. Again by the same lemma and
Assumption A5,

u ≤ Cψ1,ψ2‖u‖L∞ϕ1 �
Cψ1,ψ2

cψ1,ψ2

ιaϕ1 = aϕ1.

Hence, u� aϕ1 so that, by Assumption A4, um � aϕ1, for m sufficiently large.
Since βm ≥ aϕ1, we get um � βm, in contradiction with (4.12).

Case 2. a < 0 < b.
In this case, ιa ≤ a < 0 < b ≤ κb. The inequality u ≤ κbϕ1 is proved as in

Case 1. Assume by contradiction that ιaϕ1 6≤ u. Then, it has to be u � 0. By
Lemma 4.3, since ιaϕ1 6≤ u, we have that −Cψ1,ψ2‖u‖L∞ < ιa. Again by the
same lemma and Assumption A5,

u ≤ −cψ1,ψ2‖u‖L∞ϕ1 �
cψ1,ψ2

Cψ1,ψ2

ιaϕ1 = aϕ1.

Hence, u� aϕ1 so that, by Assumption A4, um � aϕ1, for m sufficiently large.
Since βm ≥ aϕ1, we get um � βm, in contradiction with (4.12).

Case 3. a < b ≤ 0.
This case is the symmetrical of Case 1, and its proof is completely analogous.
By (4.14) and Assumption A5, we have

(ιa − ε)ϕ1 � u� (κb + ε)ϕ1.
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Since um → u in C](Q), by Assumption A4 we have that, for m sufficiently
large,

(ιa − ε)ϕ1 � um � (κb + ε)ϕ1.

So, um is a solution to problem (Pm). By the choice of ε, we have that um ∈ Iϕ1,
and since (4.10) holds, we get a contradiction, which ends the proof. �

Remark 4.6. We emphasize the fact that, in Theorem 4.4, the choice of the
constant Λ is made uniformly for a whole class of functions and lower and upper
solutions. This point has been investigated more carefully in [8].

5. Some consequences, in the abstract setting

In this section, we consider again the problem

(P)

{
Lu = g(z, u,∇]u)u+ f(z, u,∇]u) in Q,

Bu = 0 on ∂Q.

The first corollary of this section is an improved version of Corollary 1.3. As
we said in the Introduction, it generalizes a series of results involving non-well-
ordered lower and upper solutions, cf. [3], [5], [7], [11]–[13].

Corollary 5.1. Let Assumptions A1–A6 hold true. Let (ψ1, ψ2) be an
admissible pair of functions, assume that the function g verifies

ψ1(z) ≤ g(z, u, ξ) ≤ ψ2(z), for a.e. z ∈ Q and every (u, ξ) ∈ R× R],

and the function f is Lr-bounded: there is an h ∈ Lr(Q) such that

|f(z, u, ξ)| ≤ h(z), for a.e. z ∈ Q and every (u, ξ) ∈ R× R].

If (P) has a lower solution α and an upper solution β, then (P) has a solution u.
Moreover, if α 6≤ β, then

u ∈ {v ∈ C]B(Q) : α 6≤ v and v 6≤ β}.

Proof. Consider the change of variable w = λu, with λ ∈ ]0, 1] a small
positive number. Then, (P) becomes

(P̂λ)

{
Lw = ĝλ(z, w,∇]w)w + f̂λ(z, w,∇]w) in Q,

Bw = 0 on ∂Q,

with

ĝλ(z, w, ξ) = g

(
z,
w

λ
,
ξ

λ

)
and f̂λ(z, w, ξ) = λf

(
z,
w

λ
,
ξ

λ

)
.

The function ĝλ verifies

ψ1(z) ≤ ĝλ(z, w, ξ) ≤ ψ2(z), for a.e. z ∈ Q and every (w, ξ) ∈ R× R],
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while f̂λ ∈ F(R, λ‖h‖Lr , 0). We have that α̂λ = λα is a lower solution and
β̂λ = λβ is an upper solution for (P̂λ). By Lemma 4.1, there are a constant
Cα ≥ 0 for which α ≤ Cαϕ1, and a constant Cβ ≤ 0 for which β ≥ Cβϕ1. Notice
that

Cβϕ1 − λ‖α‖L∞ ≤ α̂λ ≤ Cαϕ1, Cβϕ1 ≤ β̂λ ≤ Cαϕ1 + λ‖α‖L∞ ,

for every λ ∈ ]0, 1]. Taking a = Cβ , and b = Cα, we can apply Theorem 4.4 and
we find, for λ sufficiently small, that (P̂λ) has a solution wλ. Moreover, if α 6≤ β,
then α̂λ 6≤ β̂λ for every λ ∈ ]0, 1], hence

wλ ∈ {v ∈ C]B(Q) : α̂λ 6≤ v and v 6≤ β̂λ}.

