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FORCED OSCILLATIONS
IN STRONGLY DAMPED BEAM EQUATION

Aleksander Ćwiszewski

Abstract. It is proved that the extensible beam equation in Ball’s model

admits periodic solutions near equilibrium states if subject to external pe-
riodic force of high frequency. The approach is based on translation along

trajectories, averaging method and homotopy invariants such as topological

degree and fixed point index.

1. Introduction

We shall be concerned with a class of differential problems motivated by the
following beam equation

(1.1) utt(x, t) + αutxxxx(x,t) + βut(x, t) + uxxxx(x, t)

−
(
a

∫ l

0

|uξ(ξ, t)|2 dξ + b

)
uxx(x,t)− σ

( ∫ l

0

uξ(ξ, t)uξt(ξ, t) dξ
)
uxx(x, t)

= ϕ(x, ωt) for (x, t) ∈ (0, l)× (0,∞)

under the boundary conditions

(1.2) u(0, t) = u(l, t) = 0, uxx(0, t) = uxx(l, t) = 0 for t > 0
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where α, β, σ, a, l > 0, b ∈ R, ϕ: [0, l] × [0,∞) → R is time T -periodic for some
T > 0 and ω > 0 is a parameter. The problem (1.1)–(1.2) in terms of Ball’s model
(see [2], [3]) describes an extensible beam exposed to the external oscillating force
ϕ. We are interested in the existence of periodic solutions forced by the time-
dependent periodic term.

To study the problem we will put it in an abstract setting of evolution equa-
tions. Here we follow e.g. [11], [13], [15] or [9]. To this end define A:D(A) → X

in X := L2(0, l) by

(1.3)
D(A) := {u ∈W 4,2(0, l) | u(0) = u(l) = 0, u′′(0) = u′′(l) = 0},

Au := u′′′′ for u ∈ D(A).

It may be easily verified that the operator A is strictly positive, self-adjoint and
has compact resolvent. This allows us to consider the fractional powers Aγ and
spaces Xγ with the norms | · |γ and the scalar products ( · , · )γ , for γ ∈ R. It
can be proved that A1/2u = −u′′ for u ∈ X1/2 and |A1/4u|0 = |u′|0 for each
u ∈ X1/4. Hence, the problem (1.1)–(1.2) can be transformed into an abstract
form

(1.4) ü+ αAu̇+ βu̇+Au+ (a|u|21/4 + b+ σ(u, u̇)1/4)A1/2u = f(ωt)

where f(t) := ϕ( · , t). This can be formally rewritten as{
u̇ = v,

v̇ = −Au− αAv − βv − (a|u|21/4 + b+ σ(A1/2u, v)0)A1/2u+ f(ωt)

and, subsequently, as an equation on E := X1/2 ×X0

(1.5) (u̇(t), v̇(t)) = A(u(t), v(t)) + F(ωt, u(t), v(t))

where A:D(A) → E is given by

(1.6)
D(A) := {(u, v) ∈ E | u+ αv ∈ X1, v ∈ X1/2},

A(u, v) := (v,−A(u+ αv)− βv), (u, v) ∈ D(A)

and F: [0,∞)×E → E by

F(t, u, v) := (0,−(a|u|21/4 + b+ σ(A1/2u, v)0)A1/2u+ f(t)), t ≥ 0, (u, v) ∈ E.

It appears that (1.5) admits global unique solutions (understood in an appropri-
ate sense). Therefore, the translation (along trajectories) operator Φt:E → E,
t > 0, given by Φt(u, v) := (u(t), v(t)), where (u, v): [0,∞) → E is the solution
of (1.5) satisfying the initial value condition (u(0), v(0)) = (u, v), is correctly
defined. Fixed points of the translation operator determine periodic solutions
of (1.5).

The existence of fixed points will be established by the use of topological
methods. Our approach is similar to that of [7] and consists of two main elements.
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The first one is the Krasnsel’skĭı type formula relating the fixed point index of the
translation operator for an autonomous equation with the topological degree of
the right hand side of that equation. The second key ingredient is the averaging
formula stating that solutions of (1.5) converge as ω →∞ to trajectories of the
avareged equation

(1.7) (u̇, v̇) = A(u, v) + F̂(u, v)

where F̂:E → E is given by

F̂(u, v) :=
1
T

∫ T

0

F(τ, u, v) dτ, (u, v) ∈ E.

It will be shown that for sufficiently large ω the fixed point index of the trans-
lation ΦT/ω operator is equal to the topological degree of A + F̂ (with respect
to a proper open bounded set). By linearization, we shall deduce that, for large
frequencies ω there is a periodic solution near each equilibrium point of (1.7).
The following result is obtained.

Theorem 1.1. Suppose that |b| 6= j2π2/l2, for all j ≥ 1, and f : [0,∞) → X0

is a T -periodic Hölder continuous function such that∫ T

0

f(τ) dτ = 0.

Let k := [l
√
−b/π] if b < −π2/l2 and k := 0 if b > −π2/l2. Then there exists

ω0 > 0 such that for all ω > ω0 the equation (1.4) admits at least 2k + 1 (T/ω)-
periodic solutions u(ω)

j , j ∈ {i ∈ Z | |i| ≤ k}, such that

u
(ω)
j (t) → uj in X1/2 as ω →∞, uniformly with respect to t ∈ R,

and

u̇
(ω)
j (t) → 0 in X0 as ω →∞, uniformly with respect to t ∈ R,

for all integers with |j| ≤ k, where uj, j ∈ {i ∈ Z | |i| ≤ k}, are equilibrium
points of (1.4) with f ≡ 0, i.e. u0 = 0, uj = (l/2a)1/2(−1−bl2/j2π2)1/2 sin(jπx)
if 0 < |j| ≤ k.

Moreover, an advantage of this translation along trajectories approach is that
one obtains, as an additional information from the proof, the fixed point indices
of these periodic solutions (understood as indices of the translation operator for
(1.5)). This information is related with their stability properties.

Theorem 1.1 will be a conclusion of more general results. In the whole paper
we shall assume that X is a Hilbert space and A is an abstract strictly positive
self-adjoint operator in X having compact resolvent.

The paper is organized as follows. In Section 2 we provide estimates in the
spirit of [9] and a compactness result for the semigroup generated by A, which
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will be used to show that the translation along trajectories is a k-set contraction
with respect an appropriate measure of noncompactness. Section 3 is devoted
to a suitable version of Krasnosel’skĭı type formula. In Section 4 we develop
an averaging rule for beam type equations. Finally, in Section 5 we apply the
obtained theorems to the beam equation (1.4).

Notation. By R we denote the field of real numbers; by [x] we mean the
integer (or floor) part of x ∈ R. Z stands for the set of all integers.

If X is a normed space with the norm ‖ · ‖ and U ⊂ X, then ∂U and U

are the boundary and the closure of U , respectively. If x0 ∈ X and r > 0, then
BX(x0, r) = B(x0, r) := {x ∈ X | ‖x − x0‖ < r}. The distance of x ∈ X to
a subset M ⊂ X is defined by d(x,M) := inf{‖x − z‖ | z ∈ M}. By convM
we mean the closed convex hull of M . By L(X,X) we denote the algebra of all
bounded linear operators on X with the operator norm ‖ · ‖L(X,X). We write I
for the identity operator.

If A:D(A) → X, D(A) ⊂ X, is a linear operator in X, then ρ(A) is the
resolvent set of A and R(λ;A) := (λI − A)−1 is the resolvent operator for λ ∈
ρ(A). We write {SA(t)}t≥0 for the C0 semigroup of bounded linear operators
generated by A.

