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UNBOUNDED CONNECTED COMPONENT
OF THE POSITIVE SOLUTIONS SET

OF SOME SEMI-POSITONE PROBLEMS

Xu Xian — Sun Jingxian

Abstract. In this paper, first we obtain some results for structure of

positive solutions set of some nonlinear operator equation. Then using
these results, we obtain some existence results for positive solutions of the

nonlinear operator equation. The method to show our main results is the

global bifurcation theory.

1. Introduction

Let E be a real Banach space which is ordered by a normal cone P , that
is, x ≤ y if and only if y − x ∈ P . Here, a subset P of E is said to be a
cone if it is closed, convex, invariant under multiplication by nonnegative real
numbers, and if P ∩ (−P ) = ∅. We write x < y if x ≤ y and x 6= y. Let θ

denote the zero element of the real Banach space E, e ∈ P \ {θ}, ‖e‖ ≤ 1 and
Q = {x ∈ P | x ≥ ‖x‖e}. It is easy to see that Q is also a cone of E.

In this paper we consider the following nonlinear operator equation

(1.1λ) x = λAx, x ∈ P, λ ∈ R+,
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where R+ = [0,∞), λ > 0 is a parameter, A = KF , K and F satisfy the
following assumptions:

(H1) K:E 7→ E is a linear completely continuous operator, K:P 7→ Q;
F :P 7→ E is a bounded and continuous operator.

(H2) There exist ω0 ∈ P and σ0 ≥ 0 such that ω1 =:Kω0 ≤ σ0e and

Fx ≥ −ω0, for all x ∈ P.

In the sequel of this paper we say that F is semi-positone whenever ω0 6= θ,
and F is positone whenever ω0 = θ. Semi-positone problems occur naturally in
important applications. From an application viewpoint one is usually interested
in the existence of positive solutions for semi-positone problems. Recall a popu-
lation dynamics model given in [8], which leads to the study of steady states of
semi-positone problems. Let N(x, t) denote the population of a species which is
harvested at a constant rate. The resulting population model is of the form:

∂N

∂t
= c∆N + (B − SN)N −H in Ω× (0,∞),

N(x, 0) = A in Ω,

N(x, t) = 0 in ∂Ω× [0,∞),

where Ω is a bounded domain in R3, c, B, S are positive constants, H(x) denotes
the quantity harvested per unit time, which is independent of time, and A denotes
the initial population. This question is equivalent to find positive solutions of
the semi-positone problem

c∆N + (B − SN)N −H = 0 in Ω,

N = 0 in ∂Ω.

As pointed out by P. L. Lions in [17], semi-positone problems are mathe-
matically very challenging. An existence result for positive solutions of some
semi-positone problems was firstly given by Sun Jingxian in [18] by using the
method of global bifurcation theory. However, the study of semi-positone prob-
lems was formally introduced by A. Castro and R. Shivaji [9]. During the last
ten years finding positive solutions to semi-positone problems has been actively
pursued and significant progress on semi-positone problems has taken place, see
[1]–[13], [18], [20], [21] and the references therein. For instance, V. Anuradha
et. al [3] considered the following Sturm–Liouville boundary value problem

(1.2λ)

{
(p(t)u′)′ + λf(t, u) = 0 for 0 < t < 1,

au(r)− bu′(r) = 0, cu(R) + du′(R) = 0

where a, b, c, d ≥ 0, λ > 0 was a parameter, p ∈ C([r, R], R+), p(t) > 0 for all
t ∈ [r, R], the nonlinear term f were allowed to take negative value, and satisfied
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that

f(t, u) ≥ −M0, for all (t, x) ∈ [r, R]× R+

for some M0 > 0. Under some super-linear conditions on the nonlinear term f ,
V. Anuradha et al in [3] proved that there exists λ∗ > 0 such that (1.2λ) has
at least one positive solution for 0 < λ < λ∗. The main methods of [3] is by
using the fixed point index. For an overview of the semi-positone boundary
value problems for ordinary differential equations we refer the reader to [8].
Obviously, the differential boundary value problem (1.2λ) can be reduced to
an nonlinear operator equations of the form (1.1λ). To show the existence of
positive solutions to semi-positone boundary value problems peoples employed
various methods. For example, in [3] the authors employed degree theory, in [20]
the authors employed variational methods while in [2] the results was obtained
via bifurcation from infinity.

Let

S(P ) = {(λ, x) ∈ R+ × P | x 6= θ, x = λAx},
S(Q) = {(λ, x) ∈ R+ ×Q | x 6= θ, x = λAx}.

In this paper we will study the structure of the positive solutions set S(P ) by
the global bifurcation theory. We will first give some results about the existence
of unbounded connected component of the set S(P ). Then, as applications of
the main results we will also give some results about the existence of positive so-
lutions of the nonlinear operator equation (1.1λ). Our main results of this paper
generalize many results on semi-positone differential boundary value problems
in the literature.

This paper is arranged as follows. We will give the main results of this paper
in the Section 2. To illustrate applications of the main results of this paper, in
Section 3 we will studied the connected component of positive solutions of some
differential boundary value problems.

2. Main results

From [16, Theorem 18.1] we have the following lemma:

Lemma 2.1. Let D be a closed convex subset of Banach space E. For every
α > 0 there exists a projection Jα onto D which satisfies

‖x− Jαx‖ ≤ (1 + α)ρ(x,D), for all x ∈ E,

where ρ(x,D) denotes the distance of x to D.

From [15, Lemma 29.1] we have:
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Lemma 2.2. Let X be a compact metric space. Assume that A and B are
two disjoint closed subsets of X. Then either there exist a connected component
of X meeting both A and B or X = ΩA∪ΩB, where ΩA, ΩB are disjoint compact
subsets of X containing A and B, respectively.

The following lemma is well known as the generalized homotype invariant
property of the fixed point index.

Lemma 2.3. Let λ1, λ2 ∈ R+, λ1 < λ2, U be an open subset of [λ1, λ2]×Q,
U(λ) = U ∩ ({λ} × Q). Assume that A:U 7→ Q is a completely continuous
operator such that A(λ, x) 6= x for all (λ, x) ∈ ∂U . Then i(A(λ, · ), U(λ), Q) is
well defined and independent with λ ∈ [λ1, λ2].

