Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 37, 2011, 383–389

FIXED POINTS OF HEMI-CONVEX MULTIFUNCTIONS

Seyed M. A. Aleomraninejad — Shahram Rezapour Naseer Shahzad

ABSTRACT. The notion of hemi-convex multifunctions is introduced. It is shown that each convex multifunction is hemi-convex, but the converse is not true. Some fixed point results for hemi-convex multifunctions are also proved.

1. Introduction

Throughout this paper we suppose that X and Y are Banach spaces and M is a nonempty convex subset of X. We denote the family of all nonempty subsets of X by 2^X and the family of all nonempty closed and bounded subsets of X by CB(X). Also, we denote the Hausdorff metric on CB(X) by H, i.e.

$$H(A,B) = \max\left\{\sup_{a \in A} d(a,B), \sup_{b \in B} d(b,A)\right\}$$

for all $A, B \in CB(X)$, where $d(x, A) = \inf_{a \in A} ||x - a||$.

Let $T: X \to 2^Y$ be a multifunction. The graph of T is defined by

$$Gr(T) = \{(x, y) : x \in X, y \in T(x)\}.$$

The multifunction T is called closed (resp. convex) whenever Gr T is closed (resp. convex). Also, T is called upper semi-continuous (resp. lower semi-continuous) whenever $\{x \in X : T(x) \subset A\}$ (resp. $\{x \in X : T(x) \cap A \neq \emptyset\}$) is open for

 $^{2010\} Mathematics\ Subject\ Classification.\ 47H04,\ 47H10.$

 $[\]mathit{Key}\ \mathit{words}\ \mathit{and}\ \mathit{phrases.}\ \mathit{Convex}\ \mathit{multifunction},\ \mathit{fixed}\ \mathit{point},\ \mathit{hemi-convex}\ \mathit{multifunction}.$

 $[\]textcircled{C}2011$ Juliusz Schauder Center for Nonlinear Studies

all open subsets A of Y. Some authors work on convex multifunctions (see for example; [4]–[6] and [10]), whereas some authors work on nonconvex multifunctions (see for example [2]). In 1980, Yanagi defined the notion of semi-convex multifunctions ([9]). Later on, Bae and Park reviewed some fixed point theorems for multivalued mappings in Banach spaces by using the notion of semi-convex type multifunctions ([3]). The aim of this paper is to give the notion of hemi-convexity of multifunctions which is weaker than convexity of multifunctions. We show that this notion is independent of the notion of semi-convex multifunctions. We also prove some fixed point results for hemi-convex multifunctions.

2. Main results

DEFINITION 2.1. Let M be a convex subset of a Banach space X and r > 0. We say that the multifunction $T: M \to 2^M$ is r-hemi-convex whenever

$$d(\lambda x + (1 - \lambda)y, T(\lambda x + (1 - \lambda)y)) \le r$$

for all $\lambda \in [0,1]$ and $x, y \in M$ with d(x, T(x)) < r and d(y, T(y)) < r. We say that T is hemi-convex whenever T is r-hemi-convex for all r > 0.

It is clear that each convex multifunction on a Banach space is a hemiconvex multifunction. Now, by providing the following example we show that the converse is not true.

EXAMPLE 2.2. Define the multifunction $T: \mathbb{R} \to 2^{\mathbb{R}}$ by T(x) = [2x, 3x] if $x \ge 0$ and T(x) = [3x, 2x] if x < 0. Then T is not convex whereas T is hemiconvex. In fact, $(1, 2), (-1, -3) \in \operatorname{Gr}(T)$, but for $\lambda = 1/2$ we have

$$\lambda(1,2) + (1-\lambda)(-1,-3) \notin \operatorname{Gr}(T).$$

Since d(x, T(x)) = |x| for all $x \in \mathbb{R}$, T is a hemi-convex multifunction.