The proof is then easily concluded. �

As a direct consequence of Theorem 4.4, we have the following corollary,
which is related to some co-bifurcation theorems, cf. [9], [10].

Corollary 5.2. Let Assumptions A1–A6 hold true. Let I ⊆ R be an open
interval, and Λ, K be some fixed positive numbers. Given a compact interval J ,
contained in I, let I be an open interval containing Jϕ1(Q). Then, there is a λ >
0 with the following property: for every λ ∈ [0, λ] and every f ∈ F(I,Λ,K), if
there are two constants a1, b1 in J for which

f( · , b1ϕ1( · ), b1∇]ϕ1( · )) ≤ 0 ≤ f( · , a1ϕ1( · ), a1∇]ϕ1( · )) a.e. in Q,

then the problem {
Lu = λ1u+ λf(z, u,∇]u) in Q,

Bu = 0 on ∂Q,

has a solution u ∈ Iϕ1.

Proof. In this case, we have ψ1 = ψ2 = λ1, so that cψ1,ψ2 = Cψ1,ψ2 = 1.
Writing J = [a, b], we have that ιa = a and κb = b. Hence, Theorem 4.4 applies
by taking α = a1ϕ1 and β = b1ϕ1. �

We now give two examples of applications of Corollary 5.2.
Let η ∈ L∞(Q) be a function bounded below by a positive constant. Given

p > 1, consider the problem

(5.1)

{
Lu = λ1u+ η(z)|u|p−1u+ e(z) in Q,

Bu = 0 on ∂Q,
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Corollary 5.3. Let Assumptions A1–A6 hold true. For every given δ > 0
there is a Λδ > 0 such that, for every p > 1, if

(5.2) |e(z)| ≤
(

Λδ
(1 + δ)p

)p/(p−1)

ϕ1(z)p for a.e. z ∈ Q,

then (5.1) has a solution.

Proof. Fix δ > 0 and consider the problem

(5.3)

{
Lw = λ1w + λ(η(z)|w|p−1w + ẽ(z)) in Q,

Bw = 0 on ∂Q,

where λ is a positive constant and ẽ is such that

(5.4) |ẽ(z)| ≤ (ess inf η)ϕ1(z)p for a.e. z ∈ Q.

Take J = [−1, 1] and I = ]−1− δ, 1 + δ[ . Notice that, in this case, Jϕ1(Q) = J ,
so that we can take I = I. Setting f(z, w) = η(z)|w|p−1w + ẽ(z), we have

f(z,−ϕ1(z)) ≤ 0 ≤ f(z, ϕ1(z)),

for almost every z ∈ Q and, for every w ∈ I,

(5.5) |f(z, w)| ≤ ‖η‖L∞(1 + δ)p + ess inf η ≤ 2λ‖η‖L∞(1 + δ)p.

Take α = ϕ1, β = −ϕ1, r = +∞ and let λ = λδ > 0 be as in the statement of
Corollary 5.2. Hence, if λ ∈ [0, λδ], then (5.3) has a solution w ∈ Iϕ1. Set

(5.6) Λδ = λδ(1 + δ)p min{ess inf η, 1}.

Consider now (5.1), and assume (5.2) with Λδ > 0 as above.

Setting w = λ
1/(1−p)

δ u, we see that (5.1) is equivalent to (5.3), with λ = λδ

and ẽ(z) = λ
p/(1−p)

δ e(z). Since, using (5.2), (5.6),

|ẽ(z)| = λ
p/(1−p)

δ |e(z)| ≤ λ
p/(1−p)

δ

(
Λδ

(1 + δ)p

)p/(p−1)

ϕ1(z)p

= min{ess inf η, 1}p/(p−1)ϕ1(z)p ≤ (ess inf η)ϕ1(z)p,

we have that (5.4) holds, so that (5.3) is solvable. Therefore, (5.1) is solvable,
as well. �

Remark 5.4. Notice that, taking δ = 1/2, condition (5.2) is satisfied if p is
sufficiently large and

|e(z)| ≤
(

1
2
ϕ1(z)

)p

for a.e. z ∈ Q.