From [15, Theorem 19.2], we have the following lemma:

Lemma 2.4 (Krein–Rutman). Let E be a Banach space, P ⊂ E a total cone
and K ∈ L(E) compact positive with the spectrum radii r(K) > 0. Then r(K)
is an eigenvalue with a positive eigenvector.

First we assume that the cone P is a total cone and r(K) > 0. From
Lemma 2.4, there exist φ ∈ P \ {θ} and h ∈ P ∗ \ {θ}, such that

(2.1) Kφ = r(K)φ, K∗h = r(K)h.

Now let us list the following conditions which will be used in this section:

(H3) limx∈D, ‖x‖→∞ h(F (x))/h(x) = ∞, where D = {x ∈ E | x ≥ ‖x‖e/2}
and h is defined by (2.1).

(H4) limx∈D, ‖x‖→0+ h(F (x))/h(x) = ∞ whenever ω0 = θ, where h is defined
by (2.1).

(H5) There exists a linear completely continuous operator B:P 7→ P such
that Be > θ, and Ax ≥ Bx for any x ∈ Q whenever ω0 = θ.

In the sequel, we will always regard that σ0 = 0 whenever ω0 = θ. For any
R > r ≥ 0, now let us introduce the following symbols for brevity.

M [r, R] = {(λ, x) ∈ R+ ×Q | r ≤ ‖x‖ ≤ R},
M [r,∞) = {(λ, x) ∈ R+ ×Q | r ≤ ‖x‖ < ∞},

M(r) = {(λ, x) ∈ R+ ×Q | ‖x‖ = r}.

We will say that a component C∗ tends to (0,∞) if there exists (λ, xλ) ∈ C∗

such that ‖xλ‖ → ∞ as λ → 0+; we say that C∗ comes from (0, θ) if there exists
(λ, xλ) ∈ C∗ such that ‖xλ‖ → 0 as λ → 0+.

Now we give the main results of this paper.
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Theorem 2.5. Let the cone P be a total cone and r(K) > 0, h(e) > 0, and
h(ω0) > 0 when ω0 > θ, where h is defined by (2.1). Assume that (H1)–(H5)
hold. Then

(a) S(P ) possess an unbounded connected component C∗ which tends to
(0,∞) whenever F is semi-positone;

(b) S(Q) possess an unbounded connected component C∗ which comes from
(0, θ) and tends to (0,∞) whenever F is positone.

Proof. We divide the proof into six steps.
Step 1. Let X̃ = {x ∈ Q|x ≥ 4σ0e}, where σ0 is defined as (H2). Obviously,

X̃ is a closed convex set of E. Thus, X̃ is a retraction of E. By Lemma 2.1,
there exists a projection J :E 7→ X̃ such that for any x ∈ Q,

(2.2) ‖x− J(x)‖ ≤ 2ρ(x, X̃).

Note that 4σ0e ∈ X̃, then by (2.2) we have for any x ∈ Q,

(2.3) ‖J(x)‖ ≤ ‖x‖+ ‖x− J(x)‖ ≤ ‖x‖+ 2‖x− 4σ0e‖ ≤ 3‖x‖+ 8σ0‖e‖.

Let g: R+ 7→ R+ be defined by

(2.4) g(λ) =

{
2λ for λ ∈ [0, 1],

2 for λ ∈ [1,∞)

and β: R+ ×Q 7→ E by

β(λ, x) = J(x)− g(λ)ω1, (λ, x) ∈ R+ ×Q.

Consider the following operator equation

(2.5λ) x = λT (λ, x), for all (λ, x) ∈ R+ ×Q,

where T ( · , · ): R+ ×Q 7→ E is defined by

T (λ, x) = K[F (β(λ, x)) + 2ω0], for all (λ, x) ∈ R+ ×Q.

For any λ ∈ R+ and x ∈ Q, by (2.4) and (H2) we have

β(λ, x) = J(x)− g(λ)ω1 ≥ 2σ0e ≥ θ,

and so
F (β(λ, x)) + 2ω0 ≥ ω0 ≥ θ.

Then, by (H1) we have for any λ ∈ R+ and x ∈ Q

T (λ, x) = K[F (β(λ, x)) + 2ω0] ∈ Q.

Note that σ0 = 0 and X̃ = Q whenever ω0 = θ, then β(λ, x) = x for any λ ∈ R+

and x ∈ Q whenever ω0 = θ. This means that (2.5λ) is the same as (1.1λ)
whenever ω0 = θ.
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From (2.3) and (2.4), we see that β( · , · ): R+×Q is a continuous and bounded
operator, and so T ( · , · ): R+ ×Q 7→ Q is a completely continuous operator. Let

L(Q) = {(λ, x) ∈ R+ ×Q|x 6= θ, x = λT (λ, x)}.

Then, L(Q) = S(Q) whenever ω0 = θ.
Step 2. Next we will show that, for any λ > 0 with ([λ,∞)×Q)∩L(Q) 6= ∅,

there exists Rλ > 0 such that

(2.6) ([λ,∞)×Q) ∩ L(Q) ⊂ ([λ,∞)×Q) ∩M [0, Rλ].

Let λ > 0 be such that ([λ,∞)×Q)∩L(Q) 6= ∅. Take Mλ = 2(λr(K)h(e))−1‖h‖+
1. Then, by (H3), there exists R′

λ
> 0 such that for any x ∈ D with ‖x‖ ≥ R′

λ
,

(2.7) h(F (x)) ≥ Mλh(x).

Let Rλ = max{R′
λ

+ 2‖ω1‖, 4σ0 + 2‖ω1‖}. For any x ∈ Q with ‖x‖ ≥ Rλ, we

have x ≥ ‖x‖e ≥ 4σ0e. This implies that x ∈ X̃, and so J(x) = x. Then, for
any x ∈ Q with ‖x‖ ≥ Rλ we have

β(λ, x) =J(x)− g(λ)ω1 = x− g(λ)ω1 ≥ (‖x‖ − 2σ0)e

≥ 1
2
(‖x‖+ 2‖ω1‖)e ≥

1
2
(‖x‖+ g(λ)‖ω1‖)e

≥ 1
2
‖x− g(λ)ω1‖e =

1
2
‖J(x)− g(λ)ω1‖e =

1
2
‖β(λ, x)‖e.