Let M be a convex subset of a Banach space X. We say that the multifunction $T: M \to CB(X)$ is semi-convex whenever for each $x, y \in M$, $z = \lambda x + (1 - \lambda)y$, where $\lambda \in [0, 1]$, and any $x_1 \in T(x)$, $y_1 \in T(y)$, there exists $z_1 \in T(z)$ such that $||z_1|| \leq \max\{||x_1||, ||y_1||\}$ (see [9]). Now, by providing next examples, we show that the notions semi-convexity and hemi-convexity are independent, although both extend the notion of convexity of multifunctions.

EXAMPLE 2.3. Define the multifunction $T: \mathbb{R} \to 2^{\mathbb{R}}$ by $T(x) = \{-x+1\}$ if $x \ge 0$ and T(x) = [x+1, x+2] if x < 0. Then T is hemi-convex whereas T is not semi-convex.

In fact, let x = -1, y = 1, z = x/2 + y/2 = 0, $x_1 = 0$, $y_1 = 0 \in T(y) = \{0\}$ and $z_1 = 1 \in T(z) = \{1\}$. Then, the relation $||z_1|| \le \max\{||x_1||, ||y_1||\}$ does not hold. Hence, T is not semi-convex. On the other hand, d(x, T(x)) = |2x-1| if $x \ge 0$ and d(x, T(x)) = 1 if x < 0. Without loss of generality, suppose that x < y and r > 0.

If $x, y \ge 0$, d(x, T(x)) < r and d(y, T(y)) < r, then $d(\lambda x + (1 - \lambda)y, T(\lambda x + (1 - \lambda)y)) \le r$.

If x, y < 0, then d(x, T(x)) = 1, d(y, T(y)) = 1 and $d(\lambda x + (1 - \lambda)y, T(\lambda x + (1 - \lambda)y)) = 1$.

If x < 0, $y \ge 0$ and $\lambda x + (1 - \lambda)y < 0$, then d(x, T(x)) = 1 and $d(\lambda x + (1 - \lambda)y, T(\lambda x + (1 - \lambda)y)) = 1$.

If d(y, T(y)) < r and $r \ge 1$, then $d(\lambda x + (1 - \lambda)y, T(\lambda x + (1 - \lambda)y)) \le \min\{1, r\}$. If $x < 0, y \ge 0$ and $\lambda x + (1 - \lambda)y \ge 0$, then d(x, T(x)) = 1, d(y, T(y)) = |2y - 1|and $-1 \le 2(\lambda x + (1 - \lambda)y) - 1 \le 2y - 1$. Thus, the relation

$$d(\lambda x + (1 - \lambda)y, T(\lambda x + (1 - \lambda)y)) = |2(\lambda x + (1 - \lambda)y) - 1| \le \max\{1, |2y - 1|\}$$

implies that T is hemi-convex.

EXAMPLE 2.4. Define the multifunction $T: \mathbb{R} \to 2^{\mathbb{R}}$ by T(x) = [x, x+1] if x > 0 and $T(x) = \{\sqrt[3]{x}\}$ if $x \leq 0$. Then T is semi-convex whereas T is not hemi-convex.

In fact, let x = 1, y = -1 and z = x/4 + 3y/4 = -1/2. Then, d(x, T(x)) = d(y, T(y)) = 0 while $d(z, T(z)) = d(-1/2, -\sqrt[3]{1/2}) > 0$. Hence, T is not hemiconvex.

Now, without loss of generality suppose that x < y.

If x, y > 0 or x, y < 0 and $z = (\lambda x + (1 - \lambda)y)$, it is easy to see that for each $x_1 \in T(x)$ and $y_1 \in T(y)$, there exists $z_1 \in T(z)$ such that $||z_1|| \le \max\{||x_1||, ||y_1||\}$.