In a similar way, we have the following result, where we use the notation

u+ = max{u, 0}.
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Let η ∈ L∞(Q) be a function bounded below by a positive constant. Given
p > 1, consider the problem

(5.7)

{
Lu = λ1u+ η(z)(u+)p + e(z) in Q,

Bu = 0 on ∂Q,

Corollary 5.5. Let Assumptions A1–A6 hold true. For every given δ > 0
there is a Λδ > 0 such that, for every p > 1, if e(z) ≤ 0 for almost every z ∈ Q
and (5.2) holds, then (5.7) has a solution.

Proof. As in the proof of Corollary 5.3, first consider the problem{
Lw = λ1w + λ(η(z)(w+)p + ẽ(z)) in Q,

Bw = 0 on ∂Q,

where ẽ is such that

−(ess inf η)ϕ1(z)p ≤ ẽ(z) ≤ 0 for a.e. z ∈ Q.

Once δ > 0 is fixed, take J = [0, 1] and I = ]−δ, 1 + δ[ . Notice that, even in this
case, Jϕ1(Q) = J , so that we can take I = I. Setting f(z, w) = η(z)(w+)p+ẽ(z),
we have

f(z, 0) ≤ 0 ≤ f(z, ϕ1(z)),

and (5.5) holds, for almost every z ∈ Q and every w ∈ I. Taking α = ϕ1 and
β = 0, one then concludes as in the proof of Corollary 5.3. �

Let us now introduce a further assumption.

Assumption A7. There is a number λ2 > λ1 with the following property.
If q ∈ Lr(Q) satisfies

λ1 ≤ q(z) ≤ λ2 for a.e. z ∈ Q,

each of the inequalities being strict on a subset of positive measure, then the
problem {

Lu = q(z)u in Q,

Bu = 0 on ∂Q,

only has the zero solution.

The following corollary is the abstract version of Theorem 1.1.

Corollary 5.6. Let Assumptions A1–A7 hold true. Let I ⊆ R be an open
interval, and ζ ∈ Lr(Q) be a function such that

λ1 ≤ ζ(z) ≤ λ2 for a.e. z ∈ Q,
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the second inequality being strict on a subset of positive measure. Given a com-
pact interval [a, b], contained in I, let I be an open interval containing [a, b]ϕ1(Q).
There is a constant Λ > 0 such that, for every function g satisfying

λ1 ≤ g(z, u, ξ) ≤ ζ(z), for a.e. z ∈ Q and every (u, ξ) ∈ I × R],

and every function f ∈ F(I,Λ,Λ), if there are a lower solution α and an upper
solution β of (P) verifying

aϕ1 − Λ ≤ α ≤ bϕ1, aϕ1 ≤ β ≤ bϕ1 + Λ,

then problem (P) has a solution u ∈ Iϕ1. Moreover, if α 6≤ β, then

u ∈ {v ∈ C]B(Q) : α 6≤ v and v 6≤ β}.

Proof. Take ψ1(z) = λ1 and ψ2(z) = ζ(z). If q ∈ Lr(Q) satisfies λ1 ≤
q ≤ ζ, then a solution of (4.1) is either identically zero, or, if q is equal to
λ1, it is a multiple of ϕ1. Hence, the pair (ψ1, ψ2) is admissible, and we have
cψ1,ψ2 = Cψ1,ψ2 = 1, so that ιa = a and κb = b. The result then follows directly
from Theorem 4.4. �

6. Asymmetric nonlinearities

In this section the considered problem will be written as

(P)

{
Lu = g+(z, u,∇]u)u+ − g−(z, u,∇]u)u− + f(z, u,∇]u) in Q,

Bu = 0 on ∂Q,

where f, g+, g−:Q×R×R] → R are Lr-Carathéodory functions, u+ = max{u, 0}
and u− = max{−u, 0}. We will only briefly discuss the main differences with
respect to the results obtained in Section 4.

Definition 6.1. A quadruple of functions (ψ1, ψ2, χ1, χ2) ∈ (Lr(Q))4 is said
to be admissible if it satisfies ψ1 ≤ λ1 ≤ ψ2, χ1 ≤ λ1 ≤ χ2 almost everywhere
in Q and, for every q+, q− ∈ Lr(Q), with ψ1 ≤ q+ ≤ ψ2, χ1 ≤ q− ≤ χ2 almost
everywhere in Q, if u is a solution of

(6.1)

{
Lu = q+(z)u+ − q−(z)u− in Q,

Bu = 0 on ∂Q,

then, either u = 0, or u� 0, or u� 0.