This implies that β(λ, x) ∈ D. Also,

‖β(λ, x)‖ = ‖x− g(λ)ω1‖ ≥ ‖x‖ − 2‖ω1‖ ≥ R′
λ
.

Thus, by (2.7) we have for any λ ≥ λ and x ∈ Q with ‖x‖ ≥ Rλ,

(2.8) h(F (β(λ, x)) ≥ Mλh(β(λ, x)).

Hence, if there exist λ′ ≥ λ and x′ ∈ Q with ‖x′‖ ≥ Rλ such that (λ′, x′) ∈ L(Q),
then we have by (2.8) that

‖x′‖‖h‖ ≥ h(x′) = h(λ′K(F (β(λ′, x′)) + 2ω0)) ≥ h(λ′KF (β(λ′, x′)))

= λ′r(K)h(F (β(λ′, x′)) ≥ λ′r(K)Mλh(β(λ′, x′))

= λ′r(K)Mλh((x′ − g(λ′)ω1) ≥ λ′r(K)Mλh((‖x′‖ − 2σ0)e)

≥ λ′r(K)Mλh

(
1
2
‖x′‖e

)
≥ λ

2
r(K)Mλh(e)‖x′‖,

and so
Mλ ≤ 2(λr(K)h(e))−1‖h‖,

which is a contradiction. So, (2.6) holds.
Step 3. Now we show that, there exists λ0 > 0 such that

(2.9) L(Q) ⊂ [0, λ0]×Q.
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We will give the proof of (2.9) in two cases.
(3a) ω0 > θ. If ([1,∞)×Q) ∩ L(Q) 6= ∅, by the arguments of Step 2, we see

that there exists R1 > 0 such that

([1,∞)×Q) ∩ L(Q) ⊂ ([1,∞)×Q) ∩M [0, R1].

For any (λ′, x′) ∈ ([1,∞)×Q) ∩ L(Q), we have

‖h‖R1 ≥ ‖h‖‖x′‖ ≥ h(x′) = λ′h(K(F (β(λ′, x′) + 2ω0))

≥ λ′h(Kω0) = λ′r(K)h(ω0),

and so
λ′ ≤ R1(h(ω0)r(K))−1‖h‖.

Therefore, if we take

λ0 = max{1, R1(h(ω0)r(K))−1‖h‖},

then (2.9) holds.
(3b) ω0 = θ. First we show that

(2.10) ([1,∞)× {θ}) ∩ L(Q) = ∅.

Indeed, by (H4), there exists r0 > 0 such that for any x ∈ Q, 0 < ‖x‖ ≤ r0,

h(F (x)) >
4

r(K)
h(x).

Thus, for any λ ≥ 1/2 and x ∈ Q with 0 < ‖x‖ ≤ r0 we have

h(λKF (x)) = λr(K)h(F (x)) ≥ r(K)
2

h(F (x)) > h(x).

This implies that([
1
2
,∞

)
×Q

)
∩M(0, r0] ∩ {(λ, x) ∈ R+ ×Q|x 6= θ, x = λKFx} = ∅.

Therefore, (2.10) holds. For any (λ′, x′) ∈ ([1,∞)×Q)∩L(Q), by (2.10) we have
x′ 6= θ. Then, by (H5), we have

x′ = λ′Ax′ ≥ λ′Bx′ ≥ λ′‖x′‖Be,

and so
λ′ ≤ (τ‖Be‖)−1,

where τ > 0 is the normal constant of the cone P (a positive number τ is
called the normal constant of P if τ is the infimum of the set of all numbers
γ > 0 such that θ ≤ x ≤ y implies ‖x‖ ≤ γ‖y‖). Therefore, if we take λ0 =
max{1, (τ‖Be‖)−1}, then (2.9) holds.

Step 4. Next we will show that L(Q) possess a connected component which
comes from (0, θ) and tends to (0,∞). To prove this claim we will employ
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a method in [19]. Obviously, (0, θ) is a solution of (2.5λ). Denote by C the
connected component of L(Q) which comes from (0, θ). Now we can show that
C is unbounded. To show this we need to consider two cases:

(4a) There exists λ′ > 0 such that T (λ′, θ) = θ. Assume on the contrary
that C is bounded. Then there exists a bounded open neighbourhood U0 of C

in R+ ×Q. Let X = ClR+×QU0 ∩L(Q), where ClR+×QU0 denotes the closure of
U0 in R+×Q. Then X is a compact metric space. If ∂R+×QU0 ∩L(Q) 6= ∅, then
C and ∂R+×QU0 ∩L(Q) are two disjoint closed subsets of X. From the maximal
connectedness of C, there doesn’t exist connected subset of X which joints C

and ∂R+×QU0 ∩L(Q). Then, by Lemma 2.2, there exist compact subsets Ω1 and
Ω2 of X such that

X = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ∅, C ⊂ Ω1, ∂R+×QU0 ∩ L(Q) ⊂ Ω2.

Obviously, δ0 = ρ(Ω1,Ω2) > 0. Let U1 be the δ0/3-neighbourhood of Ω1 in
R+ ×Q, U2 = U1 ∩ U0. Obviously, ∂R+×QU2 ∩ L(Q) = ∅. Let

(2.11) U =

{
U0 when ∂R+×QU0 ∩ L(Q) = ∅,
U2 when ∂R+×QU0 ∩ L(Q) 6= ∅.

Take R0 > 0 large enough such that U ⊂ [0, R0] × Q and U ∩ ({R0} × Q) = ∅.
Since (0, θ) ∈ C ⊂ U , U ∩ (R+×{θ}) is an open subset of R+×{θ}, then we can
take ε0 > 0 with ε0 < 1 small enough such that [0, ε0]× {θ} ⊂ U ∩ (R+ × {θ}).
From Lemma 2.3, we see that for any λ ∈ [0, ε0], i(λT (λ, · ), U(λ), Q) is well
defined and independent with λ. Therefore,

(2.12) i(θ, U(0), Q) = i(ε0T (ε0, · ), U(ε0), Q).