If $x \le 0$, y > 0 and $z = \lambda x + (1 - \lambda)y \le 0$, then for each $x_1 = \sqrt[3]{x} \in T(x)$ and $y_1 \in T(y)$ we have $\sqrt[3]{x} = x_1 \le z_1 = \{\sqrt[3]{\lambda x + (1 - \lambda)y}\} \le 0 < y_1$. Hence, $\|z_1\| \le \max\{\|x_1\|, \|y_1\|\}.$

If $x \leq 0$, y > 0 and $z = \lambda x + (1 - \lambda)y > 0$, then for each $x_1 = \sqrt[3]{x} \in T(x)$ and $y_1 \in T(y)$, there exists $z_1 \in T(z)$ such that $\sqrt[3]{x} = x_1 \leq 0 < z_1 \leq y_1$. Hence, $\|z_1\| \leq \max\{\|x_1\|, \|y_1\|\}$. Therefore, T is semi-convex.

THEOREM 2.5. Let $T, T_n: M \to CB(M)$ be given. If T_n is a hemi-convex multifunction for all $n \ge 1$ and $H(T_n(x), T(x)) \to 0$ for all $x \in M$, then T is a hemi-convex multifunction.

PROOF. Fix $\varepsilon > 0$, r > 0, $0 \le \lambda \le 1$ and $x, y \in M$ with d(x, T(x)) < r, d(y, T(y)) < r. Choose a natural number N such that

$$H(T_n(x), T(x)) < \varepsilon, \quad H(T_n(y), T(y)) < \varepsilon,$$

$$H(T_n(\lambda x + (1 - \lambda)y), T(\lambda x + (1 - \lambda)y)) < \varepsilon$$

for all $n \geq N$. Then, for each $n \geq N$ we have

$$d(x, T_n(x)) \leq d(x, T(x)) + H(T_n(x), T(x)) < r + \varepsilon$$

$$d(y, T_n(y)) \leq d(y, T(y)) + H(T_n(y), T(y)) < r + \varepsilon.$$

Thus, $d(\lambda x + (1 - \lambda)y, T_n(\lambda x + (1 - \lambda)y)) \le r + \varepsilon$. Hence, for each $n \ge N$ we have

$$d(\lambda x + (1 - \lambda)y, T(\lambda x + (1 - \lambda)y)) \le d(\lambda x + (1 - \lambda)y, T_n(\lambda x + (1 - \lambda)y)) + H(T_n(\lambda x + (1 - \lambda)y), T(\lambda x + (1 - \lambda)y)) < r + 2\varepsilon.$$

Since ε was arbitrary, we obtain $d(\lambda x + (1-\lambda)y, T(\lambda x + (1-\lambda)y)) \le r$. Therefore, T is a hemi-convex multifunction.

THEOREM 2.6. Let $T: M \to CB(M)$ be an upper semi-continuous hemiconvex multifunction. Then the set of fixed points of T is convex and closed.

PROOF. Set $F = \{x : x \in T(x)\}$. For each $x, y \in F$ we have d(x, T(x)) = 0and d(y, T(y)) = 0. Thus, $d(T(\lambda x + (1 - \lambda)y), \lambda x + (1 - \lambda)y) = 0$ and so $\lambda x + (1 - \lambda)y \in F$ for all $\lambda \in [0, 1]$, because T is a closed-valued multifunction. Since T is upper semi-continuous and closed-valued, Gr(T) is closed.

Let $\{x_n\}_{n\geq 1}$ be a sequence in F with $x_n \to x$. Since $x_n \in T(x_n), (x_n, x_n) \in Gr(T)$. Hence, $(x, x) \in Gr(T)$ and so $x \in F$.

DEFINITION 2.7. Let M be a convex subset of a Banach space X and r > 0. We say that the function $f: X \to \mathbb{R}$ is r-hemi-convex on M whenever

$$f(\lambda x + (1 - \lambda)y) < r$$

for all $\lambda \in [0,1]$ and $x, y \in M$ with f(x) < r and f(y) < r. We say that f is hemi-convex on M whenever f is r-hemi-convex on M for all r > 0.