If Assumption A5 holds, the set of admissible quadruples is not empty, since it
contains the quadruple of constant functions (λ1, λ1, λ1, λ1). In the applications,
one usually relates the admissibility of the quadruple (ψ1, ψ2, χ1, χ2) to the non-
interaction with the first curve in the Dancer–Fučik spectrum of the operator L.
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Lemma 6.2. Let Assumptions A2, A4 and A5 hold. Given an admissi-
ble quadruple (ψ1, ψ2, χ1, χ2), there are two positive constants cψ1,ψ2,χ1,χ2 and
Cψ1,ψ2,χ1,χ2 such that, for every q+, q− ∈ Lr(Q), with ψ1 ≤ q+ ≤ ψ2, χ1 ≤ q− ≤
χ2 almost everywhere in Q, if u is a solution of (6.1), then

cψ1,ψ2,χ1,χ2‖u‖L∞ϕ1 ≤ |u| ≤ Cψ1,ψ2,χ1,χ2‖u‖L∞ϕ1.

Proof. Just follow the lines of the proof of Lemma 4.3. The only difference
is the use of the following well-known fact: if (qn)n is a sequence in Lr(Q) such
that qn ⇀ q weakly in Lr(Q), and (un)n is a sequence in C(Q) such that un → u

uniformly, then qnu+
n ⇀ qu+ weakly in Lr(Q). �

Let cψ1,ψ2,χ1,χ2 and Cψ1,ψ2,χ1,χ2 be the two positive constants given by Lem-
ma 4.3. Given two numbers a, b, set

(6.2) ιa =


Cψ1,ψ2,χ1,χ2

cψ1,ψ2,χ1,χ2

a if a ≤ 0,

cψ1,ψ2,χ1,χ2

Cψ1,ψ2,χ1,χ2

a if a ≥ 0,
κb =


cψ1,ψ2,χ1,χ2

Cψ1,ψ2,χ1,χ2

b if b ≤ 0,

Cψ1,ψ2,χ1,χ2

cψ1,ψ2,χ1,χ2

b if b ≥ 0.

We have the following analogue of Theorem 4.4.

Theorem 6.3. Let Assumptions A1–A6 hold true. Let (ψ1, ψ2, χ1, χ2) be an
admissible quadruple of functions, and a, b be two real numbers, with a ≤ b. Let
I ⊆ R be an open interval containing [ιa, κb], and I ⊆ R be an open interval
containing [ιa, κb]ϕ1(Q), where ιa and κb are given by (6.2). There is a constant
Λ > 0 such that, for every two functions g+, g− satisfying

ψ1(z) ≤g+(z, u, ξ) ≤ ψ2(z),

χ1(z) ≤g−(z, u, ξ) ≤ χ2(z),

for almost every z ∈ Q, every (u, ξ) ∈ I×R], and every function f ∈ F(I,Λ,Λ),
if there are a lower solution α and an upper solution β of (P) verifying

aϕ1 − Λ ≤ α ≤ bϕ1, aϕ1 ≤ β ≤ bϕ1 + Λ,

then problem (P) has a solution u ∈ Iϕ1. Moreover, if α 6≤ β, then

u ∈ {v ∈ C]B(Q) : α 6≤ v and v 6≤ β}.

Proof. We follow the lines of the proof of Theorem 4.4. Let µ := minϕ0,
and fix ε > 0 such that [ιa−ε, κb+ε] ⊆ I and [ιa−ε, κb+ε]ϕ1(Q) ⊆ I. Arguing
by contradiction, we modify the functions fm(z, u, ξ), g+,m(z, u, ξ), g−,m(z, u, ξ)
outside the set{

(z, u, ξ) : (ιa − ε)ϕ1(z)−
1
mµ

ϕ0(z) ≤ u ≤ (κb + ε)ϕ1(z) +
1
mµ

ϕ0(z)
}
,
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so that both g+,m and g−,m will be equal to λ1 outside the set{
(z, u, ξ) : (ιa − ε)ϕ1(z)−

2
mµ

ϕ0(z) ≤ u ≤ (κb + ε)ϕ1(z) +
2
mµ

ϕ0(z)
}
.