Since (0, θ) is the unique solution of (2.5λ) in U(0), then we easily have

(2.13) i(θ, U(0), Q) = 1.

From (2.12) and (2.13), we have

(2.14) i(ε0T (ε0, · ), U(ε0), Q) = 1.

Now we claim that

(2.15) lim
x∈Q, ‖x‖→0+

λh(T (λ, x))
h(x)

= ∞ uniformly with λ ∈ [ε0,∞).

Indeed, if F is semi-positone, then we have for any λ ∈ [ε0,∞) and x ∈ Q

h(λT (λ, x)) = h(λK[F (β(λ, x)) + 2ω0]) ≥ h(ε0Kω0) = ε0r(K)h(ω0).

So, (2.15) holds. If F is positone, then for any λ ∈ [ε0,∞) and x ∈ Q

λT (λ, x) = λKF (β(λ, x)) = λKF (x).
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Then (2.15) follows from (H4). It follows from (2.15) that there exists rε0 > 0
such that for any r′ ∈ (0, rε0 ], 0 < ‖x‖ ≤ r′, x ∈ Q and λ ∈ [ε0,∞),

(2.16) h(λT (λ, x)) ≥ 2ε−1
0 h(x).

Take u0 ∈ Q \ {θ}. By (2.16) we can easily show that

x− λT (λ, x) 6= tu0,

for any λ ∈ [ε0,∞), t ≥ 0 and x ∈ ∂Br′ , where Br′ = {x ∈ Q|‖x‖ < r′}. From
(2.16), we have for any λ ∈ [ε0,∞)

(2.17) i(λT (λ, · ), Br′ , Q) = 0.

Let

r̃ε0 = ρ([0, ε0]× {θ}, ∂R+×QU) > 0, r̃0 = min
{

1
2
r̃ε0 ,

1
2
rε0

}
,

B
er0 = {x ∈ Q|‖x‖ < r̃0} and U∗ = U \ ([0, R0]×B

er0). It is easy to see that

(∂R+×QU∗ ∩ ([ε0, R0]×Q)) ∩ L(Q) = ∅,

and
ρ(∂R+×QU∗ ∩ ([ε0, R0]×Q), [ε0, R0]× {θ}) ≥ r̃0 > 0.

By Lemma 2.3, i(λT (λ, · ), U∗(λ), Q) is well defined, and

i(R0T (R0, · ), U∗(R0), Q) = i(ε0T (ε0, · ), U∗(ε0), Q).

Note that U∗(R0) = ∅, then we have

(2.18) i(ε0T (ε0, · ), U∗(ε0), Q) = i(R0T (R0, · ), U∗(R0), Q) = 0.

Obviously, U(ε0) = U∗(ε0) ∪B
er0 , U∗(ε0) ∩B

er0 = ∅. Then, by (2.17) and (2.18)
we have

i(ε0T (ε0, · ), U(ε0), Q) = 0,

which is a contradiction of (2.14). Therefore, C is unbounded.
(4b) T (λ, θ) > θ for any λ > 0. In the same way to prove the case (4a)

we can prove that, if C is bounded, then there exists a bounded open set U of
R+ × Q such that ∂R+×QU ∩ L(Q) = ∅, and C ⊂ U (see (2.11)). Take R0 > 0
large enough such that U ⊂ [0, R0]×Q and U(R0) = ∅. Note that (λ, θ) is not
a solution of (2.5λ) for any λ ∈ (0,∞). Therefore, ∂R+×QU doesn’t possess any
solutions of (2.5λ). Thus, by Lemma 2.3, we have for any λ ∈ [0, R0]

(2.19) i(λT (λ, · ), U(λ), Q) = i(R0T (R0, · ), U(R0), Q) = 0.

In the same way as the case (4a) we can show that (2.13) also holds, which is
a contradiction of (2.19). Therefore, C is an unbounded connected component
of L(Q).
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Step 5. Now we see from the proof of Step 2 that, for any λ > 0, if C ∩
([λ,∞)×Q) 6= ∅, then there exists Rλ > 0 such that

C ⊂ (([λ,∞)×Q) ∩M [0, Rλ]).

Therefore, C is an unbounded connected component of L(Q) which comes from
(0, θ) and tends to (0,∞). Note that S(Q) = L(Q) when F is positone, if we let
C∗ = C, then the conclusion (b) holds.

To complete the proof of Theorem 2.5 now we need only to show the con-
clusion (a). Obviously, the projection of C in x-axis is an interval, denote it by
[0, λ∗]. Let λ0 be defined as Step 3. Then, we have 0 < λ∗ ≤ λ0. Assume without
loss of generality that λ∗ > 1 (in the same way we can show the case of λ∗ ≤ 1).
Obviously, C is also an unbounded connected component of ([0, λ∗]×Q)∩L(Q).
Let

D1 = ({1} ×Q) ∩M [4σ0,∞), D2 = M(4σ0) ∩ ([0, 1]×Q)

and X1 = ([0, 1] × Q) ∩ M [4σ0,∞). Obviously, C ∩ (D1 ∪ D2) 6= ∅. For any
p ∈ C ∩ (D1∪D2), denote by E(p) the connected component of the metric space
C ∩ X1 which passes the point p. Now we can prove that, there must exist a
p0 ∈ C ∩ (D1 ∪D2) such that E(p0) is an unbounded connected component of
the metric space C ∩X1. On the contrary, assume that E(p) is bounded for any
p ∈ C ∩ (D1 ∪D2). Then, for each p ∈ C ∩ (D1 ∪D2), in the same way as in the
construction of U in (2.11) we can show that there exists a neighbourhood U(p)
of E(p) in X1 such that

(2.20) ∂X1U(p) ∩ C = ∅.