2. Estimates and compactness properties of the operator A

Throughout the paper, unless otherwise stated, we assume that A:D(A) →
X is a strictly positive self-adjoint operator in a Hilbert space X such that
the inverse operator A−1:X → X is well defined and compact. In this case,
the spectrum of A consists of a sequence of eigenvalues (λk)∞k=1 such that 0 <
λ1 ≤ λ2 ≤ λ3 ≤ . . . and λk → ∞ as k → ∞ and there exists a complete
X-orthonormal sequence of eigenvectors (ek)∞k=1 such that Aek = λkek for all
k ≥ 1. The fractional powers Aγ and the associated scale of fractional spaces Xγ ,
γ ∈ R, can be considered.

Let α, β > 0 be fixed and put E := X1/2 ×X0. Define A:D(A) → E by

(2.1)
D(A) := {(u, v) ∈ X1/2 ×X0 | u+ αv ∈ X1, v ∈ X1/2},

A(u, v) := (v,−A(u+ αv)− βv), (u, v) ∈ D(A).

Let η ≥ 0 and ( · , · )η:E×E → R be given by

((u1, v1), (u2, v2))η := (1 + αη)(u1, u2)1/2 + (ηu1 + v1, ηu2 + v2)0

for any (u1, v1), (u2, v2) ∈ E. It is easily seen that, for each η > 0, ( · , · )η is
a scalar product in E and that the induced norm ‖ · ‖η given by

‖(u, v)‖η :=
√

((u, v), (u, v))η, (u, v) ∈ E
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is equivalent to the original norm ‖·‖E associated with the scalar product ( · , · )0
(that is with η := 0).

Proposition 2.1. There exists η0 > 0 such that, for each η ∈ (0, η0] there
is ω = ω(η) > 0 such that the operator A + ωI is m-dissipative in E endowed
with the norm ‖ · ‖η, i.e.

(A(u, v), (u, v))η ≤ −ω‖(u, v)‖2η for each (u, v) ∈ D(A).

Proof. By a direct computation, we see that, for any (p, q) ∈ E, the equa-
tion A(u, v) = (p, q) admits a unique solution (u, v) ∈ D(A), that is A is sur-
jective. Further we note that, for any (u, v) ∈ D(A) and η ∈ (0, β], one has

(A(u, v), (u, v))η =(1 + αη)(u, v)1/2 + (ηv −A(u+ αv)− βv, ηu+ v)0

=(1 + αη)(u, v)1/2 + η2(u, v)0 + η|v|20 − η|u|21/2 − (u, v)1/2

− αη(u, v)1/2 − α|v|21/2 − βη(u, v)0 − β|v|20
= − η|u|21/2 − (β − η)|v|20 − η(β − η)(u, v)0

≤ − η|u|21/2 − (β − η)|v|20 + η(β − η)
(
λ1

2β
|u|20 +

β

2λ1
|v|20

)
≤ − η|u|21/2 − (β − η)|v|20 + η(β − η)

(
1
2β
|u|21/2 +

β

2λ1
|v|20

)
= − η

(
1
2

+
η

2β

)
|u|21/2 − (β − η)(1− ηβ/2λ1)|v|20.

Hence, for η0 := min{β/2, λ1/β}, the assertion holds. �

Remark 2.2. Proposition 2.1 along with the Lumer–Philips theorem implies
that A generates a C0 semigroup {SA(t)}t≥0 of bounded linear operators on E.
If η0 is as in Proposition 2.1, then

‖SA(t)(u, v)‖η0 ≤ e−ωt‖(u, v)‖η0 , for all (u, v) ∈ E,

with ω = ω(η0).

The operator −A is sectorial (see [13] and Appendix of [9]). Therefore the
C0 semigroup {SA(t)}t≥0 generated by A is analytic. In consequence, for any
(u, v) ∈ E, there exists (u, v): [0,∞) → E with (u(0), v(0)) = (u, v) such that,
for all t > 0, (u(t), v(t)) ∈ D(A), (u, v) is differentiable at t into E and

(u̇(t), v̇(t)) = A(u(t), v(t)).

In order to study compactness properties of the translation operator associated
to the beam equation, we derive proper estimates for the semigroup generated
by A. First, recall the following standard result.
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Lemma 2.3. Let E be a Banach space, A be the generator of a C0 semigroup
{SA(t)}t≥0 of bounded linear operators on E and f : [0, t] → E, with t > 0, be
continuous. If u: [0, t] → E is continuous and such that, for each t ∈ (0, t],
u(t) ∈ D(A), u̇(t) exists and u̇(t) = Au(t) + f(t), then, for all t ∈ [0, t],

u(t) = SA(t)u(0) +
∫ t

0

SA(t− s)f(s) ds.

Let PX1/2 :E → X1/2 and PX0 :E → X0 be the projections on the first and
second coordinate, respectively.

Lemma 2.4. If

λ1α+ β − α−1 > α−1 − |β − 1/α|
α(λ1α− 2α−1 + β)

> 0,

then

|PX1/2SA(t)(u, v)|1/2 ≤ e−ρt|u|1/2 +
Ce−ρt

(λ1α− 2α−1 + β)1/2
‖(u, v)‖E

and

|PX0SA(t)(u, v)|0 ≤ C

(
e−(λ1α+β−α−1)t +

e−ρt

λ
1/2
1

+
e−ρt

λ
1/2
1 (λ1α+ β − α−1 − ρ)

+
e−ρt

λ
1/2
1 (λ1α− 2α−1 + β)

+
e−ρt

λ
1/2
1 (λ1α+ β − α−1 − ρ)(λ1α− 2α−1 + β)1/2

)
‖(u, v)‖E

with

ρ := α−1 − |β − 1/α|
α(λ1α− 2α−1 + β)

and C > 0 independent of A.

Proof. We will follow the proof of Lemma 2.2 of [9]. Let (u, v): [0,∞) → E
be given by (u(t), v(t)) = SA(t)(u, v) for fixed (u, v) ∈ E, t ≥ 0. Clearly, (u, v)
is a solution of {

u̇ = v for t > 0,

v̇ = −A(u+ αv)− βv for t > 0.

If we define z: [0,∞) → X0 by z(t) := u(t)+αv(t), t ≥ 0, then (u, z) is a solution
of 

u̇ = −(1/α)u+ (1/α)z for t > 0,

ż = −Ãz + κu for t > 0,

u(0) = u, z(0) = u+ αv,

where κ := β − 1/α and Ã := αA+ κI. Note that S− eA(t) = e−κtS−A(αt) and

‖S− eA(t)‖L(X1/2,X1/2) ≤ e−(λ1α+κ)t = e−(λ1α+β−1/α)t.
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By Lemma 2.3, we get, for any t > 0,

u(t) = e−t/αu+
1
α

∫ t

0

e−α−1(t−s)z(s) ds

= e−t/αu+
1
α

∫ t

0

e−α−1(t−s)(S− eA(s)z + κ

∫ s

0

S− eA(s− r)u(r) dr) ds

= e−t/αu+
1
α

∫ t

0

e−α−1(t−s)S− eA(s)z ds

+
κ

α

∫ t

0

∫ s

0

e−α−1(t−s)S− eA(s− r)u(r) dr ds.

Hence

(2.2) |u(t)|1/2 ≤ e−α−1t|u|1/2 +
1
α

Θ1 +
|κ|
α

Θ2

where

Θ1 :=
∫ t

0

e−α−1(t−s)|S− eA(s)z|1/2 ds

and

Θ2 :=
∫ t

0

∫ s

0

e−α−1(t−s)|S− eA(s− r)u(r)|1/2 dr ds.