We thus obtain the new functions f̃m(z, u, ξ), g̃+,m(z, u, ξ), g̃−,m(z, u, ξ), and
consider the modified problem (P̃m):{ Lu = g̃m,+(z, u,∇]u)u+ − g̃m,−(z, u,∇]u)u− + f̃m(z, u,∇]u) in Q,

Bu = 0 on ∂Q.

Defining the functions

α̃m = (ιa − ε)ϕ1 −
3
mµ

ϕ0, β̃m = (κb + ε)ϕ1 +
3
mµ

ϕ0,

we can prove that α̃m is a strict lower solution, and β̃m is a strict upper solution,
and (4.8) holds. We then prove the following claim.

Claim. There is a solution um of (P̃m) such that

α̃m � um � β̃m,(6.3)

and

um ∈ {v ∈ C]B(Q) : αm 6≤ v and v 6≤ βm}.(6.4)

Let (um)m be the sequence provided by the above Claim. There are a sub-
sequence, still denoted by (um)m, and a function u ∈ C]B(Q) such that um → u

in C](Q). Moreover,

f̃m( · , um( · ),∇]um( · )) → 0 in Lr(Q),

and, for some subsequence,

g̃m,+( · , um( · ),∇]um( · )) ⇀ q+( · ) (weakly) in Lr(Q),

g̃m,−( · , um( · ),∇]um( · )) ⇀ q−( · ) (weakly) in Lr(Q).

By a standard argument, we can conclude that

Lu = q+( · )u+ − q−( · )u−,

and
ψ1(z) ≤ q+(z) ≤ ψ2(z), χ1(z) ≤ q−(z) ≤ χ2(z),

for almost every z ∈ Q. We can then prove that ιaϕ1 ≤ u ≤ κbϕ1.
By Assumption A5, we have (ιa − ε)ϕ1 � u� (κb + ε)ϕ1. Since um → u in

C](Q), by Assumption A4 we have that, for m sufficiently large,

(ιa − ε)ϕ1 � um � (κb + ε)ϕ1,
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so that um is a solution to problem (Pm). By the choice of ε, we have that
um ∈ Iϕ1, and since (6.4) holds, we get a contradiction, which ends the proof.�

7. The case M = 1. An application to the parabolic equation

Let Ω be a bounded domain in RN with a C2-boundary ∂Ω. Given T > 0,
set Q = Ω× ]0, T [ .

Define the elliptic differential operator

Au := −
N∑

i,j=1

aij(x, t)∂2
xixj

u+
N∑
i=1

ai(x, t)∂xi
u+ a0(x, t)u.

Here aij ∈ C(Q), aij = aji, aij(x, 0) = aij(x, T ) in Ω, for i, j = 1, . . . , N , there
exists a > 0 such that

N∑
i,j=1

aij(x, t)ξiξj ≥ a‖ξ‖2, for every (x, t, ξ) ∈ Q× RN ,

ai ∈ L∞(Q), for i = 0, . . . , N .
We choose C](Q) = C1,0(Q), and W (Q) = W 2,1

r (Q), the space of functions
u such that

u, ∂tu, ∂xi
u, ∂2

xixj
u ∈ Lr(Q),

for i, j = 1, . . . , N , with the usual norm

‖u‖W = ‖u‖Lr + ‖∂tu‖Lr +
N∑
i=1

‖∂xi
u‖Lr +

N∑
i,j=1

‖∂2
xixj

u‖Lr .

Taking r > N + 2, we have that W 2,1
r (Q) is compactly imbedded into C1,0(Q).

We define the operator L:W 2,1
r (Q) → Lr(Q) as follows:

Lu = ∂tu+Au.

Assume that ∂Ω is the disjoint union of two closed sets Γ1 and Γ2 (the cases
Γ1 = ∅ or Γ2 = ∅ are admitted). Let τs be the operator defined by

(τsu)(x, t) = u(x, t+ s),

and consider the boundary operator

Bu :=



u on Γ1 × [0, T ],
N∑
i=1

bi(x, t)∂xiu+ b0(x, t)u on Γ2 × [0, T ],

u− τTu in Ω× {0},
τ(−T )u− u in Ω× {T}.
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Here bi ∈ C1(∂Ω× [0, T ]), bi(x, 0) = bi(x, T ) in ∂Ω, for i = 0, . . . , N , and there
exists b > 0 such that

b0(x, t) ≥ 0 and
N∑
i=1

bi(x, t)νi(x) ≥ b, for every (x, t) ∈ ∂Ω× ]0, T [ .