Obviously, the sets of {U(p) ∩ (D1 ∪ D2)|p ∈ C ∩ (D1 ∪ D2)} is an open cover
of the set C ∩ (D1 ∪D2) and C ∩ (D1 ∪D2) is a compact set. Thus, there exist
finite subsets of {U(p) ∩ (D1 ∪D2)|p ∈ C ∩ (D1 ∪D2)}, say,

U(p1) ∩ (D1 ∪D2), U(p2) ∩ (D1 ∪D2), . . . , U(pn0) ∩ (D1 ∪D2)

which also is an open cover of C ∩ (D1 ∪D2), that is
n0⋃

j=1

[U(pj) ∩ (D1 ∪D2)] ⊃ C ∩ (D1 ∪D2).

Let U =
⋃n0

j=1 U(pj). Then U is an bounded open set of X1. Since

∂X1U ⊂
n0⋃

j=1

∂X1U(pj),

then by (2.20) we have

(2.21) ∂X1U ∩ C = ∅.
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From the arguments of Step 2, we see that for λ = 1, there exists R1 > 4σ0, such
that

L(Q) ∩ ([1,∞)×Q) ⊂ ([1,∞)×Q) ∩M [0, R1])

when L(Q) ∩ ([1,∞) × Q) 6= ∅. Since U is a bounded set of X1, then U ∩ D1

is a bounded subset of D1. Take R2 > 0 large enough such that U ∩ D1 ⊂
M [4σ0, R2]. Let R3 = R1 + R2. Let

V1 = M [0, 4σ0) ∩ ([0, λ∗]×Q), V2 = ((1, λ∗]×Q) ∩M [0, R3)

and V = V1 ∪ V2 ∪ U . Let

S1 = (M [4σ0, R3] ∩ ({1} ×Q)) \ U, S2 = (M(4σ0) ∩ ([0, 1]×Q)) \ U.

Obviously, V1, V2 and V are three bounded open sets of the metric space [0, λ∗]×
Q and

∂[0,λ∗]×QV = (([1, λ∗]×Q) ∩M(R3)) ∪ ∂X1U ∪ S1 ∪ S2.

Since C ∩ (D1∪D2) ⊂ U , then C ∩ (S1∪S2) = ∅. By (2.20) and the definition of
R3, we have C ∩ ∂[0,λ∗]×QV = ∅. Note the unboundedness of C, then ([0, λ∗]×
Q) \ Cl[0,λ∗]×QV is an nonempty open subset of C. Let

O1 = C ∩ V, O2 = (([0, λ∗]×Q) \ Cl[0,λ∗]×QV ) ∩ C.

Then O1 and O2 are two nonempty open subsets of C, and C = O1 ∪ O2,
which is a contradiction of the connectedness of C. Therefore, there must exist
p0 ∈ C ∩ (D1 ∪D2) such that E(p0) is an unbounded connected component of
X1 ∩ C.

Step 6. Let g̃: [0, 1]×Q 7→ [0, 1]× E be defined by

g̃(λ, x) = (λ, x− 2λω1), for all (λ, x) ∈ [0, 1]×Q.

Then g̃: [0, 1]×Q 7→ [0, 1]×E is continuous, and so O =: g̃(E(p0)) is a connected
subset of [0, 1] × E. For any (λ, y) ∈ O, there exists (λ, x) ∈ E(p0) such that
y = x− 2λω1. Then we have

‖y‖ = ‖x− 2λω1‖ ≥ ‖x‖ − 2‖ω1‖.

By the unboundedness of the set E(p0), we see that O is an unbounded connected
subset of [0, 1] × E. Now for any (λ, y) ∈ O and the corresponding (λ, x) ∈
E(p0) ⊂ C such that y = x − 2λω1, since ‖x‖ ≥ 4σ0 and x ∈ Q, we have
J(x) = x, and

y = x− 2λω1 = β(λ, x) ≥ 2σ0e > θ,

and so

x = λK[F (x− 2λω1) + 2ω0] = λKF (x− 2λω1) + 2λω1,
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that is, y = λKF (y). Thus, (λ, y) is a solution of (1.1λ). Therefore, O ⊂ S(P ).
Denote by C∗ the connected component of S(P ) which contains O. Then C∗ is
an unbounded connected component which tends to (0,∞). �

Remark 2.6. Obviously, the conclusion of Step 4 can also be deduced di-
rectly from Theorem 1 in [14] when T (λ, θ) > θ for any λ > 0. Moreover, the
conclusion (b) in Theorem 2.5 follows very easily from the second part of Theo-
rem 1 in [14] if we assumed that B has positive spectral radius in (H5) without
the assumptions (H3) and (H4).

Now we apply Theorem 2.5 to show the existence of positive solutions of
semi-positone problem (1.1λ).

Corollary 2.7. Assume that all conditions of Theorem 2.5 are satisfied.
Then

(a) when F is positone, there exists λ∗ > 0 such that for any 0 < λ ≤ λ∗,
(1.1λ) has at least two solutions;

(b) when F is semi-positone, there exists λ∗ > 0 such that for any 0 < λ ≤
λ∗, (1.1λ) has at least one solution.

Proof. (a) When F is positone, by Theorem 2.5, S(Q)(= L(Q)) possess
an unbounded connected component C∗ which comes from (0, θ) and tends to
(0,∞). Let λ0 be defined by Step 3 of Theorem 2.5. Take δ0 > 0 small enough.
Then, there exists p0 ∈ C∗ ∩M(1 + δ0) such that the connected component of
the metric space C∗ ∩M [1 + δ0,∞) which passes p0 is unbounded and tends to
(0,∞), denote it by E(p0). Let

λ1
∗ = sup{λ | there exists x ∈ Q \ {θ} such that (λ, x) ∈ E(p0)}.

Denote by E((0, θ)) the connected component of the metric space C∗ ∩M [0, 1]
which passes (0, θ) and intersects with M(1). Let

λ2
∗ = sup{λ | there exists x ∈ Q \ {θ} such that (λ, x) ∈ E((0, θ))}.