We estimate

Θ1 =
∫ t

0

e−α−1(t−s)e−κs|A1/2S−A(αs)z|0ds

≤
∫ t

0

e−α−1(t−s)e−κsC1/2
e−λ1αs

(αs)1/2
|z|0ds

=
C1/2 e

−α−1t

α1/2

∫ t

0

s−1/2e−(λ1α−α−1+κ)s|z|0ds

≤
C1/2 e

−α−1t

α1/2(λ1α− α−1 + κ)1/2
|z|0

∫ ∞

0

τ−1/2e−τ dτ

=
C1/2

√
π

α1/2(λ1α− α−1 + κ)1/2
· e−α−1t|z|0,

where C1/2 > 0 is a constant independent of A, and

Θ2 ≤
∫ t

0

∫ s

0

e−α−1(t−s)e−(λ1α+κ)(s−r)|u(r)|1/2 dr ds

= e−α−1t

∫ t

0

e(λ1α+κ)r|u(r)|1/2

( ∫ t

r

e−(λ1α−α−1+κ)s ds

)
dr

≤ e−α−1t

∫ t

0

e(λ1α+κ)r|u(r)|1/2
e−(λ1α−α−1+κ)r

λ1α− α−1 + κ
dr

≤ e−α−1t

λ1α− α−1 + κ

∫ t

0

eα−1r|u(r)|1/2 dr.
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Hence combining the obtained estimates and (2.2), we get, for all t ≥ 0,

eα−1t|u(t)|1/2 ≤ |u|1/2 + C1 |z|0 +
|κ|

α(λ1α− α−1 + κ)

∫ t

0

eα−1r|u(r)|1/2 dr

where

C1 :=
C1/2

√
π

α3/2(λ1α− α−1 + κ)1/2
.

And this, by use of the Gronwall inequality, gives

|u(t)|1/2 ≤
(
|u|1/2 + C1 |z|0

)
e−ρt, for all t ≥ 0.

Next we get

|z(t)|0 ≤ |S− eA(t)z|0 + |κ|
∫ t

0

|S− eA(t− s)u(s)|0 ds

≤ e−(λ1α+β−α−1)t|z|0 + |κ|
∫ t

0

e−(λ1α+β−α−1)(t−s)|u(s)|0 ds

and further∫ t

0

e−(λ1α+β−α−1)(t−s)|u(s)|0 ds

≤ λ
−1/2
1

∫ t

0

e−(λ1α+β−α−1)(t−s)|u(s)|1/2 ds

≤ λ
−1/2
1

∫ t

0

e−(λ1α+β−α−1)(t−s)(|u|1/2 + C1 |z|0)e−ρs ds

≤ λ
−1/2
1 (|u|1/2 + C1 |z|0)e−(λ1α+β−α−1)t

∫ t

0

e(λ1α+β−α−1−ρ)s ds

≤ e−ρt

λ
1/2
1 (λ1α+ β − α−1 − ρ)

(|u|1/2 + C1 |z|0),

which implies the assertion as |v(t)|0 ≤ α−1|z(t)|0 + α−1λ
−1/2
1 |u(t)|1/2, t ≥ 0. �

Let Xn, n ≥ 1, be the space spanned by e1, . . . , en and X̃
1/2
n and X̃0

n its
orthogonal complements in X1/2 and X0, respectively.

Lemma 2.5. For each n ≥ 1 and t ≥ 0,

SA(t)(Xn ×Xn) ⊂ Xn ×Xn and SA(t)(X̃1/2
n × X̃0

n) ⊂ X̃1/2
n × X̃0

n.

Proof. By Proposition 2.1, one has (0,∞) ⊂ ρ(A). Therefore the Euler
exponential formula states

SA(t)(u, v) = lim
k→∞

(I − (t/k)A)−k(u, v)

for all t > 0 and (u, v) ∈ E. A straightforward computation shows that the closed
spaces Xn × Xn and X̃

1/2
n × X̃0

n are invariant with respect to (I − (t/k)A)−1.
Hence, the assertion. �



Forced Periodic Oscillations in Strongly Damped Beam Equation 267

Lemma 2.6. There exist n0 ≥ 1 and a constant C̃ > 0 such that, for any
n ≥ n0, v ∈ X̃0

n and t ≥ 0,

|PX1/2SA(t)(0, v)|1/2 ≤
C̃e−ρnt

λ
1/2
n+1

|v|0

and

|PX0SA(t)(0, v)|0 ≤ C̃

(
e−(λnα+β−α−1)t +

e−ρnt

λ
1/2
n+1

)
|v|0

with

ρn := α−1 − |β − 1/α|
α(λn+1α− 2α−1 + β)

.

Proof. Let An, n ≥ 1, be the part of the operator A in X̃0
n, i.e. An:D(An)→

X̃0
n, D(An) := X̃0

n∩D(A), Anu := Au, u ∈ D(An). Now apply Lemma 2.4 for An

and A defined on E := X̃
1/2
n × X̃0

n by (1.6) with A := An. The first eiegenvalue
of An is λn+1 and, since λn → ∞, for suffieciently large n, the assumptions of
Lemma 2.4 are fulfilled and the desired estimates follow. �

Proposition 2.7. For any bounded V ⊂ X0 and t > 0, the set SA(t)({0}×
V ) is relatively compact.

Proof. Choose R > 0 so that V ⊂ BX0(0, R) and take any t > 0 and
{(vk)}k≥1 ⊂ V . It is convenient to use the following formula

γ({SA(t)(0, vk)}k≥1) = lim
n→∞

(
sup
k≥1

d(SA(t)(0, vk), X1/2
n ×X0

n)
)

(see e.g. [10]) where γ stands for the Hausdorff measure of noncompactness in E.
Due to Lemma 2.5, one gets

d(SA(t)(0, vk), Xn ×Xn) ≤ ‖SA(t)(0, vk)− SA(t)(0, Pnvk)‖E
≤ ‖SA(t)(0, Qnvk)‖E ≤ |PX1/2SA(t)(0, Qnvk)|1/2 + |PX0SA(t)(0, Qnvk)|0

where Pn:X0
n → Xn and Qn:X0

n → X̃0
n are the orthogonal projections. Further,

application of Lemma 2.6, gives, for large n,

|PX1/2SA(t)(0, Qnvk)|1/2 ≤
C̃e−ρnt

λ
1/2
n+1

|vk|0 ≤
C̃R

λ
1/2
n+1

→ 0 as n→∞

and

|PX0SA(t)(0, Qnvk)|0 ≤
(
e−(λnα+β−α−1)t +

1

λ
1/2
n+1

)
R→ 0 as n→∞.

This implies that γ({SA(t)(0, vk)}k≥1) = 0 and the proof is completed. �
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3. Krasnosel’skĭı type formula

We shall derive a Krasnosel’skĭı type result for the autonomous equation

(3.1) (u̇, v̇) = A(u, v) + (0, F (u, v))

where A is given by (2.1) and F :X1/2 × X0 → X0. We shall consider mild
solutions of the system. Recall that a continuous function (u, v): [t0, t0 +r) → E,
t0 ∈ R and r > 0, is a mild solution of (3.1) provided

(u(t), v(t)) = SA(t− t0)(u(t0), v(t0)) +
∫ t

t0

SA(t− s)(0, F (u(s), v(s))) ds

for all t ∈ [t0, t0 + r).
At this point let us remark that A is invertible and

(3.2) A−1(0, v) = (−A−1v, 0), v ∈ X0,

which, due to the compactness of A−1:X0 → X1/2, means that the superposition
A−1(0, F ) is a completely continuous map of E.

Theorem 3.1. Assume that F :X1/2×X0 → X0 is locally Lipschitz, bounded
on bounded sets and such that

(3.3)


for any t > 0 and (u, v) ∈ E, the equation (3.1)

admits a unique solution (u( · ;u, v), v( · ;u, v)): [0, t] → E

satisfying (u(0;u, v), v(0;u, v)) = (u, v)

and

(3.4)


for any R > 0 and t > 0, there exists C = C(R, t) > 0

such that ‖(u(s;u, v), v(s;u, v))‖E ≤ C, for all s ∈ [0, t],

whenever ‖(u, v)‖E ≤ R.