The vector ν(x) = (ν1(x), . . . νN (x)) is the unit outer normal to Ω at x ∈ ∂Ω.
In this setting, problem (P) coincides with (1.1). We then have that u is a so-

lution of problem (P) if u belongs to W 2,1
r (Q), it satisfies the differential equation

almost everywhere in Q and the boundary conditions pointwise. A function with
these properties is usually called “strong solution” in the literature.

We can assume without loss of generality that

a0(x, t) ≥ 0 for a.e. (x, t) ∈ Q.

Indeed, if it were not so, we could add to both sides of the differential equation
the term ρu, with ρ = essinf a0.

Definition 7.1. Given two functions u, v ∈ C1,0(Q), we will write u� v if
the following two conditions hold:

(a) for every (x, t) ∈ Ω× [0, T ], u(x, t) < v(x, t),
(b) for every (x, t) ∈ ∂Ω× [0, T ], either u(x, t) < v(x, t), or u(x, t) = v(x, t)

and ∂νu(x, t) > ∂νv(x, t).

Here ν denotes the outer unit normal to ∂Ω at the point (x, t).

We need to check whether our Assumptions A1–A7 are verified.
Assumption A1: Let v ∈W 2,1

r (Q) be such that

m := min v < 0 and Bv ≥ 0.

Let (x0, t0) ∈ Q satisfy v(x0, t0) = m. If t0 = 0, since v(x0, 0)− v(x0, T ) ≥ 0, we
have that v(x0, T ) = m, as well. We can then assume without loss of generality
that t0 > 0. Assume by contradiction that there is a neighbourhood U of (x0, t0)
such that Lv > 0 a.e. on U ∩ Q. Restricting to a smaller neighbourhood, if
necessary, we can assume that U = Ω1 × ]t1, t2[ , where Ω1 is an open set with
a C2-boundary, and 0 < t1 < t0 < t2. We distinguish between three different
cases.

If x0 belongs to Ω, we can take Ω1 contained in Ω, and the Strong Maximum
Principle (cf. [7, Proposition I.1.1]) implies that v is constant in Ω1 × ]t1, t0],
which is impossible, since Lv > 0 there.

If x0 belongs to Γ1, then v(x0, t0) = 0 > m, contrary to the assumption.
If x0 belongs to Γ2, we take an open set Ω2, with a C2-boundary, such

that Ω2 ⊆ Ω1 ∩ Ω, and Ω2 ∩ ∂Ω = {x0}. Notice that the outer normal ν
at x0 is the same for Ω and for Ω2. By the Strong Maximum Principle (cf. [7,
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Proposition I.1.1]), since v is not constant in Ω2×]t1, t0], it has to be ∂µv(x0, t0) <
0 for every µ ∈ RN such that µ · ν > 0. Let µ = (b1(x0, t0), . . . , bN (x0, t0)), the
functions bi coming from the boundary condition. Then, since Bv ≥ 0, we would
have

∂µv(x0, t0) ≥ −b0(x0, t0)v(x0, t0) ≥ 0,

a contradiction.
Assumption A2 is verified for every σ < 0, see [7, Proposition I.1.3].
Assumption A3 is a classical estimate, with

G(y) = cy2,

for any constant c ≥ 0, see [7, Proposition III.1.4].
Assumption A4: The properties (2.2) can be directly verified. By contradic-

tion, let (vn)n and v in C1,0
B+(Q) be such that v � 0, vn → v in C1,0(Q) and

vn 6� 0, for every n. Two cases are possible.

Case 1. There is a sequence (xn, tn)n in Q such that vn(xn, tn) ≤ 0. Then,
there are a subsequence, still denoted by (xn, tn)n, and a point (x, t) ∈ Q such
that (xn, tn) → (x, t). Since v � 0 and vn → v in C1,0(Q), it has to be
v(x, t) = 0, and hence x ∈ ∂Ω and ∂νv(x, t) < 0. We distinguish two subcases.

If x ∈ Γ1, we can find a sufficiently small ball U = B(x, ρ) such that, on
(U ∩ ∂Ω) × [0, T ], all un vanish. Moreover, since ∂νv(x, t) < 0, if ρ is small
enough we will have, for the same direction ν, that ∂νvn(x, t) < 0, for every
(x, t) ∈ U × ]t − ρ, t + ρ[ . Taking ρ still smaller, if necessary, we have that the
segment {xn + sν : s ≥ 0} ∩U meets the boundary ∂Ω at a single point x′n. For
n large enough, tn ∈ ]t − ρ, t + ρ[ , so that vn(xn, tn) ≤ 0 ≤ vn(x′n, tn), and this
is impossible since ∂νvn is negative on the segment joining xn with x′n.