Let λ∗ = min{λ1
∗, λ

2
∗}. Obviously, λ∗ > 0. Then for each λ ∈ (0, λ∗], (1.1λ)

has at least two solutions (λ, x∗1,λ) ∈ E((0, θ)) and (λ, x∗2,λ) ∈ E(p0), such that
‖x∗1,λ‖ ≤ 1, ‖x∗2,λ‖ ≥ 1 + δ0 > 1. Obviously, ‖x∗1,λ‖ → 0 and ‖x∗2,λ‖ → ∞ as
λ → 0.

(b) When F is semi-positone, by Theorem 2.5, S(P ) possess an unbounded
connected component C∗ which tends to (0,∞). Let

λ2
∗ = sup{λ | there exists x ∈ P \ {θ} such that (λ, x) ∈ C∗}.

Then, for each λ ∈ (0, λ∗], (1.1λ) has at least one solution. �
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Theorem 2.8. Let the cone P be a solid cone, r(K) > 0, F (θ) ∈
◦
P , h be

defined by (2.1), h(e) > 0, h(ω0) > 0 when ω0 > θ. Assume that (H1)–(H3) hold.
Then either

(a) S(P ) possess two connected components C∗
1 and C∗

2 , C∗
1 tends to (0,∞)

and C∗
2 comes from (0, θ), or

(b) S(P ) possess an unbounded connected component C∗ which comes from
(0, θ) and tends to (0,∞).

Proof. Since F (θ) ∈
◦
P , then there exists δ′ > 0 small enough such that

U(F (θ), δ′) ⊂ P . By the continuity of F , there exists r0 > 0 small enough such
that F (U(θ, r0) ∩ Q) ⊂ U(F (θ), δ′/4). Take 0 < δ′0 ≤ δ′‖ω0‖−1/2. For any
x ∈ U(θ, r0) ∩Q, we have

‖F (x)− δ′0ω0 − F (θ)‖ ≤ ‖F (x)− F (θ)‖+ δ′0‖ω0‖ ≤
δ′

4
+

δ′

2
< δ′,

and so F (x)− δ′0ω0 ∈ U(F (θ), δ′) ⊂ P . So,

(2.22) F (x) ≥ δ′0ω0.

Define g: R+ 7→ R+ by (2.4). Let R0 = max{2σ0, r0 + 1}. Then we have for
any λ ∈ [0, 1] and x ∈ Q, ‖x‖ ≥ R0

x− g(λ)ω1 ≥ (‖x‖ − 2σ0)e ≥ θ.

By (H2), we have

(2.23) F (x− g(λ)ω1) + 2ω0 ≥ ω0, for all λ ∈ R+, x ∈ Q, ‖x‖ ≥ R0.

Let Ω1 = {x ∈ Q | ‖x‖ ≤ r0} ∪ {x ∈ Q | ‖x‖ ≥ R0}. Define the operator
T : R+ × Ω1 7→ E by

T (λ, x) =

{
F (x− g(λ)ω1) + 2ω0 for (λ, x) ∈ R+ ×Q, ‖x‖ ≥ R0,

F (x) for (λ, x) ∈ R+ ×Q, ‖x‖ ≤ r0.

Let δ0 = min{1, δ′0}. Then, for any (λ, x) ∈ R+ × Ω1, we have by (2.22)
and (2.23)

(2.24) T (λ, x) ≥ δ0ω0.

Using the Extension Theorem of continuous operator, we see that there exists
a continuous operator T̃ : R+ ×Q 7→ E such that

T̃ (λ, x) = T (λ, x), for all (λ, x) ∈ R+ × Ω1

and T̃ (R+×Q) ⊂ coT (R+×Ω1), where coT (R+×Ω1) denotes the convex closure
of the set T (R+ × Ω1).
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Next we will consider the following nonlinear operator equation

(2.25) x = λKT̃ (λ, x), for all (λ, x) ∈ R+ ×Q.

Let

L(Q) = {(λ, x) | (λ, x) ∈ R+ ×Q is a solution of (2.25) and x 6= θ}.

Let λ > 0 be fixed. Take Mλ ≥ 4‖h‖/(λr(K)h(e)). From (H3), there exists
R′

λ
> 0 such that for any x ∈ D with ‖x‖ ≥ R′

λ

(2.26) h(F (x)) ≥ Mλh(x).

Let Rλ ≥ max{R′
λ

+ 4‖ω1‖, R0 + 2‖ω1‖, 4σ0 + 4‖ω1‖}. Then we have for any
λ ≥ λ and x ∈ Q with ‖x‖ ≥ Rλ

x− g(λ)ω1 ≥ x− 2ω1 ≥ x− 2σ0e ≥ (‖x‖ − 2σ0)e(2.27)

≥ 1
2
(‖x‖+ 2‖ω1‖)e ≥

1
2
(‖x− g(λ)ω1‖)e.

This implies that x− g(λ)ω1 ∈ D. On the other hand, for any λ ≥ λ and x ∈ Q

with ‖x‖ ≥ Rλ, we have

‖x− g(λ)ω1‖ ≥ ‖x‖ − 2‖ω1‖ ≥ R′
λ
.

Thus, by (2.26) and (2.27) we have for any λ ≥ λ and x ∈ Q with ‖x‖ ≥ Rλ

h(λKT̃ (λ, x)) = λh(KT (λ, x)) ≥ λr(K)h(T (λ, x))

≥ λr(K)h(F (x− g(λ)ω1)) ≥ λr(K)Mλh(x− g(λ)ω1)

≥ λr(K)Mλh

(
1
2
‖x‖e

)
=

λMλr(K)h(e)
2

‖x‖ ≥ 2‖h‖‖x‖ > h(x).

This implies that

(2.28) L(Q) ∩ ([λ,∞)×Q) ⊂ M [0, Rλ]

whenever L(Q) ∩ ([λ,∞)×Q) 6= ∅.
Now we will show that, there exists λ0 > 0 such that

(2.29) L(Q) ⊂ [0, λ0]×Q.

If L(Q) ∩ ([1,∞) × Q) = ∅, then (2.29) holds for λ0 = 1. Assume that L(Q) ∩
([1,∞)×Q) 6= ∅. For any (λ, x) ∈ L(Q) ∩ ([1,∞)×Q), we have by (2.24)

(2.30) x = λKT̃ (λ, x) ≥ λδ0Kω0 = λδ0ω1.