Let Φt:E → E, t > 0, be the translation operator for (3.1), i.e. Φt(u, v) =
(u(t;u, v), v(t;u, v)), (u, v) ∈ E. If U ⊂ E is open bounded and

A(u, v) + (0, F (u, v)) 6= 0 for all (u, v) ∈ ∂U ∩D(A),

then there exists t > 0 such that, for all t ∈ (0, t], Φt(u, v) 6= (u, v), for any
(u, v) ∈ ∂U, and

ind(Φt,U) = deg(I + A−1(0, F ),U)

where ind stands for the fixed point index due to Sadovskĭı (see [1] and also [14])
and deg is the Leray–Schauder topological degree with respect to 0.

Before passing to the proof, we recall three general results, which are stated
here for easy reference.
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Proposition 3.2 (see Proposition 2.7 of [6]). Let A be the generator of
a C0 semigroup of bounded linear operators on a Banach space E. Suppose
that {un}n≥1 ⊂ E is relatively compact and {wn}n≥1 ⊂ L1([0, l], E), l > 0,
is uniformly integrable (i.e. for any ε > 0, there is δ > 0 such that, for any
measurable J ⊂ [0, l] with the Lebesgue measure |J | ≤ δ and any n ≥ 1, one has∫

J
‖wn(t)‖dt ≤ ε). Define un: [0, l] → E, n ≥ 1, by

un(t) := SA(t)un +
∫ t

0

SA(t− s)wn(s) ds, t ∈ [0, l].

Then the following conditions are equivalent

(a) {un(t)}n≥1 is relatively compact for each t ∈ [0, l];
(b) {un}n≥1 is relatively compact in the space C([0, l], E) (with the uniform

convergence norm).

Proposition 3.3 (see Proposition 2.2 of [7]). Let A be the generator of a C0

semigroup of bounded linear operators on a Banach space E and let F : [0,∞)×
E × P → E, where P is a compact metric space of parameters, be continuous
and locally Lipschitz in the second variable uniformly with respect to parameter.
Suppose that, for each u ∈ E and µ ∈ P , there exists a unique mild solution
u( · , u, µ): [0,∞) → E of

u̇(t) = Au(t) + F (t, u(t), µ)

and that, for any relatively compact V ⊂ E and t > 0, the set

{u(t;u, µ) | u ∈ V, µ ∈ P}

is relatively compact. Then u(tn;un, µn) → u(t;u, µ) as n→∞ whenever tn → t

in [0,∞), un → u in E and µn → µ in P as n→∞.

Theorem 3.4 (see Theorem 5.2 of [8]). Suppose A:D(A) → E is a strongly
m-dissipative operator in a separable Banach space E and F :E → E is a lo-
cally Lipschitz compact map. Let Φt:E → E, t > 0, be the translation along
trajectories operator for

u̇(t) = Au(t) + F (u(t)), t > 0.

If U ⊂ E is open bounded and Au+F (u) 6= 0 for all u ∈ ∂U ∩D(A), then there
exists t0 > 0 such that, for each t ∈ (0, t0], Φt(u) 6= u, for all u ∈ ∂U , and

ind(Φt, U) = deg(I +A−1F,U).

Proof of Theorem 3.1. The idea of the proof is to reduce the problem
to the case with a finite dimensional nonlinearity, to which Theorem 3.4 applies.
We shall proceed in a few steps.
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Step 1. Note that, by (3.4), for a fixed t̃ > 0, we get C > 0 such that

‖(u(t;u, v), v(t;u, v))‖E ≤ C for all t ∈ [0, t̃] and (u, v) ∈ U.

Let F̃ :X1/2 ×X0 → X0 be given by

F̃ (u, v) := ρ(‖(u, v)‖E)F (u, v), for (u, v) ∈ X1/2 ×X0

where ρ: [0,∞) → R is a locally Lipschitz function such that ρ(s) = 1 if s ∈ [0, C]
and ρ(s) = 0 if s > 2C. Then F̃ is locally Lipschitz, bounded and one can easily
see that, for each (u, v) ∈ U, the mild solution (u(·;u, v), v(·;u, v)): [0, t̃] → E is
also a mild solution of

(u̇, v̇) = A(u, v) + (0, F̃ (u, v)), t ∈ [0, t̃].

Therefore the translations along trajectories operators of (3.3) and the above
equation coincide (for times from [0, t̃]).

Thus, we may assume, without loss of generality, that F is bounded.
Step 2. Let Fn:X1/2 ×X0 × [0, 1] → X0 be given by

Fn(u, v, µ) := (µI + (1− µ)Pn)F (u, v), u ∈ X1/2, v ∈ X0, µ ∈ [0, 1],

where Pn:X0 → Xn is the orthogonal projection. Clearly Fn, n ≥ 1, are bounded
and locally Lipschitz.

We claim that there exists n0 ≥ 1 such that, for each n ≥ n0,

A(u, v) + (0, Fn(u, v, µ)) 6= 0 for all (u, v) ∈ ∂U ∩D(A) and µ ∈ [0, 1].

To see this, suppose to the contrary that there exist (uk, vk) ∈ ∂U ∩ D(A),
µk ∈ [0, 1] and integers nk ≥ 1, k ≥ 1, such that A(uk, vk)+(0, Fnk

(uk, vk, µk)) =
0, for all k ≥ 1, and nk → ∞ as k → ∞. This implies that (uk, vk) =
−A−1(0, Fnk

(uk, vk, µk)) and since (Fnk
(uk, vk, µk)) is bounded, we get a subse-

quence of ((uk, vk)), denoted again by ((uk, vk)), convergent to some (u, v) ∈ ∂U.
We may also assume that µk → µ for some µ ∈ [0, 1]. Since

Fnk
(uk, vk, µk) = (µkI + (1− µk)Pnk

)F (uk, vk) → F (u, v),

we infer that
(u, v) = −A−1(0, F (u, v)),

i.e. A(u, v) + (0, F (u, v)) = 0, a contradiction proving the claim.
Hence, using the homotopy property, we get

(3.5) deg(I + A−1(0, F )) = deg(I + A−1(0, PnF )) for all n ≥ n0.

Step 3. For t > 0 and n ≥ 1, define Θ(n)
t :U× [0, 1] → E by

Θ(n)
t (u, v, µ) := (u(t), v(t))
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where (u, v): [0,∞) → E is the mild solution of

(3.6) (u̇, v̇) = A(u, v) + (0, Fn(u, v, µ)), (u(0), v(0)) = (u, v).

We claim that, for any t > 0 and n ≥ 1,

(3.7) γη0(Θ
(n)
t (V × [0, 1])) ≤ e−ωtγη0(V) for all V ⊂ U

where η0 > 0 and ω = ω(η0) > 0 come from Proposition 2.1 and γη0 is the
Hausdorff measure of noncompactness in E endowed with the norm ‖ · ‖η0 . To
verify it, note that, since F is bounded, there is C > 0 such that

(3.8) |Fn(u, v, µ)|0 ≤ C for all (u, v) ∈ E, µ ∈ [0, 1], n ≥ 1.

Fixing an arbitrary ε ∈ (0, t) and using the Duhamel formula give

Θ(n)
t (u, v, µ) =SA(t)(u, v) +

∫ t

0

SA(t− s)(0, Fn(Θ(n)
s (u, v, µ), µ))ds

=SA(t)(u, v) +
∫ t−ε

0

SA(t− ε− s)SA(ε)(0, Fn(Θ(n)
s (u, v, µ), µ)) ds

+
∫ t

t−ε

SA(t− s)(0, Fn(Θ(n)
s (u, v, µ), µ)) ds

for any n ≥ 1, t > 0, (u, v) ∈ E and µ ∈ [0, 1]. Furthermore, (3.8) implies∫ t−ε

0

SA(t− ε− s)SA(ε)(0, Fn(Θ(n)
s (u, v, µ), µ)) ds ∈ (t− ε) · conv Ṽ

with Ṽ := {SA(τ)(u, v) | τ ∈ [0, t − ε], (u, v) ∈ Ṽ1} and Ṽ1 := SA(ε)({0} ×
BX0(0, C)). In view of Proposition 2.7, Ṽ1 is relatively compact and, conse-
quently, so is Ṽ. Therefore, using Proposition 2.1 with Remark 2.2 and (3.8),
one gets, for any ε ∈ (0, t),

γη0

( ⋃
n≥1

Θ(n)
t (V × [0, 1])

)
≤ e−ωtγη0(V) + εC + γη0((t− ε) · conv Ṽ)

≤ e−ωtγη0(V) + εC.