LEMMA 2.8. Let M be a convex subset of a Banach space $X, \delta > 0, m \ge 2$ and $f: X \to \mathbb{R}$ a hemi-convex function on M. If $x_1, \ldots, x_m \in M$ with $f(x_i) < \delta$ for $i = 1, \ldots, m$ and $\lambda_1, \ldots, \lambda_m \in [0, \infty)$ with $\sum_{i=1}^m \lambda_i = 1$, then

$$f\bigg(\sum_{i=1}^m \lambda_i x_i\bigg) < \delta.$$

PROOF. We prove this by induction. For m = 2 we have nothing to prove. Suppose that this lemma holds for each $1 \le k \le m - 1$. We have to prove it for m. Note that, one can assume $\lambda_1 \ne 0$ and so

$$f\left(\sum_{i=1}^{m}\lambda_{i}x_{i}\right) = f\left(\lambda_{1}x_{1} + \sum_{i=2}^{m}\lambda_{i}x_{i}\right) = f\left(\lambda_{1}x_{1} + (1-\lambda_{1})\sum_{i=2}^{m}\frac{\lambda_{i}}{(1-\lambda_{1})}x_{i}\right).$$

Put $y = \sum_{i=2}^{m} (\lambda_i/(1-\lambda_1))x_i$. Since $\sum_{i=2}^{m} \lambda_i/(1-\lambda_1) = 1$, by assumption of the induction, we have $f(y) < \delta$.

386

Now, by the case of m = 2, we obtain

$$f\left(\sum_{i=1}^{m}\lambda_{i}x_{i}\right) = f\left(\lambda_{1}x_{1} + (1-\lambda_{1})\sum_{i=2}^{m}\frac{\lambda_{i}}{(1-\lambda_{1})}x_{i}\right) = f(\lambda_{1}x_{1} + (1-\lambda_{1})y) < \delta.$$

This completes the proof.

This completes the proof.

THEOREM 2.9. Let M be a weakly compact subset of X, $T: M \to CB(X)$ a multifunction and $\inf_{x \in M} d(x, T(x)) = 0$. If the function $f: M \to [0, \infty)$, defined by f(x) = d(x, T(x)), is lower semi-continuous and hemi-convex on M, then T has a fixed point in M.

PROOF. Choose a sequence $\{x_n\}_{n\geq 1}$ in M such that $d(x_n, T(x_n)) \to 0$. Since M is weakly compact, there exists a subsequence $\{z_n\}_{n\geq 1}$ of $\{x_n\}_{n\geq 1}$ such that $z_n \xrightarrow{w} x_0$ for some $x_0 \in M$. Since f is a lower semi-continuous function, for each $\varepsilon > 0$ choose $\delta > 0$ such that $f(x_0) < f(y) + \varepsilon/2$ for all $y \in M$ with $||y - x_0|| < \delta$ ([7]). Since $f(z_n) \to 0$, there exists a natural number N such that $f(z_n) < \varepsilon/2$ for all $n \ge N$.

We denote again the sequence $\{z_n\}_{n\geq N}$ by $\{z_n\}_{n\geq 1}$. Since $z_n \xrightarrow{w} x_0$, there exist a sequence $\{y_i\}_{i>1}$ in M and a sequence $\{\alpha_{in}\}_{i,n>1}$ in $[0,\infty)$ such that for each *i* we have $y_i = \sum_{n=1}^{\infty} \alpha_{in} z_n$, where $\sum_{n=1}^{\infty} \alpha_{in} = 1$ and only finitely many $\{\alpha_{in}\}\$ are not zero, and $y_i \to x_0$ originally ([8; Theorem 3.13]). But, by Lemma 2.8, we have $f(y_i) < \varepsilon/2$ for all $i \ge 1$. Thus, for sufficiently large *i*, we obtain

$$f(x_0) < f(y_i) + \frac{\varepsilon}{2} < \varepsilon.$$

Hence, $f(x_0) = 0$ and so $x_0 \in T(x_0)$.