From (2.28), we see that there exists R1 > 0 such that

(2.31) L(Q) ∩ ([1,∞)×Q) ⊂ M [0, R1].
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From (2.30) and (2.31), we have λ ≤ (τδ0‖ω1‖)−1R1. Then (2.29) holds for

λ0 = max{1, (τδ0‖ω1‖)−1R1}.

Since
T̃ (λ, x) = T (λ, x) = F (x) ≥ δ′0ω0

for any λ > 0, x ∈ Q and ‖x‖ ≤ r0, then we have

h(KT̃ (λ, x))
h(x)

=
h(KF (x))

h(x)
=

r(K)h(F (x))
h(x)

≥ δ′0r(K)
h(ω0)
h(x)

→∞

as ‖x‖ → 0+. A similar argument as Theorem 2.5 shows that, L(Q) possess an
unbounded connected component C which comes from (0, θ) and tends to (0,∞).

Now a similar argument as Step 5 of Theorem 2.5 yields that, there exists
λ∗ > 0 (assume without loss of generality that λ∗ ≥ 1) such that the projection of
C on x-axis is [0, λ∗]. Let the sets D1 and D2, and g̃ be defined as in Steps 5 and 6
of Theorem 2.5. Then there exists p0 ∈ D1 or p0 ∈ D2 such that the metric space
(([0, 1]×Q)∩M [4σ0,∞))∩C possess an unbounded connected component which
passes p0 and tends to (0,∞), denote it by E(p0). Then a similar argument as
in Step 6 of Theorem 2.5 yields that the metric space S(P )∩ ([0, 1]×E) possess
an unbounded connected subset O such that O =: g̃(E(p0)). Let C∗

1 be the
connected component of the metric space S(P ) which contains O. Then C∗

1 is
an unbounded connected component which tends to (0,∞).

Denote by E((0, θ)) the connected component of the metric space C∩M [0, r0]
which passes (0, θ) and intersects with M(r0). Obviously, E((0, θ)) ⊂ S(P )( In
fact, E((0, θ)) ⊂ S(Q)). Denote by C∗

2 the connected component of the metric
space S(P ) which contains E((0, θ)). If C∗

1 ∩ C∗
2 6= ∅, then C∗

1 and C∗
2 are

contained in a connected component, say C∗. Obviously, C∗ is the connected
component which comes from (0, θ) and tends to (0,∞). If C∗

1 ∩C∗
2 = ∅, then C∗

1

and C∗
2 are two different connected components of S(P ), C∗

2 comes from (0, θ)
and C∗

1 tends to (0,∞), respectively. �

Corollary 2.9. Assume all conditions of Theorem 2.8 hold. Then there
exist λ∗ > 0 and r0 > 0 such that for any 0 < λ < λ∗, (1.1λ) has at least two
solutions x

(1)
λ and x

(2)
λ with 0 < ‖x(1)

λ ‖ ≤ r0 < ‖x(2)
λ ‖, and

‖x(1)
λ ‖ → 0, ‖x(2)

λ ‖ → ∞ (λ →∞).

In Theorems 2.5 and 2.8, in order to employ some conditions concerning
h we assume that the cone is a total or solid cone, and r(K) > 0. However,
theses conditions in many applications are not satisfied. Now we give some new
conditions.

(H6) limx∈D, ‖x‖→∞ ‖KF (x)‖/‖x‖ = ∞, where D = {x ∈ E | x ≥ ‖x‖e/2}.
(H7) limx∈Q, ‖x‖→0+ ‖KF (x)‖/‖x‖ = ∞ when ω0 = θ.
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By using the method of Theorems 2.5 and 2.8, we can prove the following
Theorems 2.10 and 2.11 For simplicity we omit the proofs.

Theorem 2.10. Assume that (H1), (H2), (H5)–(H7) hold. Then all conclu-
sions of Theorem 2.5 hold.

Theorem 2.11. Assume that (H1), (H6) and (H7) hold. Moreover, the cone

P is a solid cone, ω0 > θ and F (θ) ∈
◦
P . Then all conclusions of Theorem 2.8

hold.

Corollary 2.12. Assume all conditions of Theorem 2.10 hold. Then all
conclusions of Corollary 2.7 hold.

Corollary 2.13. Assume all conditions of Theorem 2.11 hold. Then all
conclusions of Corollary 2.9 hold.

3. Applications of abstract results
in differential boundary value problems

In this section we will give some applications of Theorems 2.5, 2.8, 2.10, 2.11
in differential boundary value problems. We will study the connected component
of the positive solutions set of the boundary value problem (1.2λ).

Concerning the boundary value problem (1.2λ), we make the following as-
sumptions.

(A1) There exists M0 ≥ 0 such that

f(t, x) ≥ −M0, for all (t, x) ∈ [r, R]× R+.

(A2) There exists [α, β] ⊂ [r, R] such that

lim
x→∞

f(t, x)
x

= ∞ uniformly with t ∈ [α, β].

(A3) When M0 = 0, for any [α1, β1] ⊂ (r, R),

lim
x→0+

f(t, x)
x

= ∞ uniformly with t ∈ [α1, β1].

(A4) When M0 = 0, there exists b(t) ≥ 0 such that

f(t, x) ≥ b(t)x for all (t, x) ∈ [r, R]× R+.

Let E = C[0, 1] be the well known real Banach space of all continuous func-
tions on [r, R] with the maximum norm ‖ · ‖, and P = {x ∈ E | x = x(t) ≥
0 for t ∈ [r, R]}. Then, P is a solid cone of E. Let

G(t, s) =


α−1

(
b + a

∫ s

r

p−1

)(
d + c

∫ R

t

p−1

)
for s ≤ t,

α−1

(
b + a

∫ t

r

p−1

)(
d + c

∫ R

s

p−1

)
for s > t,
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where α = ad + bc + ac
∫ R

r
p−1 and

∫ R

r
p−1 =

∫ R

r
p−1(s) ds. Let

e(t) = min
{

b + a
∫ t

r
p−1

b + a
∫ R

r
p−1

,
c + d

∫ R

t
p−1

c + d
∫ R

r
p−1

}
, t ∈ [r, R]

and Q = {x ∈ P | x = x(t) ≥ ‖x‖e(t), for all t ∈ [r, R]}. Then Q is also a cone
of E.