Since ε ∈ (0, t) can be taken arbitrarily small, it yields

(3.9) γη0

( ⋃
n≥1

Θ(n)
t (V × [0, 1])

)
≤ e−ωtγη0(V)

and, in particular, (3.7).
Now the continuity of Θ(n)

t , for t > 0 and n ≥ 1, follows from Proposition 3.3.
Step 4. There exist t1 > 0 and n1 ≥ n0 such that, for all n ≥ n1 and

t ∈ (0, t1],

(3.10) Θ(n)
t (u, v, µ) 6= (u, v) for any (u, v) ∈ ∂U, µ ∈ [0, 1].
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Suppose to the contrary that there exist a sequence of integers (nk), (tk) in
(0,∞), ((uk, vk)) in ∂U and (µk) in [0, 1] such that

Θ(nk)
tk

(uk, vk, µk) = (uk, vk), for each k ≥ 1,

tk → 0 and nk → ∞ as k → ∞. Let N ≥ 1 be arbitrary and put sk(N) :=
([N/tk] + 1)tk −N , k ≥ 1. Clearly, for all k ≥ 1

(uk, vk) = Θ(nk)
([N/tk]+1)tk

(uk, vk, µk) = Θ(nk)
N (Θ(nk)

sk(N)(uk, vk, µk), µk),

therefore {(uk, vk)}k≥1 ⊂
⋃

k≥1 Θ(nk)
N (W × [0, 1]) with

W := {Θ(n)
s (u, v, µ) | (u, v) ∈ U, µ ∈ [0, 1], n ≥ 1, s ∈ [0, t̃]}

where t̃ := supk≥1 tk ≥ supk≥1 sk(N). Observe that (3.8) implies that W is
bounded. This, in view of (3.9), yields

γη0({(uk, vk)}k≥1) ≤ e−ωNγη0(W).

Since N was arbitrary, it entails γη0({(uk, vk)}k≥1) = 0, which allows us to
assume that (uk, vk) → (u0, v0) in E for some (u0, v0) ∈ ∂U and that µk → µ0

in [0, 1]. Let (uk, vk): [0,∞) → E, k ≥ 1, be the mild solution of (3.6) with
n = nk, µ = µk and (uk(0), vk(0)) = (uk, uk). Clearly, it follows from (3.9) that
{(uk(t), vk(t))}k≥1 is relatively compact for any t ≥ 0. Consequently, by use of
Proposition 3.2, we may assume that ((uk, vk)) converges uniformly on bounded
intervals to some (u, v): [0,∞) → E. Letting k →∞ in the formula

(uk(t), vk(t)) = SA(t)(uk, vk) +
∫ t

0

SA(t− s)(0, Fnk
(uk(s), vk(s), µk)) ds

for all t ≥ 0, we get

(u(t), v(t)) = SA(t)(u, v) +
∫ t

0

SA(t− s)(0, F (u(s), v(s))) ds for all t ≥ 0,

i.e. (u, v) is a mild solution of (3.1). Since (uk, vk) are tk-periodic, k ≥ 1, and
((uk, vk)) converges uniformly on bounded subsets, one has, for each t > 0 and
k ≥ 1,

‖(uk(t), vk(t))− (u0, v0)‖E ≤‖(uk(t), vk(t))− (uk([t/tk]tk), vk([t/tk]tk))‖E
+ ‖(uk, vk)− (u0, v0)‖E

and, letting k →∞, we infer that (u, v) is a constant function equal to (u0, v0).
Consequently, since a constant mild solution must be an equilibrium, we see
that (u0, v0) ∈ D(A) and A(u0, v0) + (0, F (u0, v0)) = 0, which contradicts the
assumption and proves the claim.
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Hence, by (3.10) and the homotopy invariance of fixed point index, for all
n ≥ n1 and t ∈ (0, t1],

(3.11) ind(Φt,U) = ind(Θ(n)
t ( · , 1),U) = ind(Θ(n)

t ( · , 0),U) = ind(Φ(n)
t ,U)

where Φ(n)
t is the translation along trajectories operator for the equation

(u̇, v̇) = A(u, v) + (0, PnF (u, v)).

Step 5. Fix n ≥ n1. Since PnF is completely continuous we can use Theo-
rem 3.4 to obtain t0 ∈ (0, t1] such that, for all t ∈ (0, t0],

ind(Φ(n)
t ,U) = deg(I + A−1(0, PnF ),U).

Finally, by combining it with (3.11) and (3.5), one finally has

ind(Φt,U) = ind(Φ(n)
t , U) = deg(I + A−1(0, PnF ),U) = deg(I + A−1(0, F ),U),

which completes the proof. �

4. Averaging principle for periodic solutions

The following abstract averaging principle is a version of Henry’s result
from [12].

Theorem 4.1. Let A be the generator of a C0 semigroup of bounded linear
operators on a Banach space E and let G: [0,∞) × E × P → E, where P is
a compact metric space of parameters, be continuous and locally Lipschitz in the
second variable and such that, for some T > 0,

G(t+ T, u, µ) = G(t, u, µ) for all t ≥ 0, u ∈ E, µ ∈ P.

Suppose that

(4.1)

{
for each u ∈ E, µ ∈ P and λ > 0, there is a unique mild solution

u( · ;u, µ, λ): [0,∞) → E of u̇(t) = Au(t) +G(t/λ, u(t), µ), u(0) = u;

(4.2)

{
the set {u(s;u, µ, λ) | s ∈ [0, t], u ∈ V, µ ∈ P, λ > 0} is bounded

for any bounded V ⊂ E and t ≥ 0;

(4.3)

{
the set {u(t;u, µ, λ) | u ∈ V0, µ ∈ P, λ > 0} is relatively compact

for any relatively compact set V0 ⊂ E and t ≥ 0,

and for Ĝ:E×P → E, given by Ĝ(u, µ) := (1/T )
∫ T

0
G(τ, u, µ) dτ , u ∈ E, µ ∈ P ,

assume that

(4.4)


for each u ∈ E and µ ∈ P the problem

u̇(t) = Au(t) + Ĝ(u, µ), u(0) = u

admits a unique mild solution û( · ;u, µ): [0,∞) → E.
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Then u(tn;un, µn, λn) → û(t, u, µ) whenever tn → t in [0,∞), un → u in E,
µn → µ in P and λn → 0+ as n→∞.

Proof. We shall deduce the result from Theorem 3.2 of [7] where G is
required to have sublinear growth. Indeed, take l > supn≥1 tn and let R > 0 be
such that {un}n≥1 ⊂ B(0, R). In view of (4.2), there exists C > 0 such that

‖u(t;u, µ, λ)‖ ≤ C for all t ∈ [0, l], u ∈ B(0, R), µ ∈ P, λ > 0.