If x ∈ Γ2, since v(x, t) = 0 and Bv ≥ 0, letting µ = (b1(x, t), . . . , bN (x, t)),
it has to be ∂µv(x, t) ≥ 0. Since v � 0, recalling that µ · ν > 0, it cannot be
that ∂µv(x, t) > 0, so ∂µv(x, t) = 0. Since ∂νv(x, t) < 0, taking δ > 0 sufficiently
small, we have that (µ−δν)·ν > 0 and ∂(µ−δν)v(x, t) = ∂µv(x, t)−δ∂νv(x, t) > 0,
which is impossible, since v � 0.

Case 2. There is a sequence (xn, tn)n in ∂Ω×[0, T ] such that, either vn(xn, tn)
< 0, or vn(xn, tn) = 0, and ∂νvn(xn, tn) ≥ 0. For a subsequence, (xn, tn) →
(x, t) ∈ ∂Ω× [0, T ]. As v � 0, either v(x, t) > 0, or v(x, t) = 0 and ∂νv(x, t) < 0.
Since vn(xn, tn) ≤ 0, it cannot be that v(x, t) > 0. So, v(x, t) = 0 and ∂νv(x, t) <
0. If vn(xn, tn) < 0, since Bvn ≥ 0, letting µn = (b1(xn, tn), . . . , bN (xn, tn)), it
has to be ∂µn

vn(xn, tn) ≥ 0. Passing to the limit, µn→µ=(b1(x, t), . . . , bN (x, t))
and ∂µv(x, t) ≥ 0. We met the same situation in Case 1, and we saw that this
is not possible. Then, vn(xn, tn) = 0, and ∂νvn(xn, tn) ≥ 0. Since ∂νv(x, t) < 0
and vn → v in C1,0(Q), this is also impossible, finishing the proof.
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Assumption A5 is rather standard for this kind of problems. Let us sketch
its proof. Fix σ < 0 and consider the operator S:C1,0

B (Q) → C1,0
B (Q) such that

Sy = (L− σI)−1y. By the compact imbedding of W 2,1
r (Q) in C1,0(Q), we have

that S is a compact linear operator. Consider the cone K = {u ∈ C1,0
B (Q) :

u ≥ 0}. It can be shown, by an argument similar to the one used to verify
Assumption A4, that the interior of K is the set {u ∈ C1,0

B (Q) : u � 0}. By
the Strong Maximum Principle, one can see that S is strongly positive with
respect to K. The proof then follows from the Krein–Rutman theorem, see [15,
Theorem 7C].

Assumption A6 is directly verified, taking as ϕ0(x, t) the function with con-
stant value 1, by the fact that a0(x, t) ≥ 0.

Assumption A7: We follow [7, Proposition I.1.8]. By contradiction, assume
that, for every n, there is a qn ∈ Lr(Q) such that λ1 ≤ qn ≤ λ1 + 1/n, each of
the inequalities being strict on a subset of positive measure, and a solution un of
Lun = qnun, with ‖un‖L∞ = 1. For a subsequence, un → u, for some u verifying
Lu = λ1u. Then, ‖u‖L∞ = 1, so that either u = ϕ1, or u = −ϕ1. Assume for
instance u = ϕ1. Then, un � 0, for n large enough. Let cn be the minimal
constant for which cnun ≥ ϕ1, and set vn = cnun − ϕ1. Then, min vn = 0,
Lvn ≥ 0 and Bvn = 0. By the Strong Maximum Principle, it has to be, either
vn = 0, or vn � 0. This second possibility is excluded by the fact that cn is
minimal. So, vn = 0, which implies Lvn = (qn − λ1)ϕ1 = 0, hence qn = λ1,
contrary to the assumption.

Having verified that Assumptions A1–A7 are satisfied, we may conclude that
Theorem 1.1 follows directly from Corollary 5.6, and Corollary 1.3 from Corol-
lary 5.1.