If $T: M \to CB(M)$ is an upper semi-continuous multifunction, then the function f(x) = d(x, T(x)) is lower semi-continuous ([1, Proposition 4.2.6]). Also, note that the function f(x) = d(x, T(x)) is hemi-convex whenever T so is. We say that the function f(x) = d(x, T(x)) has the property (B) whenever $f(x_n) \to \infty$ for all sequences $\{x_n\}$ with $||x_n|| \to \infty$. The following example shows that weak compactness of M is a necessary condition in Theorem 2.9.

EXAMPLE 2.10. Consider the multifunction $T: (0, \infty) \to 2^{(0,\infty)}$ given by

$$T(x) = \left\{ x + \frac{1}{x} \right\}.$$

It is clear that T is a hemi-convex multifunction, $\inf_{x \in (0,\infty)} d(x,T(x)) = 0$ and the function f(x) = d(x, T(x)) is lower semi-continuous and hemi-convex. But it is clear that T has no fixed point.

The following example shows that there are many multifunctions which satis fy the condition $\inf_{x \in M} d(x, T(x)) = 0.$

EXAMPLE 2.11. Let M be a convex and bounded subset of a Banach space $X, u \in M$ a fixed element and $T: M \to \operatorname{CB}(M)$ a nonexpansive multifunction. For each $n \geq 2$ define $T_n: M \to \operatorname{CB}(M)$ by $T_n(x) = u/n + (1 - 1/n)T(x)$. Since $H(T_n(x), T_n(y)) \leq (1 - 1/n) ||x - y||$ for all $x, y \in M$ and $n \geq 2$, T_n is a contraction multifunction and so for each $n \geq 2$ there exists $x_n \in M$ such that $x_n \in T_n(x_n)$. Note that $d(x_n, T(x_n)) \to 0$ and so $\inf_{x \in M} d(x, T(x)) = 0$.

DEFINITION 2.12. Let M be a convex subset of a Banach space X and $T_n, T: M \to \operatorname{CB}(M)$ a sequence of multifunctions. We say that $\{T_n\}$ strongly converges to T whenever for each $\varepsilon > 0$ there exists a natural number n_0 such that $H(T_n(x), T(x)) < \varepsilon$ for all $n \ge n_0$ and $x \in M$. In this case, we write $T_n \twoheadrightarrow T$.

THEOREM 2.13. Let M be a weakly compact subset of X, $T: M \to CB(M)$ a multifunction and $T_n: M \to CB(M)$ an upper semi-continuous hemi-convex multifunction for all $n \ge 1$. If each T_n has at least one fixed point in M and $T_n \twoheadrightarrow T$, then T has a fixed point.

PROOF. Since each T_n has at least one fixed point in M, $\inf_{x \in M} d(x, T_n(x)) = 0$ for all $n \ge 1$. Let $\varepsilon > 0$ be given. Choose a natural number n_0 such that $H(T_n(x), T(x)) < \varepsilon$ for all $n \ge n_0$. Since

$$d(x, T(x)) \le d(x, T_n(x)) + H(T_n(x), T(x)) \le d(x, T_n(x)) + \varepsilon,$$

for all $n \ge n_0$, $\inf_{x \in M} d(x, T(x)) \le \varepsilon$. Hence, $\inf_{x \in M} d(x, T(x)) = 0$. By Theorem 2.5, T is hemi-convex and so is the function f(x) = d(x, T(x)). Since T is upper semi-continuous, the function f(x) = d(x, T(x)) is lower semi-continuous. Now by using Theorem 2.9, T has a fixed point.

The next example shows that strong convergence of the sequence $\{T_n\}_{n\geq 1}$ is a necessary condition in Theorem 2.13.