DefineG0: [0,∞)×E×P→ E byG0(t, u, µ):= ρ(‖u‖)G(t, u, µ) where ρ: [0,∞) →
R is a locally Lipschitz function such that ρ(s) = 1 if s ∈ [0, C] and ρ(s) = 0 if
s > 2C. Clearly, for any u ∈ B(0, R), µ ∈ P and λ > 0, the mild solution of{

u̇(t) = Au(t) +G0(t/λ, u(t), µ), t ∈ [0, l],

u(0) = u

coincides with u( · ;u, µ, λ)|[0,l]. Hence, the theorem has been reduced to the case
when G is bounded and Theorem 3.1 of [7] applies. �

Now pass to

(4.5) (u̇, v̇) = A(u, v) + (0, F (t/λ, u, v, ε))

where A is the operator defined by (2.1), λ > 0 and ε ∈ [0, 1] are parameters
and F : [0,∞)×X1/2 ×X0 × [0, 1] → X0.

Theorem 4.2. Assume that F is continuous, locally Lipschitz in the second
and third variables uniformly with respect to t and ε, F ([0,∞) × V × [0, 1]) is
bounded for any bounded V ⊂ E, and that for some T > 0

F (t+ T, u, v, ε) = F (t, u, v, ε) for all (u, v) ∈ X1/2 ×X0, t ≥ 0, ε ∈ [0, 1].

Let G: [0,∞)×E× [0, 1]× [0, 1] → X0 be defined by

G(t, u, v, µ, ε) := (1−µ)F (t, u, v, ε)+µF̂ (u, v, ε), t ≥ 0, (u, v) ∈ E, µ, ε ∈ [0, 1],

with F̂ :X1/2 ×X0 × [0, 1] → X0 given by

F̂ (u, v, ε) :=
1
T

∫ T

0

F (t, u, v, ε) dt, (u, v) ∈ X1/2 ×X0, ε ∈ [0, 1].

Moreover, suppose that conditions (4.1) and (4.2) are satisfied with A := A and
G := (0, G) and let Φ(λ,ε)

t :E → E denote the translation along trajectories for
the equation (4.5). If U ⊂ E is open, bounded and

A(u, v) + (0, F̂ (u, v, 0)) 6= 0 for all (u, v) ∈ ∂U ∩D(A),

then there exist λ0, ε0 > 0 such that, for all λ ∈ (0, λ0] and ε ∈ (0, ε0],

ind(Φ(λ,ε)
λT ,U) = deg(I + A−1(0, F̂ ( · , 0)),U).
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Proof. Consider the equation

(4.6) (u̇(t), v̇(t)) = A(u(t), v(t)) + (0, G(t/λ, u(t), v(t), µ, ε)).

We claim that the following property holds:

(4.7)



if (λn) in (0,∞), (µn), (εn) in [0, 1], (tn) in (0,∞)

and mild solutions (un, vn): [0,∞) → E of (4.6)

with λ = λn, µ = µn and ε = εn, n ≥ 1, are such that

{(un(t), vn(t)) | t ∈ [0, tn], n ≥ 1} is bounded and tn →∞
then the set {(un(tn), vn(tn)}n≥1 is relatively compact.

Without loss of generality we may assume that (tn) is increasing. First, by the
Duhamel formula, we have

(un(tn),vn(tn)) = SA(tN )(un(tn − tN ), vn(tn − tN ))

+
∫ tn−δ

tn−tN

SA(tn − δ − s)SA(δ)(0, G(s/λn, un(s), vn(s), µn, εn)) ds

+
∫ tn

tn−δ

SA(tn − s)(0, G(s/λn, un(s), vn(s), µn, εn)) ds

whenever n ≥ N ≥ 1 and δ ∈ (0, tN ). Choose R > 0 so that ‖(un(s), vn(s))‖E ≤
R for all s ∈ [0, tn], n ≥ 1. Then there is C > 0 such that

|G(s/λn, un(s), vn(s), µn, εn)|0 ≤ C for all s ∈ [0, tn] and n ≥ 1

and that∫ tn−δ

tn−tN

SA(tn−δ−s)SA(δ)(0, G(s/λn, un(s), vn(s), µn, εn)) ds ∈ (tN−δ)·conv W

with W := {SA(τ)(u, v) | τ ∈ [0, tN ], (u, v) ∈ W̃} where W̃ := SA(δ)({0} ×
BX0(0, C)). And since in view of Proposition 2.7, W̃ is relatively compact,
so must be W. Therefore, if η0 > 0 and ω = ω(η0) > 0 are determined by
Proposition 2.1, then

γη0({(un(tn), vn(tn))}n≥N ) ≤ e−ωtNγη0(BE(0, R)) + δC

and, as δ ∈ (0, tN ) may be taken arbitrarily small, we infer that

γη0({(un(tn), vn(tn))}n≥N ) ≤ e−ωtNγη0(BE(0, R)).

Summing up, we have, for any N ≥ 1,

γη0({(un(tn), vn(tn))}n≥1) = γη0({(un(tn), vn(tn))}n≥N ) ≤ e−ωtNγη0(BE(0, R)),

which implies γη0({(un(tn), vn(tn))}n≥1) = 0 and completes the proof of (4.7).
For λ > 0 and t > 0 define Θ(λ)

t :E× [0, 1]× [0, 1] → E by

Θ(λ)
t (u, v, µ, ε) := (u(t), u(t))
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where (u, v): [0,∞) → E is the unique mild solution of (4.6) with (u(0), v(0)) =
(u, v). Clearly, in view of the assumptions, Θ(λ)

t is well defined. Using the
arguments that we employed while proving the property (4.7), it can be shown
that

γη0

( ⋃
λ>0

Θ(λ)
t (V × [0, 1]× [0, 1])

)
≤ e−ωtγη0(V)

for any bounded V ⊂ E and t > 0. This entails the assumption (4.3) (with
A := A, G := (0, G)) and, due to Proposition 3.3, the continuity of Θ(λ)

t .
Now we claim that

(4.8)

{
there exist λ0, ε0 > 0 such that, for any λ ∈ (0, λ0],

Θ(λ)
λT (u, v, µ, ε) 6= (u, v) for all (u, v) ∈ ∂U, µ ∈ [0, 1] and ε ∈ [0, ε0].

Suppose to the contrary that there are (λn) in (0,∞), ((un, vn)) in ∂U, (µn)
and (εn) in [0, 1] such that λn → 0+, εn → 0 and

Θ(λn)
λnT (un, vn, µn, εn) = (un, vn) for all n ≥ 1.

Let (un, vn): [0,∞) → E, n ≥ 1, be λnT -periodic solutions of (4.6) with λ = λn,
µ = µn, ε = εn and (un(0), vn(0)) = (un, vn). Since (4.2) holds and (un, vn) are
periodic, there exists C̃ > 0 such that

‖(un(s), vn(s))‖E ≤ C̃ for all s ≥ 0 and n ≥ 1.

Moreover, putting ln := n[1/λnT ] and using the λnT -periodicity, we get, for
each n ≥ 1, (un(lnλnT ), vn(lnλnT )) = (un, vn). Since lnλnT → ∞ as n →
∞, in view of the property (4.7), ((un, vn)) contains a convergent subsequence.
Further assume that (un, vn) → (u0, v0) and µ → µ0 as n → ∞ for some
(u0, v0) ∈ ∂U and µ0 ∈ [0, 1]. Take any t > 0 and observe that application of
Theorem 4.1 gives (un([t/λnT ]λnT ), vn([t/λnT ]λnT )) → (û(t), v̂(t)) as n → ∞
where (û, v̂): [0,∞) → E is the mild solution of

(u̇, v̇) = A(u, v) + (0, Ĝ(u, v, µ0, 0)), (u(0), v(0)) = (u0, v0).

On the other hand, (un([t/λnT ]λnT ), vn([t/λnT ]λnT )) = (un, vn) → (u0, v0) for
n ≥ 1. This means that (û, v̂) is a constant mild solution equal to (u0, v0). In
consequence, (u0, v0) ∈ ∂U ∩D(A) and A(u0, v0) + (0, Ĝ(u0, v0, µ0, 0)) = 0, i.e.
A(u0, v0) + (0, F̂ (u0, v0, 0)) = 0, a contradiction proving that (4.8) holds.