8. The case M = 0. An application to the elliptic equation

Let Q = Ω be a bounded domain in RN with a C2-boundary ∂Ω. In this
section we use the standard notation for the Sobolev spaceW 2,r(Ω), which should
not be confused with the notations used in the previous section. We choose
C](Q) = C1(Ω) and W (Q) = W 2,r(Ω).

Taking r > N , we have that W 2,r(Ω) is compactly imbedded into C1(Ω).
Define the elliptic differential operator L:W 2,r(Ω) → Lr(Ω) as follows:

Lu := −
N∑

i,j=1

aij(x)∂2
xixj

u+
N∑
i=1

ai(x)∂xi
u+ a0(x)u.

Here aij ∈ C(Ω), aij = aji, for i, j = 1, . . . , N , there exists a > 0 such that

N∑
i,j=1

aij(x)ξiξj ≥ a‖ξ‖2, for every (x, ξ) ∈ Ω× RN ,
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ai ∈ L∞(Ω), for i = 0, . . . , N .
Assume that ∂Ω is the disjoint union of two closed sets Γ1 and Γ2 (the cases

Γ1 = ∅ or Γ2 = ∅ are admitted). Consider the boundary operator

Bu :=


u on Γ1,
N∑
i=1

bi(x)∂xiu+ b0(x)u on Γ2.

Here bi ∈ C1(∂Ω), for i = 0, . . . , N , and there exists b > 0 such that

b0(x) ≥ 0 and
N∑
i=1

bi(x)νi(x) ≥ b, for every x ∈ ∂Ω.

The vector ν(x) = (ν1(x), . . . νN (x)) is the unit outer normal to Ω at x ∈ ∂Ω.
We say that u is a solution of problem (P) if u belongs to W 2,r(Ω), it satisfies

the differential equation almost everywhere in Ω and the boundary condition
pointwise.

As in Section 7, we can assume without loss of generality that a0(x) ≥ 0
almost everywhere.

Definition 8.1. Given two functions u, v ∈ C1(Ω), we will write u � v if
the following two conditions hold:

(a) for every x ∈ Ω, u(x) < v(x),
(b) for every x ∈ ∂Ω, either u(x) < v(x), or u(x) = v(x) and ∂νu(x) >

∂νv(x).

Here ν denotes the outer unit normal to ∂Ω at the point x.

We need to check whether our Assumptions A1–A7 are verified.
Assumption A1 is proved in the same way as in the previous section. For the

Strong Maximum Principle, see e.g. [14, Lemma 3.26 and Theorem 3.27].
Assumption A2 is verified for every σ < 0, see [14, Theorems 3.28 and 3.29].
Assumption A3 is a classical estimate, with G(y) = cy2, for any constant

c ≥ 0, see [14, Lemma 5.10].
Assumption A4 is proved in the same way as in the previous section.
Assumption A5 follows from the Krein–Rutman theorem, as explained in the

previous section.
Assumption A6 is directly verified, taking as ϕ0(x, t) the function with con-

stant value 1, by the fact that a0(x) ≥ 0.
Assumption A7 is proved in the same way as in the previous section.
Let us conclude by stating the following direct consequence of Corollary 5.3

and Remark 5.4.
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Corollary 8.2. The Neumann problem{
∆u+ |u|p−1u = e(x) in Ω,

∂νu = 0 on ∂Ω,

has a solution, provided that p is sufficiently large and

‖e‖L∞ ≤ 1
2p
.

9. Final remarks

1. As further examples of application, we could consider the periodic problem
associated to a scalar first order ordinary differential equation, like{

u′ = F (t, u),

u(0) = u(T ),

(see e.g. [6] and references therein) or, to a second order equation, like{
u′′ = F (t, u, u′),

u(0) = u(T ), u′(0) = u′(T ).

Notice however that, for such problems, the Bernstein–Nagumo condition can
be considerably weakened, cf. [4].

2. The choice of dealing with the space C](Q) was made in view of the
applications we had in mind (see Sections 7 and 8). Other types of function
spaces could be considered, in order to be able to treat different kinds of equations
and boundary value problems.

3. It could be possible to deal with more general definitions of lower and
upper solutions, cf. [4]–[7], [12]. This could be useful, e.g. in the well-ordered
setting of Theorem 3.1, in order to prove the existence of a greater and a least
solution in [α, β], cf. [6, Theorem 2.15]. We did not focus on this point, not to
complicate too much the exposition.

4. As already mentioned, our abstract setting well fits to the search of strong
solutions. In order to deal with the case of weak solutions, a different approach
would be needed.
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