Let us define the operators K:E 7→ E and F :P 7→ E by

(Kx)(t) =
∫ R

r

G(t, s)x(s) ds, for all x ∈ E, t ∈ [r, R],

(Fx)(t) = f(t, x(t)), for all x ∈ P, t ∈ [r, R].

Let ω0(t) = M0 (for all t ∈ [r, R]) and

ω1(t) = M0

∫ R

r

G(t, s) ds, t ∈ [r, R].

From the proof in [3] we have the following Lemmas 3.1 and 3.2.

Lemma 3.1. K:P 7→ Q is a linear completely operator.

Lemma 3.2. There exists σ0 > 0 such that ω1 ≤ σ0e.

Let

S(P ) = {(λ, x) | λ ∈ R+, x 6= θ, x ∈ P, x is a solutions of (1.2λ)}.

Now first we will study the connected component of the metric space S(P ),
then we study the multiple positive solutions of (1.2λ).

Theorem 3.3. Assume that (A1)–(A4) hold. Then:

(a) S(P ) possess an unbounded connected component C∗ which tends to
(0,∞) when M0 > 0.

(b) S(P ) possess an unbounded connected component C∗ which comes (0, θ)
and tends to (0,∞) when M0 = 0.

Proof. Let us define the operator K and F , the elements ω0 and ω1 as
above. It is easy to see that (H1) and (H2) hold. Now we show that (H6) holds.
By (A2), for any M > 0, there exists R0 > 0 such that f(t, x) ≥ Mx for any
x ≥ R0 and t ∈ [α, β]. Take R0 = 2R0(mint∈[α,β] e(t))−1. Then we have, for any
x ∈ D with ‖x‖ ≥ R0,

x(t) ≥ 1
2
‖x‖e(t) ≥ 1

2
R0 min

t∈[α,β]
e(t) ≥ R0.

Then we have
f(t, x(t)) ≥ Mx(t), for all t ∈ [α, β]
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and so

(KFx)(t) =
∫ R

r

G(t, s)[F (s, x(s)) + M0] ds− ω1(t)

≥
∫ β

α

G(t, s)[f(s, x(s)) + M0] ds− ‖ω1‖

≥
∫ β

α

G(t, s)f(s, x(s)) ds− ‖ω1‖

≥ M

∫ β

α

G(t, s)x(s) ds− ‖ω1‖

≥ 1
2
M

∫ β

α

G(t, s)e(s) ds‖x‖ − ‖ω1‖,

for all t ∈ [r, R]. Thus, for x ∈ D with ‖x‖ ≥ R0, we have

‖KFx‖ ≥ 1
2
M

∫ β

α

G(t, s)e(s) ds‖x‖ − ‖ω1‖, for all t ∈ [α, β].

Consequently,

‖KFx‖
‖x‖

≥ 1
2
M min

t∈[α,β]

∫ β

α

G(t, s)e(s) ds− ‖ω1‖
‖x‖

.

Note ‖ω1‖/‖x‖ → 0 as ‖x‖ → ∞, then we have

lim
x∈D, ‖x‖→∞

‖KFx‖
‖x‖

= ∞.

This means that (H6) holds. Similar to the proof above we can show that (H7)
holds. By (A4) we see that (H5) holds. Now the conclusions follows from Theo-
rem 2.10. �

Corollary 3.4. Assume that all conditions of Theorem 3.3 hold. Then:

(a) When M0 > 0, there exists λ∗ > 0 such that (1.2λ) has at least one
positive solution for 0 < λ < λ∗.

(b) When M0 = 0, there exists λ∗ > 0 such that (1.2λ) has at least two
positive solutions x

(1)
λ and x

(2)
λ for 0 < λ < λ∗, ‖x(1)

λ ‖ ≤ 1 < ‖x(2)
λ ‖ and

‖x(1)
λ ‖ → 0, ‖x(2)

λ ‖ → ∞ as λ → 0+.

Corollary 3.4 can be obtained by Corollary 2.12.

Theorem 3.5. Assume that (A1) and (A2) hold. Moreover,

f(t, 0) > 0, for all t ∈ [r, R].

Then either

(a) S(P ) possess an unbounded connected component C∗ which comes from
(0, θ) and tends to (0,∞), or
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(b) S(P ) possess two unbounded connected components C∗
1 and C∗

2 , C∗
1

comes from (0, θ) and C∗
2 tends to (0,∞), respectively.

Corollary 3.6. Assume that all conditions of Theorem 3.5 hold. Then
there exist λ∗ > 0 and r0 > 0 such that, for 0 < λ < λ∗, (1.2λ) has at least two
solutions x

(1)
λ and x

(2)
λ such that

0 < ‖x(1)
λ ‖ ≤ r0 < ‖x(2)

λ ‖

and ‖x(1)
λ ‖ → 0, ‖x(2)

λ ‖ → ∞ as λ → 0+.

Remark 3.7. The conclusion (a) of Corollary 3.4 is the main result of [3].
Therefore, the abstract results of the Section 2 generalized the main results in [3].
Here we obtained the existence of positive solutions by employing a different
method, that is the method of the global bifurcation theories.

Remark 3.8. We have employed some conditions concerning h defined by
(2.1), see (H3) and (H4). In some applications to differential boundary value
problems, we can easily check this kind of condition, see [21].

Remark 3.9. In our main results of this paper Theorems 2.5 and 2.8 we
assumed that K(P ) ⊂ Q. Many operators has this property, especially, for those
operators which are related to ordinary differential boundary value problems.
However, it is difficult to verify K(P ) ⊂ Q for those operators which are related
to elliptic boundary value problems. Therefore, it’s a question need to study
further that what conditions can ensure our main results also valid for those
operators which are related to elliptic boundary value problems.
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