Thus, the homotopy invariance of the fixed point index applied to Θ(λ)
λT with

λ ∈ (0, λ0] and ε ∈ [0, ε0], leads to

ind(Φ(λ,ε)
λT ,U) = ind(Θ(λ)

λT ( · , 0, ε),U) = ind(Θ(λ)
λT ( · , 1, ε),U)(4.9)

= ind(Θ(λ)
λT ( · , 1, 0),U) = ind(Φ̂λT ,U)



Forced Periodic Oscillations in Strongly Damped Beam Equation 277

where Φ̂t:E → E stands for the translation along trajectories operator for

(u̇, v̇) = A(u, v) + (0, F̂ (u, v, 0)).

Now Theorem 3.1 states that

ind(Φ̂λT ,U) = deg(I + A−1(0, F̂ ( · , 0)),U)

for sufficiently small λ > 0. This together with (4.9) ends the proof. �

Finally, let us also make the following observation to be used in the next
section.

Theorem 4.3. Assume that F is as in Theorem 4.2 and that the condi-
tions (4.1) and (4.2) are satisfied with A := A and G: = (0, F ). Suppose that
(un, vn): [0,∞) → E, n ≥ 1, are λnT -periodic mild solutions of (4.5) with λ = λn

and ε = εn, n ≥ 1, such that {(un(0), vn(0))}n≥1 is bounded and λn → 0+,
εn → 0 as n → ∞, then there are a subsequence ((unk

, vnk
)) of ((un, vn)) and

(u, v) ∈ D(A) such that A(u, v) + (0, F̂ (u, v, 0)) = 0 and

(unk
(t), vnk

(t)) → (u, v) in E, uniformly for t ≥ 0.

Proof. It can be easily deduced by inspection of the proof of the property
(4.8) with µn := 0, n ≥ 1 and εn → 0 as n→∞. �

5. Periodic solutions for the beam equation

Now we shall deal with the equation

(5.1) ü+ αAu̇+ βu̇+Au+ (g(|u|21/4) + σ(u, u̇)1/4)A1/2u = f(ωt)

where A is as before, ω > 0 is a parameter, g: [0,∞) → R is continuous with
C > 0 such that

(5.2)
∫ ρ

0

g(s) ds > −C, for any ρ > 0,

f : [0,∞) → X0 is a T -periodic Hölder function, i.e. f(t+ T ) = f(t) for all t ≥ 0
and there exist L > 0 and θ > 0 such that

|f(t)− f(s)|0 ≤ L|t− s|θ for all t, s ≥ 0.

Since our intention is to use the averaging from the previous section, we need to
consider the parameterized equation

(5.3) ü+αAu̇+βu̇+Au+(g(|u|21/4)+σ(u, u̇)1/4)A1/2u = (1−µ)f(t/λ)+µf̂

with f̂ := (1/T )
∫ T

0
f(s) ds. It is clear that it coincides with (5.1) if λ = ω−1

and µ = 0. The equation (5.3) can be formally rewritten as

(5.4) (u̇(t), v̇(t)) = A(u(t), v(t)) + (0, G(t/λ, u(t), v(t), µ))
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where A is defined by (1.6) and G: [0,∞)×E× [0, 1] → X0 is given by

G(t, u, v, µ) := −(g(|u|21/4) + σ(A1/2u, v)0)A1/2u+ (1− µ)f(t) + µf̂ ,

(u, v) ∈ E, t ≥ 0.

As mild solutions of (5.3) we take mild solutions of (5.4). However, as we
mentioned in Section 2, −A is sectorial and, as a result, (5.4) will admit also
(pointwise) solutions in the sense of Henry [12] (see also [4]). We speak of
a solution of (5.3) or (5.4) meaning a solution in the above sense. In par-
ticular, if (u, v): [t0, t0 + r) → E, with t0 ∈ R and r > 0, is a solution of
(5.4), then u ∈ C([t0, t0 + r), X1/2), v ∈ C([t0, t0 + r), X0), and, for all t > t0,
u(t) + αv(t) ∈ X1, v(t) ∈ X1/2, (u, v) is differentiable into E at t and

u̇(t) = v(t),

v̇(t) = −A(u(t) + αv(t))− βv(t) +G(t/λ, u(t), v(t), µ).

Obviously, in view of Lemma 2.3, any such a solution of (5.4) is also a mild
solution.

Below we strongly use these implications of the sectoriality of −A to show
that (5.4) has global existence property.

Proposition 5.1.

(a) For any λ > 0 and (u, v) ∈ E, there exists a unique solution (u, v) =
(u( · ;u, v, µ, λ), v( · ;u, v, µ, λ)): [0,∞) → E of (5.4) satisfying the initial
value condition (u(0), v(0)) = (u, v).

(b) For any (u, v) ∈ E, µ ∈ [0, 1], λ > 0 and t ≥ 0,

|u(t;u, v, µ, λ)|21/2 + |v(t;u, v, µ, λ)|20

≤ |u|21/2 + |v|20 + C +
∫ |u|21/4

0

g(s) ds+
t

4β
sup

s∈[0,T ]

|f(s)|20.

In particular, for each R > 0 and t > 0, the set

{(u(s;u, v, µ, λ), v(s;u, v, µ, λ)) | s ∈ [0, t], (u, v) ∈ BE(0, R), µ ∈ [0, 1], λ > 0}

is bounded.

Proof. (a) Note that G has the following property: for any (t, u, v) ∈
[0,∞)×E, there exist L > 0 and δ > 0 such that

|G(t1, u1, v1, µ)−G(t2, u2, v2, µ)|0 ≤ L(|t1 − t2|θ + ‖(u1, v1)− (u2, v2)‖E)

whenever t1, t2 ∈ (t−δ, t+δ)∩ [0,∞), (u1, v1), (u2, v2) ∈ BE((u, v), δ), µ ∈ [0, 1].
Therefore, in view of Theorem 3.3.3 of [12], for any (u, v) ∈ E, λ > 0 and
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µ ∈ [0, 1], we get a unique solution (u, v): [0, t) → E of (5.4). Suppose that (u, v)
is a maximal solution. Then, for t ∈ (0, t),

(u̇(t), u(t))1/2 =(u(t), v(t))1/2,

(v̇(t), v(t))0 =− (u(t), v(t))1/2 − α|v(t)|21/2 − β|v(t)|20
− (g(|u(t)|21/4) + σ(A1/2u(t), v(t))0)(u(t), v(t))1/2

+ ((1− µ)f(t/λ) + µf̂ , v(t))0.

Addition of both equalities yields

1
2
d

dt
(|u(t)|21/2 + |v(t)|20) = − α|v(t)|21/2 − β|v(t)|20 − g(|u(t)|21/4)(u(t), v(t))1/4

− σ|(u(t), v(t))1/4|2 + ((1− µ)f(t/λ) + µf̂ , v(t))0

and, further, by taking Ψ: [0,∞) → R given by Ψ(ρ) :=
∫ ρ

0
g(s) ds, ρ ≥ 0, one

has

1
2
d

dt
(|u(t)|21/2 + |v(t)|20 + Ψ(|u(t)|21/4))

= − α|v(t)|21/2 − β|v(t)|20 − σ|(A1/2u(t), v(t))0|2 + ((1−µ)f(t/λ)+µf̂ , v(t))0

≤ − β|v(t)|20 + β|v(t)|20 + (1/4β)|(1− µ)f(t/λ) + µf̂ |20 ≤ (1/4β) sup
s∈[0,T ]

|f(s)|20.

After integration, we obtain

|u(t)|21/2 + |v(t)|20(5.5)

≤ |u|21/2 + |v|20 + Ψ(|u|21/4)−Ψ(|u(t)|21/4) + (t/4β) sup
s∈[0,T ]

|f(s)|20

≤ |u|21/2 + |v|20 + Ψ(|u|21/4) + C + (t/4β) sup
s∈[0,T ]

|f(s)|20.