EXAMPLE 2.14. Let $X = \mathbb{R}$ and M = [0, 2]. Define $T: M \to \operatorname{CB}(M)$ by $T(x) = \{x + 1\}$ if x < 1, $T(x) = \{x - 1\}$ if x > 1 and $T(x) = \{0, 2\}$ if x = 1. Moreover, for each $n \ge 2$, let $T_n: M \to \operatorname{CB}(M)$ be defined by $T_n(x) = T(x)$ if $x \ne 1/n$ and $T_n(x) = [0, 2]$ if x = 1/n. It is easily seen that T_n is upper semi-continuous, $d(x, T_n(x)) = 1$ if $x \ne 1/n$, $d(x, T_n(x)) = 0$ if x = 1/n and T_n has a fixed point for each $n \ge 2$. This implies that T_n is hemi-convex. Evidently $H(T_n(x), T(x)) \to 0$ for all $x \in M$, but T has no fixed point.

THEOREM 2.15. Let X be an uniformly convex Banach space, $T: X \to CB(X)$ an upper semi-continuous hemi-convex multifunction, $\inf_{x \in M} d(x, T(x)) = 0$. If the function f(x) = d(x, T(x)) has the property (B), then T has a fixed point.

388

PROOF. Choose a sequence $\{x_n\}$ in X such that $f(x_{n+1}) \leq f(x_n)$ and $f(x_n) \to 0$. Now, for each $n \geq 1$ define $F_n = \{x \in X : f(x) \leq f(x_n)\}$. Since the function f(x) = d(x, T(x)) has the property (B), each F_n is a nonempty bounded subset of X. Since T is upper semi-continuous, the function f(x) = d(x, T(x)) is lower semi-continuous and so each F_n is a closed subset of X. Also, each F_n is convex because T is a hemi-convex multifunction. Now by using [1, Theorem 2.3.14], there exists $x_0 \in X$ such that $x_0 \in \bigcap_{n=1}^{\infty} F_n$. Thus, $f(x_0) \leq f(x_n)$ for all $n \geq 1$. Hence, $f(x_0) = 0$ and so $x_0 \in T(x_0)$.

Acknowledgments. The authors express their gratitude to two anonymous referees for their helpful suggestions on a previous version of this paper and especially providing Example 2.14.

References

- R. P. AGARWAL, D. O'REGAN AND D. R. SAHU, Fixed Point Theory for Lipschitzian-Type Mappings with Applications, Springer-Verlag, 2009.
- [2] M. ALONSO AND L. RODRIGUEZ-MARIN, Optimality conditions for a nonconvex setvalued optimization problem, Comput. Math. Appl. 56 (2008), 82–89.
- [3] J. S. BAE AND M. S. PARK, Fixed point theorems for multivalued mappings in Banach spaces, J. Chungcheong Math. Soc. 3 (1990), 103–110.
- S. LU AND S. M. ROBINSON, Variational inequalities over perturbed polyhedral convex sets, Math. Oper. Res. 33 (2008), 689–711.
- [5] M. MICHTA AND J. MOTYL, Locally Lipschitz selections in Banach lattices, Nonlinear Anal. 71 (2009), 2335–2342.
- [6] S. M. ROBINSON AND S. LU, Solution continuity in variational conditions, J. Global Optim. 40 (2008), 405–415.
- [7] H. L. ROYDEN, *Real Analysis*, third edition, Macmillan Publishing Company, 1988.
- [8] W. RUDIN, Functional Analysis, second edition, McGraw-Hill, 1991.
- K. YANAGI, On some fixed point theorems for multivalued mappings, Pacific J. Math. 87 (1980), 233-240.
- [10] D. ZAGRODNY, The convexity of the closure of the domain and the range of a maximal monotone multifunction of type NI, Set-Valued Anal. 16 (2008), 759–783.

Manuscript received May 7, 2010

SEYED M. A. ALEOMRANINEJAD AND SHAHRAM REZAPOUR Department of Mathematics Azarbaidjan University of Tarbiat Moallem Azarshahr, Tabriz, IRAN *E-mail address*: sh.rezapour@azaruniv.edu

NASEER SHAHZAD Department of Mathematics King AbdulAziz University P.O. Box 80203 Jeddah 21859, SAUDI ARABIA *E-mail address*: nshahzad@kau.edu.sa