Hence, lim supt→t ‖(u(t), v(t))‖E <∞ and, in view of Theorem 3.3.4 of [12], we
see that t = ∞, i.e. assertion (a) holds.

Assertion (b) readily follows from (5.5). �

The above proposition will allow us to employ Theorem 4.2 in search of
periodic solutions. In the remainder of the paper we shall focus on a special case
of the beam equation

(5.6) ü+ αAu̇+ βu̇+Au+ (a|u|21/4 + b+ σ(u, u̇)1/4)A1/2u = f(ωt) + εf0(ωt)

with fixed a > 0 and b ∈ R, parameters ω, ε > 0 and T -periodic Hölder
continuous f, f0: [0,∞) → X0. In this special case g: [0,∞) → R is given by
g(s) := a s+ b, for s ≥ 0. Define F0:E → E by

F0(u, v) := (0,−(a|u|21/4 + b+ σ(A1/2u, v)0)A1/2u).
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Proposition 5.2. Assume that

(5.7) f̂ = 0 and |b| 6= λ
1/2
j for all j ≥ 1

and let k be either the integer such that λ1/2
k < −b < λ

1/2
k+1 or k = 0 if b > −λ1/2

1 .

(a) Under the above assumptions, the solution set of the equation

(5.8) A(u, v) + F0(u, v) = 0

consists of (uj , 0), j ∈ {i ∈ Z | |i| ≤ k}, where

uj :=

{
0 if j = 0,

a−1/2(−1− b/λ
1/2
j )1/2ej if 1 ≤ |j| ≤ k,

and ej := −e−j, λj := λ−j for integers j < 0.
(b) For sufficiently small r > 0,

deg(I + A−1F0, BE((0, 0), r)) = (−1)k0 ,

where k0 is the integer such that λ1/2
k0

< b < λ
1/2
k0+1 and k0 = 0 if

b < λ
1/2
1 , and

deg(I + A−1F0, BE((uj , 0), r)) = (−1)j+1 if 0 < |j| ≤ k.

Proof. (a) Suppose that (u, v) ∈ E is a solution of (5.8). Then

v = 0 and A(u+ αv) = −(a|u|21/4 + b+ σ(A1/2u, v)0)A1/2u,

which implies A1/2u = −(a|u|21/4 + b)u. Clearly, either u = 0 or there exists

j ≥ 1 such that −λ1/2
j = a |u|21/4 + b and u = sej for some s ∈ R. Hence either

u = 0 or 1 ≤ |j| ≤ k and
aλ

1/2
j s2 + b = −λ1/2

j .

Such s exists provided b < −λ1/2
j and

s = ±a−1/2(−1− b/λ
1/2
j )1/2.

This implies (a).
(b) The Frêchet derivative of F0 at (u, 0) is determined by the formula

F′0(u, 0)(φ, ψ) = (0,−(2a(u, φ)1/4 + σ(A1/2u, ψ)0)A1/2u− (a|u|21/4 + b)A1/2φ)

for all u ∈ X1/2 and (φ, ψ) ∈ E. This together with (3.2) gives

A−1F′0(u, 0)(φ, ψ)

= ((2a(u, φ)1/4 + σ(A1/2u, ψ)0)A−1/2u+ (a|u|21/4 + b)A−1/2φ, 0)

for (φ, ψ) ∈ E. In particular

A−1F′0(0, 0)(φ, ψ) = (bA−1/2φ, 0).
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And it is easy to verify that I + A−1F′0(0, 0) has no negative eigenvalues if
b < λ

1/2
1 and k0 negative eigenvalues 1− b/λj , j = 1, . . . , k0, if k0 > 1 (counted

algebraically). The linearization formula for the Leray–Schauder theorem gives
the desired formula. When k > 0 and λ1/2

k < −b < λ
1/2
k+1, then

A−1F′0(uj , 0)(φ, ψ) = ((2a(ej , φ)0 + σ(ej , ψ)0)s2jej + (a|uj |2 + b)A−1/2φ, 0)

for all (φ, ψ) ∈ E and j ∈ {i ∈ Z | 0 < |i| ≤ k}. It can be verified by direct
computation that I+A−1F′0(uj , 0) has |j|−1 negative eigenvalues 1−(λj/λi)1/2,
i = 1, . . . , |j|−1. Hence, due to the linearization formula for the Leray–Schauder
degree, their indices are equal to (−1)|j|−1 = (−1)j+1. �

Theorem 5.3. Under the condition (5.7), there exist ε0 > 0 and ω0 > 0
such that for all ε ∈ [0, ε0] and ω ≥ ω0, the equation (5.6) admits at least 2k+ 1
(T/ω)-periodic solutions u(ω,ε)

j , j ∈ {i ∈ Z | |i| ≤ k}, such that

u
(ω,ε)
j (t) → uj in X1/2 as ω →∞, ε→ 0, uniformly with respect to t ∈ R,

and

u̇
(ω,ε)
j (t) → 0 in X0 as ω →∞, ε→ 0 uniformly with respect to t ∈ R,

for all j ∈ {i ∈ Z | |i| ≤ k}. The topological indices of solutions are equal to the
topological indices of the corresponding equilibria – see Proposition 5.2.

Proof. In view of Proposition 5.2, there is r > 0 such that BE((uj , 0), r),
j ∈ {i ∈ Z | |i| ≤ k}, are pairwise disjoint and

deg(I + A−1F0, BE((uj , 0), r)) 6= 0, j ∈ {i ∈ Z | |i| ≤ k}.

Let F : [0,∞)×X1/2 ×X0 × [0, 1] → X0 be given by

F (t, u, v, ε) := −(a|u|21/4 + b+ σ(A1/2u, v)0)A1/2u+ f(t) + εf0(t),

for t ≥ 0, (u, v) ∈ X1/2×X0, ε ∈ [0, 1]. Clearly, in view of Proposition 5.1, (5.6)
satisfies assumptions of Theorem 4.2. Hence, there are ε0 > 0 and λ0 > 0 such
that for all ε ∈ [0, ε0] and λ ∈ (0, λ0]

ind(Φ(λ,ε)
λT , BE((uj , 0), r)) = deg(I + A−1F0, BE((uj , 0), r)) 6= 0

for each j ∈ {i ∈ Z | |i| ≤ k} where Φ(λ,ε)
t : E → E is the translation along

trejectories (by time t > 0) for the equation

(5.9) (u̇, v̇) = A(u, v) + (0, F (t/λ, u, v, ε)).

By the existence property of the fixed point index, for each ε ∈ [0, ε0] and ω >

ω0 := 1/λ0 one obtains at least 2k+1 periodic solutions (u(ω,ε)
j , v

(ω,ε)
j ): [0,∞) →

E, j ∈ {i ∈ Z | |i| ≤ k}, of (5.9) with λ = ω−1 such that

(u(ω,ε)
j (0), v(ω,ε)

j (0)) = (u(ω,ε)
j (T/ω), v(ω,ε)

j (T/ω)) ∈ BE((uj , 0), r)
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for j ∈ {i ∈ Z | |i| ≤ k}. Now the assertion follows from Theorem 4.3 and the
fact that BE((uj , 0), r), j ∈ {i ∈ Z | |i| ≤ k} are pairwise disjoint. �

It clear that to deduce Theorem 1.1 we take A given by (1.3). Then λj =
j4π4/l4 and ej(x) = (l/2)1/2 sin(jπx/l), x ∈ [0, l], j = 0, 1, . . . .
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[6] A. Ćwiszewski, Topological degree methods for perturbations of operators generating

compact C0 semigroups, J. Differential Equations 220 (2) (2006), 434–477.

[7] , Positive periodic solutions of parabolic evolution problems: a translation along

trajectories approach, Cent. Eur. J. Math. 9 (2) (2011), 244–268.
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